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Determining the optimal inspection frequency is a significant challenge, as it requires balancing frequent
inspections, which increase operational costs, with infrequent inspections, which can lead to unexpected failures.
This paper presents a stochastic simulation model that captures the uncertainty in equipment behavior by defining
probabilistic parameters such as maintenance costs and the probability of equipment deterioration. The model uses
the Weibull distribution to represent the time to failure and Monte Carlo simulations to evaluate different
inspection intervals and their associated costs. The optimal inspection frequency is determined by minimizing the
total expected cost, which includes inspection, maintenance, and failure costs. Through the expected cost analysis,
a global optimum within the discrete interval is identified, revealing that both excessive inspections and too few
inspections lead to increased costs. The sensitivity analysis shows that repair time is the most influential variable,
and the CVaR analysis highlights the importance of accurately defining parameters and controlling their
fluctuations to manage risk effectively. These results provide valuable insights for decision-making in high-risk
and uncertain industrial environments, offering an effective tool for preventive maintenance planning.

Keywords: Stochastic Simulation, Preventive Maintenance Policy, Inspection Frequency Optimization,
Maintenance Costs, Risk Assessment.
1. Introduction production interruptions and ensure the
availability of equipment (Shafiee, 2013)
Maintenance in industrial environments is an (Zhang, 2024).

essential practice to ensure the continuous

and efficient operation of equipment and
systems (deJonge, 2020). This set of
activities not only aims to prevent failures
and extend the equipment's lifespan but also
optimize its performance and reduce long-
term costs. Within maintenance strategies,
preventive maintenance stands out for its
proactive  approach, intervening before
failures occur, which is crucial to avoid

Preventive maintenance includes a series of
scheduled tasks, such as inspections,
adjustments, repairs, and component
replacements, carried out at predetermined
intervals. The frequency with which these
inspections are performed is a determining
factor in the effectiveness of preventive
maintenance, as an appropriate inspection
frequency allows the detection and correction
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of potential issues before they become major
failures. =~ However,  establishing  this
frequency is not a simple task, as various
factors must be considered, such as the type
of  equipment, operating  conditions,
maintenance costs, and the potential
consequences of unexpected failures.

Determining  the  optimal  inspection
frequency is a significant challenge because
it involves finding a balance between
frequent inspections, which can increase
operational costs and reduce productivity,
and sporadic inspections, which may result in
unexpected failures and unplanned downtime
(Nasrfard, 2022). In contexts where failure
costs are not high, a fixed-interval approach
may be sufficient and more cost-effective.
However, in environments where equipment
reliability and availability are critical, a more
sophisticated approach is needed.

In this context, a stochastic approach is
particularly useful because, unlike deterministic
methods that assume fixed failure and repair
times, stochastic models consider the inherent
variability in these times (Escobar, 2007). This
allows for the development of more realistic and
adaptive maintenance strategies that can
dynamically adjust to operational conditions and
the evolving state of equipment. Stochastic
models allow for modeling and managing
uncertainty, offering a robust and flexible
solution that can adapt to various operational
conditions and achieve an optimal balance
between costs and equipment.

2. Problem Statement

The analyzed problem can be formalized by
considering a critical component in operation,
whose deterioration process, resulting from its
operation, is classified into L levels. In this case,
the index! = {1,2,..,|L|} represents the
deterioration level, where |L| is the total number
of possible levels. Level 1 corresponds to the
optimal state of the component, while level |L|
indicates a total failure.

Depending on the detected deterioration level, M
types of maintenance can be performed, where
m = {1,2,...,|M|}. The M types of maintenance

considered in this study differ in the level of
intervention required and the associated resource
consumption. While all maintenance actions fully
restore the component to its optimal state, their
cost and complexity increase with the
deterioration level at the time of intervention.
Lower deterioration levels allow for simpler and
less costly interventions, whereas advanced
deterioration requires more extensive repairs,
longer downtime, and higher resource allocation.
This classification captures the trade-off between
performing maintenance early to reduce costs and
delaying intervention at the risk of incurring
higher corrective expenses.

