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Abstract: The safety and reliability of the drivetrain system in offshore wind turbines are crucial for their effective 
operation. Detecting anomalous behaviour within the drivetrain and providing reliable prognostic information can 
significantly reduce the risk of severe failures. Ensuring the reliability and safety of intelligent models is of 
paramount importance in the AI-driven, data-centric era. To address this challenge, this paper presents an intelligent 
anomaly detection model capable of issuing alerts prior to abnormal shutdowns, thereby ensuring system safety. A 
physics-informed probabilistic neural network was developed, integrating physical insights into the neural 
framework to manage prediction uncertainty and enhance the safety and reliability of failure alarms generated by 
the intelligent model. Overall, the proposed method offers a more reliable prognostic framework to enhance the 
safety and stability of wind turbines, including offshore installations, during operation while reducing costs 
Keywords: Reliable prognostics, anomaly detection; physics-informed neural network, offshore wind turbine, 
drivetrain, SCADA data 
 

Nomenclature 

Bi-LSTM Bidirectional Long Short-Term 
Memory 

CNN Convolutional Neural Network 

CLSTM Convolutional Long Short-Term 
Memory 

GRU Gated Recurrent Unit 
LSTM Long Short-Term Memory 

Py-PINet physics informed probabilistic 
Informer network 

RFR Random Forest Regression 
SVR Support Vector Regression 

TransNet Transformer Network 

Py-PINet physics informed probabilistic 
Informer network 

1. Introduction 
Offshore wind plays a pivotal role in the clean 

energy transition, particularly in Europe. In 2023, 
Europe reached a milestone, installing 3.8 GW of 
new offshore wind capacity across six markets, 
bringing the region’s total capacity to 34 
GW(Arefin and Ishraque 2023). The UK and 
Germany remain at the forefront, contributing 43% 
and 24% of Europe’s offshore wind capacity, 

respectively. As Europe pursues ambitious 
renewable energy targets, offshore wind is 
increasingly critical in reducing reliance on fossil 
fuels and enhancing energy security, solidifying 
the region’s leadership in clean energy 
development. 

The drivetrain system, comprising the rotor, 
gearbox, and generator, is the core operational 
system in wind turbines (WTs), with its reliability 
directly influencing the WTs’ safe, stable, and 
efficient operation(Mehlan and Nejad 2023). For 
offshore WTs, the drivetrain has even higher 
reliability requirements due to the more 
challenging operational environment(Barter et al. 
2023). Therefore, it is crucial to study and 
develop effective and reliable prognostics and 
health management approaches to ensure the 
health of the drivetrain system.  

Anomaly detection, as a foundational task for 
fault diagnosis, is crucial for assessing the health 
status of equipment, especially in scenarios where 
predefined fault patterns or labeled data are 
unavailable. In the era of data-driven technologies, 
anomaly detection has gained significant attention 
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and importance for wind turbines, particularly due 
to its ability to utilize diverse and large-scale data 
streams provided by Supervisory Control and 
Data Acquisition (SCADA) systems, such as 
temperature, vibration, and power output. The 
development and application of effective anomaly 
detection methods (Zhang et al. 2018; 
Campoverde-Vilela et al. 2023; Shanbr et al. 2018; 
Moghadam and Nejad 2022), which have greatly 
enhanced the reliability and safety of wind turbine 
drivetrains, ensuring their stable operation under 
varying conditions. 

Compared to the aforementioned traditional 
methods, deep learning-based intelligent anomaly 
detection methods offer powerful nonlinear 
modeling capabilities and can effectively identify 
complex temporal and spatial patterns(Z. Xu et al. 
2022; Zifei Xu et al. 2024). As a result, they are 
better suited for handling anomaly detection in 
offshore WTs’ drivetrains(Yan, Liu, and Ren 
2023; Xiang et al. 2021; Z. Y. Zhang and Wang 
2014), which have achieved robust fault detection 
for wind turbine drivetrain mechanical systems.  

