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Abstract: We consider the problem of predicting the quality of semiconductor devices and, in case of low quality, 
diagnosing the anomaly occurred during production. A multi-branch neural network is developed for quality 
prediction based on multimodal data. Specifically, a dedicated autoencoder is trained for each data modality; then, 
the latent representations provided by the encoders are concatenated and a regression layer is added for quality 
prediction. Shapley Additive exPlanation (SHAP) is used to quantify the contribution of each data modality to the 
quality outcome. Since different data modalities contain information about different production stages, the causes 
of the production anomaly can be identified. The developed method is demonstrated using a synthetic case study, 
which mimics the complexity of semiconductor manufacturing. Wafer map (images) and signal measurements (time 
series) from a production machine are the two considered data modalities. The method is shown able to effectively 
predict the quality of semiconductor devices and diagnose anomalies occurred at different stages of production.    
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1. Introduction 
 
Semiconductor manufacturing must meet high 
levels of quality to satisfy industry standards 
(May & Spanos, 2006). To do this, burn-in (BI) 
testing puts devices under stress conditions to 
identify early life failures which decrease the 
quality of the lot. Thus, discarding failed devices 
increases lot quality. 
Recent advancements in sensing and data 
acquisition have made available large amounts of 
heterogeneous information at various stages of 
the manufacturing production pipeline, which can 
be used for developing data-driven quality control 
approaches. However, effectively leveraging 
these multisource and multimodality data is a 
challenging task (Chen, 2022). 

Traditional quality control methods rely on 
statistical approaches (Dahari et al., 2025; Ooi et 
al., 2007). More recent approaches based on 
machine learning use signals measured during 
production to infer the production quality (Ahmed 
et al., 2023, 2024; Wang & Chen, 2024). In 
(Ahmed et al., 2023), the authors used 
Probabilistic Support Vector Regression (PSVR) 
for predicting the number of defects in a 
production lot based on data collected during the 
production process. In (Wang & Chen, 2024), 
XGBoost and Particle Swarm Optimization 
(PSO) were used to predict the yield of each wafer 
from the results of wafer acceptance tests 
(WATs). (Lundberg & Lee, 2017). In (Ahmed et 
al., 2024), the authors considered three sources of 
data: i) signals from machines used for 
semiconductor production, ii) wafer map images 
from probe tests on dies, and iii) results of 
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electrical tests performed before burn-in (BI) 
testing to predict the number of BI-relevant 
failures, i.e. the number devices that will not pass 
the BI test.  
In (Figueroa et al., 2024), the authors developed a 
two-branches neural network for predicting the 
quality of semiconductor production lots, where 
one branch is dedicated to process wafer map 
images and the other to process signals from 
production machines. The proposed approach was 
applied to a synthetic case study characterized by 
an imbalance between high quality (HQ) and low 
quality (LQ) data. 
Multi-branch neural networks remain black 
boxes, and the causes of low-quality production 
remain, thus, unknown, which hinder the 
identification of effective countermeasures. 
Explainable artificial intelligence (XAI) has been 
recently introduced as a paradigm concerned with 
explaining black box models (Patel et al., 2024; 
Wang & Chen, 2024). In the context of wafer map 
classification, (Junayed et al., 2024) used 
Gradient-weighted Class Activation Mapping 
(Grad-CAM) (Selvaraju et al., 2017) to highlight 
the part of the input image which the model 
focuses on for classifying the wafer map defect. 
In (Patel et al., 2024), the authors used Grad-
CAM and Linear Interpretable Model-Agnostic 
Explanation (LIME) (Ribeiro & Guestrin, 2016) 
techniques for explaining the outcomes of a 
convolutional neural network (CNN) trained to 
identify anomalies in wafer maps. 
In this paper, we propose to couple a multi-branch 
neural network with SHAP analysis for predicting 
production quality and identifying the causes of 
production anomaly. The method is applied to a 
multimodal synthetic dataset built in such a way 
that different anomalies are visible in different 
data modalities.   
The remainder of the paper is organized as 
follows. Section 2 briefly introduces SHAP 
analysis. Section 3 introduces the proposed 
method for quality prediction and identification of 
the causes of the production anomaly.  Section 4 
describes the dataset used for evaluating the 
proposed method. Section 5 discusses the results, 
and finally Section 6 gives concluding remarks 
about the work done. 
 