This component will be subject to a preventive
maintenance policy that uses periodic inspections
as a strategy to prevent unexpected failures. For
this purpose, the component will be inspected
periodically over a time horizon T, measured in
time units (t.u.). During each inspection, three
possible scenarios may arise (See Fig. 1):
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Fig. 1. Diagram illustrating the possible conditions of
the equipment at the time of inspection and an
example of the trajectory of equipment deterioration
over time.

I Optimal state: The component shows
no significant signs of deterioration,
allowing it to continue operating without
intervention until the next scheduled
inspection or until an unexpected failure
oceurs.

il. Deterioration detected: Significant
signs of wear are observed, requiring a

preventive intervention to avoid a
potential future failure.
iil. Failure before inspection: The

component fails before the scheduled
inspection can be performed. This is the
most critical scenario, as it requires an
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urgent corrective intervention, resulting
in additional costs associated with
repairs and  system  downtime.

The objective is to determine the optimal
inspection frequency so that the total expected
costs during the planning horizon are minimized.
These costs include both those associated with
conducting the inspections, covering labor and
resources, as well as costs resulting from
preventive and corrective interventions that may
be necessary during the component's operational
life.

3. Simulation Model Design and Methodology
3.1.Methodology

The methodology adopted to model the
maintenance process of a critical component
integrates stochastic simulation and optimization
to evaluate inspection frequencies and associated
costs. This methodological approach is
structured in four main stages, which are
described below:

i Data and Parameter Definition:
In this stage, the critical system
variables are identified, such as
maintenance costs, inspection times,
and failure rates. Additionally, the
necessary information is gathered to
build the input matrix that allows
modeling the behavior of the equipment
under different preventive maintenance
policies based on periodic inspections.
The defined parameters are validated
using  historical  data, technical
literature, and consultations with
experts, ensuring that they adequately
represent the industrial environment.

ii. Execution of Stochastic Simulation:
The simulation model is implemented
by configuring the necessary
experimental conditions to evaluate
different scenarios. From a discrete
range of inspection frequencies titi,
simulations are executed using Monte
Carlo techniques (Li, 2019)
(Dabrowska, 2020). This allows
modeling the inherent uncertainty in the
system and capturing the variability of
results, both in terms of costs and
operational performance.
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iil. Results and Sensitivity Analysis:
The data generated during the
simulations is processed to extract key
information  about the  system's
performance. Metrics such as total
expected cost and CVaR (Xu, 2021)
(Sadeghian, 2021), which acts as a risk
indicator, are calculated. A sensitivity
analysis is also conducted to identify
the variables with the greatest impact on
the results, providing relevant insights
into how different factors affect the
system’s metrics.

iv. Optimization and

Generation:
The obtained results are wused to
optimize decisions related to inspection
frequency, selecting the one that best
meets the system’s objectives, such as
minimizing costs and operational risks.
The final conclusions highlight the
practical implications of the model, the
potential benefits of its implementation,
and possible future research directions.

Conclusions

3.2.Model Formulation

The simulation model is developed to represent
the operating environment of a critical
component subject to periodic inspections and
maintenance  interventions. = The  model
incorporates probabilistic parameters and cost
assessments to capture system variability and
inform decision-making.

3.2.1.Model Parameters

To represent the operating environment, the
model defines parameters that serve as essential
inputs for the simulation. These parameters
include costs, maintenance durations, inspection
intervals, and probability distributions that
model the component's deterioration. These key
parameters are provided in Table 1.

Table 1. Parameters of the proposed model and their
associated descriptions.

Notation  Description

a Scale parameter.

B Shape parameter.

T Annual operational time.

RT ke Repair time por type m.
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RT; Inspection duration.

CM, g Maintenance cost for type m.
CRy, Spare parts cost.

Cl; Inspection cost.

CDy, Downtime cost per hour

t; Inspection interval

n Number of simulations

State;;  Deterioration probability matrix

Source: Prepared by the author.