However, these studies focus primarily on 
adopting advanced techniques from fields like 
image processing and natural language processing 
to improve the performance of intelligent models 
in anomaly detection tasks. However, they often 
overlook the fact that the monitored equipment is 
a physical entity, where the physical relationships 
between monitored variables and predicted 
outcomes should be considered. Furthermore, 
these AI-driven methods do not address how the 
inherent reliability of the AI models themselves 
may influence the trustworthiness of the anomaly 
detection results.  

Therefore, in this study, a fully intelligent 
solution for anomaly detection applied to the 
drivetrain system of wind turbines (WTs) is 
proposed, leveraging a physics-informed 
probabilistic neural network. The main 
contributions are as follows:  

1. A physics-informed neural network model is 
proposed, where physical information is 
embedded into the network through the 
diffusion model of spatiotemporal positions 
from virtual sensors, enhancing predictions for 
the target physical sensors.  

2. A physics-informed probabilistic neural 
network model is developed, utilizing Monte 
Carlo dropout. This model provides confident 
evaluations for healthy data and generates 

significant deviations when evaluating 
anomalous data, offering robust warning signals. 

3. A reliable intelligent anomaly detection system 
is established, enabling effective prognosis for 
the drivetrain system of wind turbines. 

2. Methodologies  
2.1. Problem definition  

Condition monitoring of the drivetrain 
using SCADA data typically involves 
multiple sensors, which are positioned around 
the drivetrain to capture variations in its 
operational state. If several sensors exhibit 
high correlations, their measurements are 
expected to share a nonlinear mapping 
relationship. Theoretically, it is possible to 
predict the measurements of one sensor based 
on data from others. To facilitate anomaly 
detection, the concept of a Normal Behavior 
Model (NBM) is introduced. This model is 
constructed using healthy data and leverages 
data from several sensors to build a predictive 
model. The task is formulated as a regression 
problem, where the model predicts the 
measurement of one or more target sensors 
based on the input from others. The anomaly 
detection capability relies on the assumption 
that when the system deviates from its normal 
state, the output of the NBM will diverge from 
the observed values. If the prediction error 
exceeds a predefined threshold (representing 
the upper limit of acceptable error under 
healthy conditions), the system is flagged as 
anomalous.  

The mathematical process of the Normal 
Behavior Model (NBM) is defined as follows: 
Let the monitored physical sensor data be 

, which is a function of time and spatial 
state:  

 (1) 
 where  represents time,  denotes the spatial 
coordinates, and  is the spatial dimension, 
equal to the number of sensors.  

Assume the NBM model  with 
learnable parameters . The model is 
optimized through supervised learning by 
maximum likelihood estimation 
argma  
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Given , the 
error distribution  for normal data is 
estimate as:  

 (2) 
 where  is a distant estimation 
function. ,  represents 
the real target sensor measurement, and 

 is the estimate of target sensor 
measurement:  

 (3) 
In this study, the number of target sensors is 

. The threshold  is determined by the 
upper limit of the reconstruction error for 
healthy data based on the NBMs.  

During the anomaly detection, given 
, the prediction by the NBM model is:  

 (4) 
The error for the monitoring condition is  

using the same equation as Eq. (2). An anomaly is 
detected when any  exceeds the threshold.  

However, Current AI-driven NBM (Normal 
Behavior Model) approaches often overlook the 
temporal and spatial relationships of features, 
which significantly impact the accuracy of 
predictions. Moreover, the nonlinear AI-driven 
models inherently lack physical interpretability, 
limiting their generalization and predictive 
performance. Deterministic models are unable to 
quantify prediction uncertainty, making it 
difficult to assess the reliability of their outputs 
effectively. To address these issues, Sections 2.2 
and 2.3 propose: (1) a physics-informed 
probabilistic neural network model and (2) a 
reliable anomaly detection framework built upon 
this model. 
2.2. Physics Informed Probabilistic Informer 
Network 

The physics informed probabilistic Informer 
network (Py-PINet) framework is based on 
encoder-decoder framework(Zhou et al. 2020). 
The general framework of the Py-PINet is shown 
in Figure 1.  

