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Prevention of major accidents is fundamental in all safety critical operations. History shows us that the 

introduction of new technology may create novel safety risks. Today, fatalities associated with artificial 

intelligence (AI) are reported in manufacturing, healthcare and transportation. In the energy sector, AI is being 

increasingly used in an operational context where the potential for major accidents is considerable. The 

introduction of AI is typically done with a strong focus on information security and civil rights risks, but there is 

limited systematic focus on major accident scenarios. This is partly because our current methods and approaches 

are not designed to do so, partly because of the risk focus in the AI domain is on other potential outcomes. Also, 

AI is a diverse field, with a range of industrial applications, from preventive maintenance and diagnosis, 

autonomous systems like robots and drones, to decision-making and operator support systems. This paper reports 

from a project that focused on the inclusion of AI applications in existing approaches to major accident 

prevention. A core aspect of this work is the safety management concept and AI applications’ potential roles in 

safety barrier management. The result is a risk-based framework that can be used in the development, introduction 

and application of AI in different contexts, and that can increase the awareness and understanding of AI as a factor 

in major accident risk assessments. The framework has a systemic focus emphasizing the interplay between 

technical, operational and organizational factors. 
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1. Introduction  
Safety-critical systems, such as healthcare, 

transportation, and oil and gas production, refer 

to contexts where accidents may result in 

fatalities, serious injuries, significant property 

damage, or environmental harm (Smith & 

Simpson, 2020). We argue that the current surge 

in artificial intelligence (AI) development might 

generate upsides but also pose new challenges in 

these environments. Limited understanding of 

the associated risk landscape and its effects on 

major accident prevention can complicate AI 

models’ integration in the management of safety 

critical systems. 

 

 

 

 

1.1. AI and major accident risk 
AI has been more often presented in literature as 

a safety contributor (e.g. Gursel et al., 2025; 

Perez-Cerrolaza et al., 2024; Tamascelli et al., 
2024) rather than a potential risk factor. The 

literature has analysed how AI models could 

contribute to increased safety and risk 

management in critical systems. However, only 

in recent years has an interest in potential risks 

of AI itself been present in literature (e.g. 

Salmon et al., 2024; DNV 2024). These 

approaches have been stimulated by both the 

higher levels of deployment of AI-based 

solutions, and by legal and regulatory efforts to 

frame the use of such technologies in a rapidly 

changing background (e.g., European Union, 

2024). There is a growing interest on AI risks 

and AI safety from a technical perspective 
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(example of creating guardrails for LLMs; Dong 

et al., 2024), a human-centred perspective 

(mostly realized through design concepts of 

trustworthy AI; Kaur et al., 2022), as well as a 

societal perspective (ethical AI initiatives; 

Ortega-Bolaños et al., 2024). However, risk 

management approaches within AI have focused 

mostly either on cybersecurity or ethical/ 

moral/societal values views, overlooking safety 

aspects and risk notions commonly used in 

safety critical systems. 

The current risk approaches tend to analyse AI 

models in isolation, focusing on validation of the 

model itself (e.g. Neto et al., 2022), ignoring the 

context of application and its integration with 

pre-existing routines – aspects that have been 

essential in risk management approaches in 

complex systems. 

At the same time, proposed risk management 

approaches seem to present an over-reliance on 

humans/users/operators as the ultimate barrier 

for safe AI deployment with the underlying 

assumption that human oversight and meaningful 

control are possible, feasible, and need to be 

granted in these systems (e.g. Enqvist, 2023; 

Kyriakou & Otterbachter, 2023). 

In recent years, the awareness towards inherent 

risks in AI models has increased both in 

literature and the society in general. Experiences 

from the deployment of AI systems that 

demonstrated gross biases (e.g., Barocas & 

Selbst, 2016; Cobert-Davies et al., 2023) elicited 

an ethical, legal, and overall societal reflection 

on how these systems work, are designed, and 

are deployed.  

In 2024, the European Union released the 

Artificial Intelligence Act, the first regulatory 

framework specifically designed for AI systems 

(European Union, 2024).  The AI Act defines 

four risk levels: unacceptable, high risk, limited 

risk, and minimum risk, and based on this 

classification there are different expectations on 

mitigation measures that go from banning 

systems in the unacceptable risk category to the 

obligation of informing users that an AI system 

is in use in the minimum risk assessment. The 

concept of risk within the EU AI Act is linked to 

perceived threat to societal and human values 

and thus mismatched from the concept of risk in 

critical systems. Although high-risk assessments 

in the AI Act contemplate for instance, the 

application of AI for critical infrastructure such 

as energy production, it potentially addresses a 

narrow scope of the risk outlook in such 

contexts. 