The parameters « and f are central to
characterizing the behavior of the component
using the Weibull distribution, commonly
applied in reliability analysis (De Assis, 2020)
(Zhang, 2021) (Meeker, 2022). The parameter «
indicates the characteristic lifetime, while f
defines the shape of the distribution (Cohen,
2020).

The analysis horizon is defined by T, which
represents the total operational time, typically
one year. This is essential for calculating
cumulative metrics such as total expected costs
and system availability. On the other hand, the
maintenance and inspection durations are
represented by RT;,  and RT;, which capture the
time required for maintenance type m during
intervention k and for inspection j, respectively.
These values affect system availability and costs.

3.2.2. Stochastic Parameters

Uncertainty in maintenance systems requires the
inclusion of stochastic parameters. The costs and
durations associated with inspection and
maintenance activities are treated as random
variables due to external factors such as
equipment condition, spare parts availability, and
workforce efficiency. These factors cause
fluctuations in the value of these parameters due
to the inherent variability in maintenance
processes.

Table 2. Stochastic parameters of the proposed model
and the distributions that model them.

Parameter  Distribution

RTp i ~N (Ugr, Orr)
CMp i ~N (Ucm» Ocm)
CRy ~N (Ucr, Ocr)
CDy ~N (tiep, Ocp)

Cl; ~N (e, oci)
Source: Prepared by the author.

The values of these parameters are derived from
historical records or expert opinions, ensuring
that the model realistically captures the
variability of costs and times. The normal
distribution is considered appropriate due to its
flexibility and ability to model a wide range of
variables. Table 2 shows the stochastic
parameters modeled with normal distributions.

3.2.3. Optimization Criterion

The optimization criterion focuses on
minimizing the total expected maintenance cost
(CT), including inspection costs, preventive
maintenance costs, and costs for unexpected
failures. Eq. (1) presents the formulation:

E(CT) = Z Cl;-RT,
JE€J
+ Z CRy

kEK

+ Z Z CM,, , *RT,
kek jej
kEK meEM

Where:

e J: Set of inspections.
e K: Set of maintenance interventions.
e M: Set of types of maintenance.

3.2.4. State Probability

The proposed model is fed with probabilistic
information to estimate the behavior of
equipment under different inspection and
maintenance scenarios. An input is the
matrix State; ;, which captures the probability of
the equipment being at each deterioration
level [ at a given time t;, based on the evaluated
inspection frequency. This matrix serves as a
tool to model the probabilistic evolution of
equipment deterioration over time without
relying on classical degradation models. In this
article, the matrix is presented as a foundational
input, with its development and refinement
planned for future research.
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The deterioration levels are defined qualitatively,
ranging from an optimal state (Level 1) to the
maximum deterioration level, which represents

total equipment failure. These levels are
determined based on expert observations,
physical inspections, and operational

characteristics such as operating time, workload,
and environmental conditions. The
probabilities P(l, i) of the equipment being at a
specific deterioration level [ at time t; could be
derived using approaches such as historical data
analysis, machine learning (ML) techniques, and
statistical methods. Historical data, including
records of past failures and operational
conditions, could serve as a basis for estimating
these probabilities. ML models could be
employed to identify patterns in the data,
improving the accuracy of deterioration
probability  predictions by  incorporating
operational variable and, similarly, statistical
methods could be used to estimate probabilities
based on operational characteristics.

The general structure of this matrix is shown in
Eq. (2):

]P1,1 Pu
State;; = ¢ i (2)
Py o Py

Where P, ; represents the probability of the
equipment being at deterioration level [l at
time t;, t; are discrete time intervals at which the
equipment's condition is evaluated, determined
by the inspection frequency and deterioration
levels range  from Lvl 1 (optimal  state)
to Lvl [ (total failure). In future work, the
methodology for determining deterioration
probabilities will be further refined.