 
Figure 1 Py-PINet framework  

The whole Py-PINet consists of an 
encoder  and a decoder . The encoder 

 is structured based on the Informer 
encoder. The hidden feature in the latent 
space is:  

 (5) 
where ,  is the hidden dimensions in 
the latent space, . Consider  
as a function of both time and spatial variables, 
representing a virtual mechanical space with  
virtual sensors , each evolving with . 
These virtual sensors are designed to predict the 
temperature variables of a real physical 
mechanical system.  

Like traditional approaches,  is mapped to 
the temperature  through a decoder , which 
is used to predict the temperature of the target 
sensor in the physical mechanical system. 

 (6) 
where ,  is number of the target 
sensors, in this study, the number of target sensors 
is .  

The parameters of the encoder  and the 
decoder  in the Py-PInet  can be learned 
by conventional supervised learning based on 
data loss .  
where  is the real temperature of the target 
sensor.  

In addition to the data loss, a novel physical 
constraint loss is proposed for Py-PINet training. 
It is assumed that the temperatures of the target 
sensors should be approximately following a 1-D 
diffusion equation, the PDE loss should be:  

 (7) 

where  and  can be obtained by the chain 
rule. 

 

 
 

(8) 

where  can be approximated by a neural network 
as well.  and its high order differential item can 

be obtained by auto grad. ,  and  can be 
obtained by finite difference.  
Therefore, the total loss for training Py-PINet is in 
Equation (9), where each item has the same 
contribution.  
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 (9) 
2.3. Reliable anomaly detection framework 

The proposed reliable anomaly detection 
framework is developed based on the proposed 
Py-PINet and uncertainty quantification. MC 
dropout is utilized as the method for 
implementing uncertainty prediction within the 
Py-PINet model. By applying MC dropout, the 
model can perform uncertainty prediction for 
each monitoring data. This allows the model to 
quantify the uncertainty associated with its 
predictions, thereby enhancing the reliability of 
temperature prediction corresponding to the target 
sensors. The quantified uncertainty is used to 
assess the reliability of the AI-driven model in 
prognosis, ensuring robust and reliable 
monitoring of the system.  

 
Figure 2 Reliable anomaly detection framework 
Figure 2 describes the steps of intelligent 

anomaly detection. Step 1: SCADA data 
collection: The process begins with monitoring 
data from the SCADA system, which consists of 
both historical data and real-time online data. Step 
2: Pre-Processing, historical and online data 
undergo pre-processing to remove erroneous data 
and normalize the data, making it suitable for 
machine learning. Step 3: Model Training 
(Historical Data): Py-PINet is the proposed model 
used in this step. During training, it incorporates 
both data loss and physical PDE loss to ensure 
accurate predictions. The model learns to predict 
target values and compute residuals using 
historical healthy-condition data. Step 4: Residual 
Analysis: Residuals calculated from historical 
data are used to define an Alarm Threshold, which 
serves as the basis for anomaly detection. Step 5: 

Prediction (Online Data): The trained Py-PINet 
model processes real-time online data, generating 
predictions and computing residuals as health 
indicators, Step 6: Uncertainty Quantification:  

The model quantifies uncertainty to provide 
interval predictions for health conditions, 
improving a layer of reliability to the detection 
process. Step 7: Anomaly Detection, The health 
indicators are compared against the predefined 
alarm threshold. If the residual exceeds the 
threshold, it is classified as an anomaly; otherwise, 
the system is deemed healthy.  

3. Case Study and Analysis  
To validate and analyze the proposed 

method’s effectiveness in anomaly detection for 
the drivetrain system, this section utilizes three 
datasets derived from SCADA data recorded 
during WTs’ operation at 1-minute intervals. 
Boolean variables from the SCADA data are 
employed to assess whether the wind turbine is 
functioning under normal conditions. The 
computational setup comprises a 12th Gen Intel 
i9-12900K processor and an NVIDIA RTX 
A5500 graphics card. All AI-driven models were 
developed using PyTorch version 2.5.1.  