The Organisation for Economic Cooperation and 

Development (OECD) has also developed 

guidelines for managing AI risk (OECD, 2024) 

and created an (AI-powered) AI Incidents 

Monitoring tool. OECD’s approach is broad, 

including a classification of AI systems 

according to five dimensions: people and planet; 

economic context; data and input; the AI model 

itself; and the task and output (OECD, 2022). 

The goal with this framework is mostly to 

support policymakers, regulators, and legislators 

to assess risks and opportunities that different 

types of AI systems present. We argue therefore 

that this approach, such as the EU AI Act, is 

mostly suited to address the civil and ethical 

impacts of AI systems. 

The National Institute of Standards and 

Technology (NIST) in the U.S. Department of 

Commerce has presented a comprehensive AI 

Risk management framework (NIST, 2023) 

meant to support organizations and individuals 

to achieve trustworthiness in AI systems, 

reducing potential negative impacts of AI as well 

as maximizing positive impacts. This framework 

presents an exhaustive description of the AI 

systems with playbooks with specific actions on 

governance, management, mapping and 

measuring of AI according to both AI actors and 

topics resulting in a vast matrix with hundreds of 

entries.  

Both the OECD and NIST classification 

approaches propose a strategy of wide-ranging 

description of the factors influencing the model 

and the model use, supporting further analysis or 

decision-making on the use of AIs, with an 

underlying assumption that more information 

will result in better control or at least awareness 

of the potential risks. 

Within the standards and regulatory bodies 

internationally (and nationally) there have also 

been recent attempts to analyse the implications 

of new types of AI models (e.g. ISO & IEC, 

2023), with a particular interest towards 

generative AIs (e.g. NIST, 2024). 
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In general, current approaches to AI as a 

potential hazard in major accident scenarios 

seem to face one of two challenges: While some 

approaches are simplistic and risk assessment is 

primarily understood as the testing of a system’s 

predictive abilities in laboratory-like conditions, 

other approaches are so detailed and 

comprehensive that ensuring compliance and 

risk control in practice becomes very 

challenging, particularly in a context of fast 

paced technological development. In both cases, 

risk is understood in an abstract level, whether 

by focusing on technical specificities and 

capabilities of the models or focusing on high-

level values and principles the models will need 

to comply to. This results in a disconnection to 

the specific operational contexts where the AI 

applications will be used.    

 

1.2. Scope and objectives 

In this paper we focus on potential risk factors 

for AI application within safety critical contexts. 

We adopt a systemic approach to human-

machine interaction, considering technical, 

operational and organisational factors. Lessons-

learned from human-automation collaboration 

are integrated in the framework. As such, our 

main objectives are to: 

� Develop an approach to AI technology 

within the context of major accident 

prevention in the oil and gas industry 

� Show how this approach strengthens the 

focus on relevant aspects of the 

operational context  

� Show how systemic mitigation 

strategies can be based on this approach  

 

2. Major accident risk and safety barriers 

According to Aven (2012) risk can be described 

as specified consequences (including risk 

sources, events/scenarios, and effects), a measure 

of uncertainty for these specified consequences, 

and the associated knowledge base. The 

scenarios in focus here are major accidents. 

Safety science has established a rich conceptual 

basis and knowledge about systematic 

approaches to the management of these 

scenarios. 

In the Norwegian legislation related to offshore 

safety, a major accident means an acute incident 

such as a major spill, fire or explosion that 

immediately or subsequently entails multiple 

serious personal injuries and/or loss of human 

lives, serious harm to the environment and/or 

loss of major financial assets (Havtil, 2023). 

 

2.1. Safety barrier management  

Safety barriers are established to manage risk 

and prevent an event from occurring or 

escalating into an accident or incident with 

serious, harmful consequences. In Norway, 

legislation requires oil and gas companies to 

establish, manage, and maintain safety barriers 

in a holistic manner (Havtil, 2017).  