3.2.5. Times to Failure

To model the time to failure, the Weibull
distribution is used, which is widely employed in
reliability analysis and in the study of the time-
to-failure behavior of components and systems
The calculation of these times uses the inverse of
the cumulative distribution function (CDF). This
function allows the calculation of the time to
failure based on a randomly generated
probability, denoted as Py uniformly distributed
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in the interval (0,1). The inverse of the Weibull
function is given by the following expression:

Time to failure = a (—In(1 - Pf))l/ﬁ 3)

Where a is the scale parameter and fis the
shape parameter.

To simulate the time to failure, random values
can be generated from the Weibull distribution
using the parameters @ and §. This process
allows for the creation of a data set that
represents the behavior of the equipment over
time and facilitates reliability analysis and the
development of preventive and predictive
maintenance strategies. Together with Monte
Carlo simulation, the defined stochastic
parameters, and the evaluation of different
inspection intervals, this provides a powerful
tool for decision-making in maintenance
management.

4. Numerical Experiments
4.1.Case of Study

This section details the configurations of the
numerical example used to demonstrate the
operation of the developed stochastic simulation
model. The goal is to analyze how different
parameter combinations affect maintenance
decisions and the total system cost, providing
insights into the model's behavior.

The model considers the following key features:

e Levels of Deterioration: There will
be [ levels of deterioration, with [l =
{1, ...,4}. Where | = 1 indicates that the
equipment is in an optimal state and [ =
4 implies a failure of the equipment.

e Types of Maintenance: There
are mm types of maintenance,
withm = {1, ...,3}. Where m = 1
corresponds to preventive maintenance
Type I,m=2to preventive
maintenance Type 2, andm = 3to
corrective maintenance.

e Time to Failure: The time to failure
follows a  Weibull  distribution
with a and f representative ~ of  the
equipment, allowing for the estimation
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of event occurrence and maintenance
planning.

The analysis is carried out considering a time
horizon of T = 8760 hours. On the other hand,
the evaluated inspection frequencies correspond
to a discrete interval defined by t; = [20,450],
with increments of 10 hours, which makes it
easier to analyze the impact of different
inspection frequencies on the equipment's
performance.

The times to failure are randomly generated in
each simulation using the Weibull distribution
with parameters ¢ = 250 and § = 2.5, values
that will characterize the studied equipment,
aiming to ensure that the failure times represent
the component in its operational context.

Finally, to ensure the robustness of the
results, n = 10000 simulations are conducted
per inspection frequency to obtain statistically
sound results.

Table 3. Value of the time parameter of the proposed
model.

Parameter Value

RTl,k 025 . /13,k

RTZ,k 0.50 " ‘Ll3,k

RT3 NN( Uspe =9, 03, = 2)
Cl; 1

Source: Prepared by the author.

Table 4. Value of the cost parameter of the proposed
model.

Parameter  Value

CM;, ~N(pey =40, ocy =5)
CRy, ~N (3 =9, 03 =2)

CDy ~1000 N (psy =9, 035 = 2)

Source: Prepared by the author.

The stochastic parameters presented in Tables 3
and 4 provide the key variables to model the
uncertainty and dynamics of the system in the
numerical example. These variables encompass
both repair times and associated costs, which are
fundamental for the simulation and analysis of
the model.

In Table 3, the repair times used in the model are
presented. The preventive repair time Type 1 and
Type 2 are proportional to the average corrective
repair time, reflecting their planned and
predictable nature. In contrast, corrective
maintenance time is modeled as a stochastic
variable due to the uncertainty associated with
unplanned failures, which depend on factors like
failure severity and resource availability.
Inspection time is deterministic, as inspections
do not induce downtime that impacts system
inefficiency or costs.

In Table 4, cost parameters include repair and
spare parts costs are modeled as random
variables with normal distributions, and
inefficiency cost, set at 1000 times the repair
cost to reflect its relationship with operational
and maintenance expenses.

In addition to the above, the matrix, the behavior
of the matrix State,;; shows how the probability
of the system being in a particular deterioration
level varies with time between inspections. At
the lower deterioration levels, the probability of
staying in a low-deterioration state decreases
over time, while at higher levels, the probability
progressively increases, reflecting more severe
deterioration of the system.