 
 

2. SHapley Additive exPlanation (SHAP)  
 
Shapley Additive Explanation (SHAP) is a 
technique used for explaining predictions of black 
box models. It is based on Shapley values, which 
were introduced in game theory with the aim of 
fairly distributing a payout among different 
players in a cooperative game (Shapley, 1953). In 
the context of machine learning, the payout is the 
prediction of the model, and the players are its 
input features. Thus, the idea of SHAP is to 
calculate the contribution of an input feature to 
the model prediction using its Shapley value. 
Specifically, the Shapley value of input feature  
is: 
 

 (1) 

 
where  is the total number of features,  is a 
subset of features that does not include feature  
and  is the black-box model. The contribution 
of a subset of features to the model prediction can 
be computed as the sum of the Shapley values of 
the individual features in the subset, since SHAP 
considers the interactions between features when 
computing the importance of an individual feature 
(Molnar, 2020).  

3. Method  
Without loss of generality, we consider two 
sources of data: signal measurements from a 
machine of the semiconductors production 
process and wafer map images from electrical 
tests performed during production to identify 
defects in the products. We introduce the 
following mathematical formalism for the data of 
the generic -th production lot: 

� the vector  contains signal 
measurements collected from a 
production machine; 

�  are  wafer map images 
collected during the production of the  
wafers of the lot; these images are 
aggregated to obtain a single composite 
image per lot , following the 
procedure illustrated in (Figueroa et al., 
2024). 
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The training of the model is made using data from 
 production lots , where 

 is the number of BI-relevant failures. 
The proposed model consists of five modules 
(Fig. 1): 

I. An autoencoder for image 
reconstruction (AE_I). 

II. An autoencoder for signal reconstruction 
(AE_S). 

III. A neural network that takes the latent 
representations  provided by AE_S 
and  provided by AE_I, concatenates 
them, and uses them as input for 
predicting the number  of BI-relevant 
failures in the lot. Thus, the input of this 
model is , with  
and  being the dimensions of the latent 
representation provided by the encoders 
AE_S and AE_I, respectively.   

IV. A module that determines the quality of 
the lot by applying the Clopper-Pearson 
estimator (Clopper & Pearson, 1934). 
This estimator uses  and the number of 
samples of the lot to compute the 

-quantile of a Beta distribution. The 
computed value is taken to represent the 
early life failure probability (ELFP) of 
the lot and is used to assess the quality of 
production: if it exceeds a preset 
threshold, the lot is considered as LQ, 
otherwise as HQ. 

V. A module that computes the importance 
of the different data modalities 
considered by applying SHAP to the 
neural network of module III. Thus, for 
each feature, SHAP computes a 
contribution value . Then, the 
contributions,  and , of the signal (S) 
and the image (I) modalities are obtained 
as the sum of the contributions of the 
corresponding individual features: 
 

 (2) 

 

 (3) 

 
and the corresponding relative contribution as: 

 (4) 

 

 (5) 

 
 
During the training phase, autoencoders AE_I and 
AE_S are separately trained in an unsupervised 
way on the corresponding data modality. As a 
result, the encoders generate representations of 
the data that summarize their contents in a limited 
number of features. The neural network described 
in III is trained using the concatenated latent 
representations extracted from AE_I and AE_S as 
inputs and the number of BI-relevant failures as 
output. 

 
 

Fig. 1. Representation of the methodology for 
predicting the number of BI-relevant failures, 
classifying the lot quality, and estimating the 
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contribution of each data modality to the quality 
prediction outcome. 

4. Case Study 

We consider a synthetic dataset containing 
simulated signal values and wafer map images. 
We assume that the two data modalities refer to 
different production stages. Each pattern in the 
dataset refers to a production lot and is comprised of 
a vector of signals and an aggregated image, whose 
pixel values are obtained as the sum of the 
corresponding pixels of 25 individual wafer maps of 
the lot. The simulation of both data modalities 
(signals and images) is performed by random 
sampling an indicator of the quality of the 
production stage to which the data modality refers. 
Then, the procedure described in (Ahmed et al., 
2023) for the generation of the synthetic signals and 
that in (Maksim et al., 2019) for the generation of the 
synthetic images are applied. This latter considers 
the four classes of wafer maps shown in Fig. 2. Class 
None refers to wafers without defects, whereas the 
remaining 3 classes refer to three different types of 
defects. The Donut pattern indicates annular 
clusters, the Edge-Ring pattern represents ring-
shaped clusters around the edge of the wafer, and the 
Edge-Loc represents a more localized version of the 
Edge-Ring, with only clusters of defects around the 
edge of the wafer.   
 