During training, the optimizer used was 
ADAM, with a dropout rate of 0.1. The hidden 
dimensions in the AI-driven models are 256, with 
a batch size of 20. The maximum number of 
training epochs is 300. 
3.1. Wind Turbine Dataset 

Two datasets are used in this study to validate 
the effectiveness and reliability of the proposed 
method. One dataset contains health data, which 
is selected from normal operation data of a wind 
turbine in China, collected between March and 
August 2019, comprising 195,773 valid samples. 
This dataset is used to examine the effectiveness 
and reliability of the proposed model in 
establishing Normal Behavior Models (NBMs). 
The other dataset includes abnormal data, which 
contains records where the wind turbine was 
alarmed due to a serious abnormality in the 
drivetrain system, leading to a shutdown for 
inspection. The original dataset consists of data 
from 107,321 time points, and after preprocessing, 
105,501 valid samples were obtained. 
3.2. Normal behaviour performance evaluation  

The primary function of the NBMs is to 
establish nonlinear relationships among multiple 

Monitoring
SCADA Data

Historical Online

Pre-Processing

Prediction

Residuals

Targets

Health

Alarm threshold

Over
threshold?

Py-PINet

Prediction Sensor data

Residuals

Anonymous

Uncertainty Quantification/Analysis

No

Yes

Py Module



1093Proc. of the35thEuropeanSafetyandReliability& the33rdSociety forRiskAnalysis EuropeConference

sensors, including the Main Shaft Front Bearing 
Temperature (MSFBT), Main Shaft Rear Bearing 
Temperature (MSRBT), Environmental 
Temperature (ET), Nacelle Temperature (NT), 
and Hub Temperature (HT). A temperature 
prediction model was developed to forecast 
changes in MSFBT based on the other four 
monitoring variables. The performance of the 
NBMs is evaluated using Root Mean Square Error 
(RMSE) and R-squared (R²) metrics  

 
Figure 3 Validation loss 

The validation loss curves in Figure 3 
demonstrate the effectiveness of the proposed Py 
(physics-informed enhancement) module. Across 
all baseline models (Py-PINet, TransNet, and 
LSTM), the integration of the physics-informed 
module (+Py) significantly reduces the validation 
loss, indicating its universal benefits. Notably, 
Py-PINet achieves the lowest validation loss 
among all models, outperforming its base version 
Py-PINet, as well as TransNet(+Py) and 
LSTM(+Py), highlighting the superiority of the 
Py-PINet architecture and the physics-informed 
module. Furthermore, the physics-informed 
models converge faster and maintain lower losses 
throughout training, showcasing their efficiency 
and robustness. These results validate the 
effectiveness of the proposed physics-informed 
module in enhancing model performance and the 
overall reliability of Py-PINet as the best-
performing framework. 

Table 1 Prediction performance of the NBMs 
NBMs/PEIs RMSE R2(%) 

SVR 1.656 85.69 
RFR 1.841 83.72 
CNN 1.479 90.57 

CLSTM 1.241 97.36 
GRU 1.189 97.50 

Bi-LSTM 1.170 97.58 
LSTM(+Py) 1.195 (1.188) 97.46(97.49) 

TransNet(+Py) 1.178(1.152) 97.54(97.62) 
Py-PINet 0.992  98.16 

The experimental results in Table 1 
emphasize the effectiveness of the proposed 
Physics-Informed module (+Py) in enhancing the 