4.2.Results and Analysis

The following presents the results obtained from
the stochastic simulation model. First, the results
based on the expected value are shown, which
help identify the optimal inspection frequency to
minimize the total cost. Then, an analysis using
CVaR is conducted, along with a sensitivity
analysis, offering a more comprehensive
perspective for decision-making that accounts
for the inherent uncertainty of the process.
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Fig. 2. Relationship between expected cost and
inspection frequency, showing how costs vary with
different inspection frequencies.

Fig. 2 illustrates how total maintenance costs
vary with inspection frequency, highlighting the
optimal frequency where costs are effectively
balanced. As the inspection frequency increases,
inspection costs rise, but the costs of undetected
failures decrease, emphasizing the importance of
finding the right point to minimize total costs.

x108  (a) Inefficiency cost x10% (b) Repair cost

—— Inspection cost
— PMtypel

- PMtype 2

—

% = I
IS « o
-
«

Expected cost

=
w

6 1(;0 260 360 40'0 (I) 160 260 30‘0 4(;0
Inspection frequency Inspection frequency
Fig. 3. Behavior of inefficiency, maintenance, and
inspection costs, illustrating the distribution of these
costs as inspection frequency changes.

(@) Number of inspections (b) Number of maintenances
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Fig. 4. Behavior of intervention frequency,
highlighting how it changes with inspection

frequency.

Fig. 3 and 4 complement this analysis: Fig. 3
shows how different costs (inspection,
preventive maintenance, and undetected failures)
respond to changes in inspection frequency,
while Fig. 4 analyzes maintenance interventions,
highlighting the differences between preventive
and corrective maintenance in terms of costs and
times. Both figures help to better understand the
impact of inspection frequency on costs and
system efficiency.

3.2.5. Risk and Sensitivity Analysis

Fig. 5 analyzes the relationship between
inspection frequency and risk-related costs,
represented by the CVaR (Conditional Value at
Risk) calculated for the system's risk tail. This
analysis highlights that, in the most extreme
scenarios, expected costs exceed corrective
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costs. This underscores the importance of not
only determining an optimal inspection
frequency to minimize the CVaR but also
carefully defining the parameters that influence
the system. A detailed analysis of these
parameters can help reduce variability in
outcomes and, consequently, associated risks,

enabling more robust and predictable
management.
— CvVaRcost —-- Optimal frequency — -—-- Corrective cost
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Fig. 5. Behavior of CVaR with respect to inspection
frequency, showing how inspection frequency impacts
risk exposure.

CVaR cost

On the other hand, the tornado chart of Fig. 6
complements this analysis by illustrating the
sensitivity of key metrics to changes in
inspection frequency. Repair time emerges as the
most critical factor, which is logical given its
direct impact on labor costs and inefficiency-
related expenses. This analysis helps prioritize

efforts on the most influential variables,
optimizing  resource allocation, reducing
uncertainty, and minimizing the system's
economic risks.
N Decrease of 25% I ncrease of 25%
Inspection Time - e
Repair Time - T ————
Maintenance Cost - —
Spare Parts Cost - -
Inefficiency Cost - _
' ' I ' i
40.0 20.0 0.0 20.0 40.0

Percentage variation of inspection frequency
Fig. 6. Tornado diagram for sensitivity analysis,

highlighting the variables that most influence the
determination of the optimal inspection frequency.
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These analytical tools represent some of the
proposed elements for alternative result
visualization, aimed at facilitating decision-
making. Further development of these tools will
be included in an extended version of this study,
which is intended for publication in a peer-
reviewed journal in the field.

5. Conclusions and Future Work

This study proposed a stochastic simulation-
based methodology to determine the optimal
inspection frequency in maintenance policies
relying on periodic inspections. The results
identified repair time as the most influential
factor in total expected costs, as longer durations
significantly ~ increase = maintenance  and
inefficiency costs. Strategies such as staff
training, process optimization, and the adoption
of advanced technologies are key to mitigating
these costs.