Figure 1 illustrates Equinor’s approach to major 

accident prevention with safety barriers as a core 

element. Safety barriers typically consist of 

combinations of technical- and operational 

barrier elements required to fulfil a barrier 

function (Equinor, 2024). A common method in 

the oil and gas industry has been to use this type 

of “bow-tie models” as a visualization tool for 

risk and barrier management. The models are a 

graphical representation of both proactive 

measures or barriers to avoid a specific event/ 

incident (on the left side), and then reactive 

measures or barriers put in place in the case of 

the event (reactive measures) to control the 

incident, mitigate its consequences and/or avoid 

escalation (e.g. CCPS, 2018). As such, bow-tie 

models are a good representation of both 

plausible accident scenarios linked to one pre-

defined event, and a good tool to identify control 

measures the companies can set in place across 

several levels of safety and security in the 

context of the existing organisational structure.
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Fig. 1 Equinor's bow-tie model

A technical barrier element is an engineered 

system, structure, or other design feature which 

is intended to prevent, detect, control, or mitigate 

a hazardous event.  The technical safety barriers 

should as far as practicable be independent and 

resilient to failure in other systems and barriers. 

Operational barrier elements are safety-critical 

tasks performed by an operator, or team of 

operators. They will normally support activation 

of one or several technical barrier functions. 

Safety-critical tasks are typically related to 

initiation, prevention, detection, response, 

control, or mitigation of the development of a 

hazard. Operational barriers depend on and are 

embedded in the organizational structures. 

It is important to note that both technical and 

operational barrier elements will be defined 

specifically for each installation/facility and are 

thus to large degree context dependent.  

 

3. AI and safety barriers 

An AI application may have different roles in a 

barrier management system:  

AI can function directly as a technical safety 

barrier element. An example of this is an AI 

application that intervenes in a major accident 

scenario (e.g. by shutting down equipment).  

AI may be considered as a performance shaping 

factor for technical barrier elements. An AI 

application that collects data from different parts 

of a facility can monitor the integrity of technical 

barrier elements and can use pattern recognition 

to detect anomalies and unforeseen combination 

of factors that may represent the initiation of a 

major accident.   

AI may also work as performance shaping 

factors for safety critical tasks – or operational 

barrier elements. An AI application that supports 

operators in the performance of safety critical 

tasks can improve the integrity of operational 

barrier elements. For instance, an application 

that diagnosis the status in a facility may aid 

operators in a situation with alarm flooding in 

the control room.  

However, the introduction of new technology in 

a safety barrier system will also introduce 

potential pitfalls, including:  

Technical factors. These factors are linked to 

known risks regarding the AI model itself. For 

instance, predictive error has been a well 

explored factor linked to the discrepancies 

between the model’s predictions and actual 

outcomes (e.g. Zhang et al., 2022);  temporal 
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degradation and model drift are other examples 

referring to potential gradual decline of model 

performance, as input data deviates from training 

data with time (Vela et al., 2022); training data  

sets and their limitations are another source of 

risk (e.g. Mohammed et al., 2024) given 

unrepresentative or incomplete training data (for 

instance, in predictive  monitoring there is high 

availability of “normal operation” data and low 

availability of “abnormal or incident” data, 

which will affect model performance for 

detection of non-ordinary patterns). On the other 

hand, development options such as the choice of 

the model, or choice of reward functions can 

lead to suboptimal performance or unintended 

behaviour of the model, reducing its reliability 

and predictability (e.g. Dayal et al., 2022).  

Interaction factors. These factors refer to the 

quality and efficiency of the human-AI 

interaction that will be crucial for overall system 

performance. As mentioned earlier, human 

oversight, is a central assumption in most risk 

management approaches today for critical 

application of AI models (Kyriakou & 

Otterbachter, 2023). Loss of human oversight 

will result in lack of adequate monitoring/control 

of the systems performance leading to errors or 

unintended behaviour (e.g. Sterz et al., 2024), 

linked to lack of oversight, the notion of human 

out of the loop can be referenced to in situations 

where human’s capacity of intervention is 

hindered when they are excluded from the core 

control tasks (e.g. Gómez-Carmona et al., 2024). 

Other well documented risks in interaction relate 

to for instance over-reliance on AI systems (e.g. 

Klingbeil et al., 2024), or low trust in the 

systems leading to its rejection (Afroogh et al., 
2024). Another relevant effect is the analysis of 

the combined performance of human-AI systems 

and which benchmark it can be measured against 

(for instance, performance assessment of model 

alone, human alone, or human and model 

together; Vaccaro et al., 2024). The types of 

tasks that the model can take over are also of 

relevance due to its implications on the 

engagement of the human in the overall control 

process (e.g. Deranty & Corbin, 2024).  