performance of time series forecasting models. 
Traditional models such as SVR and RFR show 
significantly poorer results, with high RMSE 
values (e.g., 1.656 for SVR and 1.841 for RFR) 
and low R² scores (e.g., 85.69% for SVR and 
83.72% for RFR), highlighting their limitations 
for complex prediction tasks. By integrating the 
+Py module into advanced deep learning models 
like LSTM and TransNet, substantial 
performance improvements are observed. For 
instance, LSTM(+Py) reduces RMSE from 1.195 
to 1.188 and increases R² from 97.46% to 97.49%, 
while TransNet (+Py) lowers RMSE from 1.178 
to 1.152 and improves R² from 97.54% to 97.62%. 
These results demonstrate the consistent benefits 
of incorporating physics-informed enhancements 
across different architectures. Among all methods, 
the proposed Py-PINet achieves the best 
performance, with an RMSE of 0.992 and an R² 
of 98.16%, significantly outperforming both 
traditional models and other deep learning 
approaches enhanced with the physics-informed 
module. These findings underscore the strong 
potential of the physics-informed module in 
leveraging domain-specific knowledge to reduce 
uncertainty and enhance model accuracy, making 
it particularly suitable for complex system 
forecasting tasks. 

 
Figure 4 Uncertainty analysis 

Figure 4 compares the uncertainty of Py-
PINet and Baseline (Py-PINet without physics-
informed), highlighting the superior performance 
of Py-PINet in reconstruction accuracy and 
robustness. From the probability density 
distribution, Py-PINet exhibits a sharper peak 
concentrated within the low RMSE range (0–0.1), 
indicating a higher proportion of samples with 
minimal prediction errors and fewer extreme 
outliers. In contrast, Baseline's distribution is 
more spread out, with a notable presence of higher 
RMSE values, reflecting less accurate predictions. 
The cumulative distribution function (CDF) 
further reinforces this observation, as Py-PINet 
demonstrates a faster rise in cumulative 
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probability at lower RMSE thresholds, achieving 
near-total coverage by RMSE = 0.15. This 
suggests that Py-PINet not only reduces overall 
prediction errors but also maintains greater 
consistency across samples. The improvements 
can be attributed to the enhanced feature 
extraction capability introduced by the physics-
informed module, which likely mitigates noise 
and captures relevant information more 
effectively. These results validate Py-PINet as a 
more reliable and precise approach for NBMs 
tasks. 
3.3. Uncertainty Analysis  

Uncertainty quantification for the prediction 
of an AI-driven model is critical, which can help 
to assess its reliability and safety while applying 
to fault prognosis or anomaly detection. In the rest 
of the discussion, the baseline means the proposal 
model without physics-informed module.  

 
(a) Aleatoric uncertainty analysis 

 
(b) Epistemic uncertainty analysis 
Figure 5 Uncertainty analysis for healthy and 

faulty condition 
As shown in Figure 5(a), the comparison 

between Py-PINet and baseline highlights the 

superior performance of Py-PINet in anomaly 
detection tasks. As observed from the 
reconstruction loss distributions, Py-PINet 
demonstrates a highly concentrated error 
distribution for healthy conditions, with most 
RMSE values close to zero, indicating excellent 
stability and minimal prediction errors. In contrast, 
the Baseline model shows a wider error distribution 
for healthy conditions, suggesting lower 
consistency in its predictions. For faulty conditions, 
Py-PINet effectively shifts the reconstruction loss 
distribution to higher RMSE values, achieving a 
clear separation from healthy conditions. Moreover, 
Py-PINet’s CDF curve increases rapidly for 
healthy samples, reaching stability at an RMSE of 
approximately 0.5, while its faulty samples exhibit 
a slower increase, achieving full coverage at an 
RMSE of approximately 1.0. This indicates a 
distinct boundary between healthy and faulty 
conditions, with minimal overlap. In contrast, the 
Baseline model exhibits slower CDF growth for 
healthy samples and significant overlap between 
healthy and faulty distributions, particularly in the 
RMSE range below 0.5. This overlap indicates a 
higher likelihood of misclassification, reducing the 
model's reliability in differentiating between the 
two conditions. Additionally, Py-PINet’s focused 
error distribution for healthy conditions and well-
separated faulty condition distribution suggest 
enhanced robustness and reliability. The clear 
separation between the two conditions ensures 
lower false positives and negatives, which are 
critical for effective anomaly detection. In contrast, 
the Baseline’s wider distributions and overlapping 
CDFs reflect its weaker ability to distinguish 
between the two states, potentially leading to less 
accurate detection. These findings underscore the 
effectiveness of Py-PINet as a more precise and 
robust solution for anomaly detection tasks. 