 
Fig. 2. Wafer map images of wafer produced by 
machines in normal (a) and abnormal (b, c and d) 
operating conditions. 

Two examples of aggregated wafer map images 
are shown in Fig. 3. 

  

Fig. 3. Examples of aggregated wafer map images. 

The dataset is comprised of 2000 multimodal 
patterns, 1800 of which are used for training and 200 
for testing. The 1800 training patterns contain 900 
HQ and 900 LQ lots. Among the LQ patterns, 3 
different situations are possible: i) the anomaly 
occurs during the production stage monitored by the 
signals (referred to as LQ1) ii) the anomaly occurs 
during the production stage monitored by the images 
modality (LQ2), and iii) anomalies occur in both 
production stages (LQ0). Specifically, there are 180 
LQ1 patterns, 180 LQ2 patterns, and 540 LQ0 
patterns.  
 
5. Results 
 
Table 1 and 2 report the performance in the 
classification of the lot quality (output of module IV 
of Section 3), obtained performing a 5-fold cross-
validation procedure. While the model achieves a 
satisfactory overall performance with accuracy and 
F1-score above 90%, it is more effective at 
identifying LQ lots (98.7% sensitivity) than HQ lots 
(83.4% specificity), indicating a tendency to err on 
the conservative side of classifying HQ as LQ. 
 
Table 1 Performance of the model. 

Metric Value 
Accuracy 91.05% ± 3.19% 
Sensitivity 98.70% ± 0.75% 
Specificity 83.40% ± 7.02% 
F1-Score 91.78% ± 2.54% 

 

Table 2 reports the accuracy of the classifier for 
lots of classes LQ1, LQ2 and LQ0. When the 
production anomaly occurs during the production 
stage monitored by the images (LQ2), the 
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performance is slightly less satisfactory than that 
obtained in the other cases. 

Table 2 Accuracy in the classification of LQ0, LQ1 
and LQ2 patterns.  

Subset Accuracy 
LQ1 100.00% ± 0.00% 
LQ2 94.00% ± 3.39% 
LQ0 99.83% ± 0.33% 

 

To investigate the capability of SHAP of 
identifying the production stage responsible of the 
anomaly, Table 3 reports the average contribution 
of each modality for patterns of classes LQ1, LQ2 
and LQ0 correctly classified as LQ. As expected, 
the data modalities with the largest average 
contributions are the signals for patterns of class 
LQ1 and the images for patterns of class LQ2. 
These results confirm that SHAP can be used to 
assist the operators in the identification of the type 
of anomaly occurred during production. A 
limitation of the method is that it cannot be used 
to identify the problems affecting both data 
modalities (LQ0 class) for which the contribution 

 is larger than .  

Table 3 Average contribution of each data modality 
for patterns of classes LQ1, LQ2 and LQ0.  

Subset 
 

(Contribution 
of Signals) 

  
(Contribution of 

Wafer Map 
Images) 

LQ1 69.3% ± 9.7% 30.7% ± 9.7% 
LQ2 25.8% ± 5.0% 74.2% ± 5.0% 
LQ0 77.9% ± 6.3% 22.1% ± 6.3% 

5. Conclusions 

In this paper, a multi-branch neural network for 
predicting the quality of production lots in the 
semiconductor industry from multimodality data 
has been combined with a module of SHAP 
analysis for identifying the type of anomaly 
responsible of LQ production. The results 
obtained on a synthetic case study have shown 
that: i) the multi-branch neural network is able to 
effectively classify the lot quality, with most error 
regarding HQ lots erroneously classified as LQ; 
ii) anomalies of different types, occurring in 
different production stages, can be distinguished 

by considering the SHAP values associated to 
signals and images. Future work will include the 
validation of the proposed method with real data 
from semiconductor production and its extension 
to allow distinguishing anomalies occurred in 
multiple production stages.  
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