The analysis revealed an optimal inspection
frequency that balances the costs of frequent
inspections with those of undetected failures.
Extremely low frequencies lead to high
corrective maintenance costs, while excessively
high frequencies increase operational expenses.
This balance underscores the importance of
sustainable and efficient inspection strategies.
The inclusion of Conditional Value at Risk
(CVaR) complemented the expected value
analysis by evaluating risks in extreme scenarios.
This metric showed that the optimal frequency
not only minimizes average costs but also
reduces the financial impact of extreme events,
offering a robust solution from a risk
perspective.

The contribution of this work lies in its
stochastic approach, which optimizes inspection
frequency  without relying on complex
degradation models, making it more adaptable to
practical industrial settings. While this article
presents a simplified version of the problem,
future work will extend the methodology to
address more complex, multi-component
systems and refine the state probability matrix.
Additionally, advanced sensitivity analysis
techniques, such as the Sobol method and semi-
deviation-based approaches, will be explored to
provide deeper insights into model behavior and
risk interactions. These extensions will further
enhance the methodology's versatility and
applicability across diverse industrial contexts.

References

Meeker, W. Q., Escobar, L. A., & Pascual, F. G.
(2022). Statistical methods for reliability data.
John Wiley & Sons.

De Assis, E. M., Figueirda Filho, C. L. S., Lima, G. A.
D. C,, Costa, L. A. N,, and Salles, G. M. D. O.
(2020). Machine learning and g-Weibull applied
to reliability analysis in hydropower sector. /EEE
Access, 8,203331-203346.

Zhang, C. W. (2021). Weibull parameter estimation
and reliability analysis with zero-failure data
from high-quality products. Reliability
Engineering & System Safety, 207, 107321.

Nasrfard, F., Mohammadi, M., and Rastegar, M.
(2022). Probabilistic optimization of preventive
maintenance inspection rates by considering
correlations among maintenance costs, duration,
and states transition probabilities. Computers and
Industrial Engineering, 173, 1-3.

Zhang, W., Gan, J., He, S., Li, T., and He, Z. (2024).
An integrated framework of preventive
maintenance and task scheduling for repairable
multi-unit systems. Reliability Engineering and
System Safety, 247, 1-3.

de Jonge, B., and Scarf, P. A. (2020). A review on
maintenance optimization. European Journal of
Operational Research, 285, 805-824.

Shafiee, M., and Chukova, S. (2013). Maintenance
models in warranty: A literature
review. European  Journal  of  Operational
Research, 229, 561-572.

Escobar, A., Holguin, M., and Betancourt, G. (2007).
Maintenance models in warranty: A literature
review. Scientia et Technica, 13, 115-120.

Cohen, A. C., and Whitten, B. J. (2020). Parameter
Estimation in Reliability and Life Span Models.
Statistics: A Series of Textbooks and
Monographs. CRC Press. ISBN: 9781000147230.

Dabrowska, E. (2020). Monte Carlo simulation
approach to reliability analysis of complex
systems. Journal of KONBIN, 50(1), 155-170.

Li, X., Gong, C., Gu, L., Jing, Z., Fang, H., & Gao, R.
(2019). A reliability-based optimization method
using sequential surrogate model and Monte
Carlo simulation. Structural and
Multidisciplinary Optimization, 59, 439-460.

Xu, Y., & Wang, P. (2021, May). CVaR formulation
of reliability-based design problems considering
the risk of extreme failure events. In 2021 Annual
Reliability and Maintainability =~Symposium
(RAMS) (pp. 1-5). IEEE.

Sadeghian, O., Shotorbani, A. M., Mohammadi-
Ivatloo, B., Sadiq, R., & Hewage, K. (2021).
Risk-averse  maintenance  scheduling  of
generation units in combined heat and power
systems with demand response. Reliability
Engineering & System Safety, 216, 107960.

1577