Organisational factors. Can refer to for instance, 

poor work design, and implications for role 

definition as integration of AI models could 

create confusion about expectations and 

responsibilities in concrete tasks (e.g. Schlicht et 
al., 2021). The lack of definition of redundancy 

measures and work design related to the AI 

integration is a risk that might result in lower 

operational resilience and efficiency. Training of 

the operators, both on how to use the AI systems 

and supporting the creation of mental models on 

its functioning is relevant, as well as the 

potential risk for de-skilling of operators in tasks 

that are taken over by the AI systems 

(Morandini, et al., 2023). Regarding leadership 

and governance there is a risk of loss of 

accountability due to the use of AI systems 

(Papagiannidis et al., 2025); simultaneously lack 

of intentional planning of aspects such as 

resource allocation for maintenance of the AI 

models throughout its life cycle could increase 

the risks of technical factors affecting 

performance negatively. A central risk is 

strategic misalignment, whereby organizational 

goals need to be efficiently integrated in the AI 

models to avoid long-term disconnect between 

the organizations’ core goals and expectations 

and the objectives pursued by the AI models – in 

order for AI to bring value it needs to result from 

a well-defined need of the organisation and/or be 

a means to achieve the organisation’s goals (e.g. 

Christian, 2020).   

Summing up, it seems clear that introducing AI 

applications to a barrier system may have both 

upsides and downsides on barrier integrity.  It is 

therefore critical to maintain a balanced view. To 

quote Havtil (2025): AI is also a risk factor.  

 

4. Discussion and conclusion 

The approach outlined in this paper has several 

features that address challenges discussed in the 

introduction: 

� The safety (major accident related) 

assessment of AI technologies is performed 

in accordance with established principles 

and concepts developed in safety science. 

Thus, the assessments are not performed 

from scratch but rather included as one more 

element in standard safety approaches. 

This means that risk mitigation can be 

performed in accordance with principles 

already in effect. The strategy is – including 

AI applications or not – “…to establish and 
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maintain barriers so that the risk faced at 

any given time can be handled by preventing 

an undesirable incident from occurring or by 

limiting the consequences should such an 

incident occur.” (Havtil, 2013, p. 1).   

� The assessment is sensitive to operational 

conditions. The approach to safety barriers 

described above is installation/operation 

specific. This lessens the criticism raised 

against laboratory testing of AI-applications 

and/or assessments with very general and 

comprehensive compliance criteria.  

� The approach is systemic. Technical, human 

and organisational factors are directly 

included in the description of technical and 

operational safety barrier elements.  

� The approach encompasses both potential 

upsides and downsides of the introduction of 

AI in a safety critical system.  

� The integrity of safety barriers is dependent 

on a number of factors outside the barriers 

per se (see Figure 1), 1: organisational capa-

bilities/conditions: including operational 

capacity, competence and management 

focus, and 2: design, practice and risk 

management AI technology will also 

influence these factors, and it would be 

possible to extend the current approach 

outlined here to include these additional 

factors.  

As mentioned, there are aspects of AI 

technology that are challenging in a safety 

management context. Perhaps the most 

important is the dynamic (and sometimes 

unpredictable) nature of some applications. 

While in traditional automation paradigms, the 

software was designed for one task and would 

maintain the benchmark/ qualified performance 

level and characteristics, this will not be the case 

with AI models which are able to learn, adapt, 

and self-improve both in expected and positive 

ways, but also in potentially negative or 

unexpected fashion, impacting the overall 

system performance. This is a general feature of 

some AI applications, so it is beyond this paper 

to address it. However, it does underline the 

need for controlled introduction of AI in a safety 

related context, and the need for a technology 

qualification process that is life cycle based.  

The holistic and systemic features of the 

proposed approach have similarities to current 

conceptions of resilience engineering (Patriarca, 

2021). We believe this can be a fruitful approach 

as AI technology is entrenching work in high-

risk organisations at an increasing rate.  

 

4.1 Conclusion 

This paper has described the fundamental 

building blocks for managing major accident risk 

associated with the use of AI in high-risk 

contexts. More work is needed to specify 

practical tools and methods for applying this 

approach in practice. However, by including AI 

applications in current analysis tools and 

methods it is possible to utilise existing safety 

practices to control major accident risk also in 

this case.  
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