As shown in Figure 5(b), the comparison 
between Py-PINet and Baseline demonstrates a 
clear distinction in model uncertainty under 
healthy and faulty conditions, aligning well with 
the characteristics of an effective anomaly 
detection framework. When measuring healthy 
data, Py-PINet exhibits significantly lower model 
uncertainty, as evidenced by its sharp, left-skewed 
RMSE distribution with a higher peak and smaller 
spread. Furthermore, the CDF of Py-PINet 
increases rapidly and stabilizes at lower RMSE 
thresholds compared to the baseline, indicating that 
the model is highly confident in reconstructing data 
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within its learned knowledge domain. This aligns 
with the expected behaviour, where model 
uncertainty is minimized for in-distribution 
samples. In contrast, when processing faulty data, 
Py-PINet reveals higher uncertainty compared to 
baseline, with a broader RMSE distribution and a 
slower CDF rise. This behaviour reflects the 
model's lack of confidence in handling out-of-
distribution samples, which serves as a critical 
warning signal for anomaly detection. The 
increased uncertainty under faulty conditions 
highlights Py-PINet's sensitivity to data outside 
its knowledge domain, thereby offering a valuable 
mechanism to flag potential anomalies. In 
summary, Py-PINet effectively balances low 
uncertainty for healthy data and heightened 
uncertainty for faulty data, making it a more 
robust and interpretable choice for anomaly 
detection compared to baseline. 
3.4. Prognosis verification  

This section examines the prognosis 
capability of the proposal method in real wind 
turbine anomaly detection.  

 
Figure 6 Anomaly detection 

Figure 6 makes a comparison between Py-
PINet and Baseline highlights significant 
differences in their anomaly detection capabilities, 
particularly in terms of missed anomalies and 
prognosis functionality. Py-PINet demonstrates 
superior performance by detecting anomalies 
earlier and with greater sensitivity. For instance, 
Py-PINet begins to flag anomalies as early as day 
85, well before the peak anomaly occurs around 
day 95. This early detection provides critical pre-
warning, allowing for timely intervention to 
mitigate potential risks. Moreover, Py-PINet 
exhibits minimal missed detections, with all 
major anomalies correctly identified and clearly 

marked, ensuring comprehensive anomaly 
coverage. In contrast, Baseline suffers from 
notable missed detections, especially during the 
early stages of the anomaly (e.g., day 90–95), 
where several points exceeding the threshold are 
not flagged. This indicates a lack of sensitivity in 
Baseline’s anomaly detection mechanism, which 
could result in delayed responses to critical issues. 
Additionally, Py-PINet maintains stability in 
healthy conditions, with low uncertainty and a 
narrower confidence interval, avoiding false 
positives. On the other hand, Baseline shows 
higher uncertainty and broader fluctuations in 
healthy conditions, increasing the likelihood of 
false alarms. Overall, Py-PINet outperforms 
baseline by providing earlier and more accurate 
anomaly detection, making it a more reliable 
choice for prognostics and health management.  

4. Conclusions 

This study developed an intelligent anomaly 
detection framework, demonstrating significant 
potential in enhancing the safety, reliability, and 
operational efficiency of offshore wind turbine 
drivetrain systems. Integrating a physics-
informed probabilistic neural network (PINN), 
into the AI-driven model effectively allow 
physical insights to be in incorporated to address 
prediction uncertainties and ensure the reliability 
of failure alarms. The analysis results highlight 
the model's superior capability in detecting 
anomalies with high sensitivity and precision, 
particularly in prognosis, providing a robust pre-
warning mechanism, enabling timely 
interventions to mitigate potential risks and 
improving the safety and stability of offshore 
wind turbines while optimizing maintenance 
strategies.  
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