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RAMS (Reliability, Availability, Maintainability, Safety) and PHM (Prognostics and Health Management) are two
engineering disciplines with different histories but broadly similar goals: managing risks resulting from failures, and
mitigating them by acting on maintenance and operation.
Therefore the question naturally arises whether those two disciplines should be merged. This paper addresses that
question by reviewing, for each of those two disciplines, its concept,its applications, its methods, and finally its
benefits and limitations. Then we analyze their similarities and differences.
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1. Introduction

We argue that a tighter integration between Prog-
nostics and Health Management (PHM) and Re-
liability, Availability, Maintainability, and Safety
(RAMS) is instrumental to reap the benefits of
predictive maintenance. RAMS and PHM are his-
torically separated research fields although they
share common purposes: preventing system fail-
ures by keeping assets in good health and opti-
mizing maintenance. How those two disciplines
approach failure prediction and uncertainty mod-
eling differs, but those approaches are comple-
mentary. PHM algorithms focus on estimating
and predicting the health of individual compo-
nents, such as bearings or pumps, yielding cus-
tomized component maintenance plans. Yet main-
tenance decisions must be made at the system
level, which necessitates integrated strategies that
account for interactions and dependencies among
components. This is where RAMS methodologies
are most effective since they effectively model
component interactions and assess system-level
risks. But traditional RAMS methodologies do not
inherently support predictive maintenance. They
traditionally rely on average, fleet level predefined
operating conditions and fail to take advantage of

real-time asset monitoring data. As a result, they
can only model traditional maintenance strategies,
typically scheduled preventive maintenance, and
not dynamic predictive maintenance.

Thus, PHM and RAMS exactly complement
each other: PHM provides insight in exact failure
mechanisms of individual components and lever-
ages monitoring data to predict actual component-
level performance, while RAMS provides insight
in components interaction and predicts average
system-level performance. Despite that comple-
mentarity, evidenced in some recent publications
(Moradi and Groth (2020)), as well as recent
progress, integration of the two disciplines has not
happened yet. The authors hope that the thoughts
shared here will trigger useful discussions.

Organization of the paper. Section2 presents a
brief survey of PHM advances, benefits and lim-
itations. Section3 performs a similar survey for
RAMS. Similarities and differences are described
in Section 4. Finally, Section 5 offers a non-
exhaustive list of ways to overcome challenges.
Section 6 presents concluding remarks.
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2. PHM

2.1. PHM Concept

The concepts of Prognostics and Health Manage-
ment Gouriveau et al. (2016) have evolved and are
now formalized in several standards, for instance
IEEE std1856 822 (2017). The latter defines prog-
nostics as “the process of predicting an asset’s
remaining Useful Life (RUL) by predicting the
rate of progression of a fault given the current
assessment of degree of degradation, the load his-
tory, and the anticipated future operational and
environment conditions, to estimate the time at
which the asset will no longer perform its intended
function within the desired specifications”. A key
point is the reference to ‘intended function’ and
‘desired specifications”. Indeed, the concept of
failure (IEC 60050-192) is synonymous with “loss
of the ability to perform a function according to
desired specification”. It is with that definition
in mind that the reliability engineer says that an
item of equipment has failed. For instance, a LED
(light-emitting diode) has a function which is to
generate light.Some physical parameters, mainly
input current and temperature, will affect the effi-
ciency of the LED, i.e., the amount of light gen-
erated by input current. When the efficiency drops
under a certain threshold, the LED no longer op-
erates according to specifications, and is therefore
deemed failed. The threshold is determined by the
user’s needs and may vary from one application
to the next. For instance, in street lighting require-
ments may be less stringent than, say, for indoor
lighting. This is valid only for progressive degra-
dations, not sudden failures. In fact, PHM is suit-
able for items that are characterized by an increas-
ing failure rate; sudden (unpredictable) failures
correspond to a constant failure rate instead.The
degradation state therefore contains more infor-
mation than the “operational versus failed” state.
A prerequisite, before performing a prognosis, is
to detect an anomaly and to diagnose the par-
ticular degradation mode that is involved, since
different degradation modes will generally evolve
with different speeds to the failure. This is why
PHM generally consists of three steps: anomaly
detection; diagnostics; and prognostics. For in-

stance, in LEDs, the main degradation mecha-
nism is linked to quantum efficiency; degradation
causes luminous flux reduction and color shift.
With gearboxes (as found in trains or helicopters,
for instance), degradation mechanisms include
gear tooth wear. In train doors, degradation usu-
ally involve inefficiency of the kinematic chain
(transmitting force from motor to actuators) due
to wear. In turbofans of jet aircraft, degradations
affect turbine efficiency and flow. Lithium-ion
batteries also experience varopus physical aging
mechanisms..

2.2. PHM Applications

With sufficient information on the evolution of
degradations, one is armed to perform health man-
agement.In broad terms, health management con-
sists of making decisions relating to maintenance
and operations with the general goal of keeping
assets operational as long as possible. Health man-
agement requires some knowledge of the future
use of the system because that use will determine
the stresses, and therefore future aging.Actions
can include performing preventive maintenance,
or more precisely condition-based maintenance
or predictive maintenance, that is, maintenance
triggered by the current condition of the asset
or estimated Remaining Useful life (RUL). Thus,
predictive maintenance is an important application
of PHM. It is however not the only one: reducing
the stresses can lead to extending an asset’s life
time; in fact, current research investigates the use
of control algorithms Félix et al. (2023) to manage
the RUL. Thereby PHM may impact not only
maintenance, but also operations. The key input
to PHM is health monitoring, through sensors that
are either added specifically or pre-existing, as
part of the control system for instance.Monitoring
can be continuous but can also consist of regular
inspections,and can rely on built-in test equipment
as well.From the raw data acquired through mon-
itoring,it is desired to estimate the health state of
the monitored items, and, if possible, to predict
its evolution. The set of data acquisition devices
and data processing algorithms that enable that
estimation and prediction is usually referred to as
a PHM system.
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2.3. PHM methods

PHM methods fall into three broad categories:
model-based, data-driven and hybrid.

Model-based PHM methods. Purely model-
based approaches—sometimes called “physics-of
-failures”, rely on mathematical representations of
the physical degradation processes. A typical ex-
ample is the Paris-Erdogan law for crack growth.
Others include the Arrhenius model for temper-
ature stress, Black’s law (Black (2005)) which
combines temperature and current stresses(such as
for LEDs), or Norris-Landsberg for temperature
cycling. Model-based approaches are limited by
model accuracy and the imprecise knowledge of
model parameters (e.g., activation energy).

Data-driven PHM methods. To overcome the
limitations in model-based techniques, empirical
data-driven approaches have gained popularity,
especially with the tremendous progress in ma-
chine learning, and in particular deep learning,
supported by high-performance hardware (Fink
et al. (2020)). The most frequent algorithms rely
on supervised learning, i.e., they are trained on
data sets that correspond to normal operations
and to a number of degradation modes which
are labelled; and they are subsequently able, in
principle, to detect abnormal operation (anomaly
detection), to identify the particular failure or
degradation mode (diagnosis); and,in the best
cases,to perform predictions (prognosis). A typ-
ical tool of data-driven algorithms is “features”,
which are summaries of the acquired signals. For
instance, statistical features such as variance, kur-
tosis, peak-to-peak distance (Atamuradov et al.
(2020)), are commonly used. Feature fusion then
can lead to the construction of health indices.The
work of feature-engineering usually requires in-
tensive expert involvement. Recent advances in
machine learning, particularly the use of artificial
neural networks, has enabled in some cases the
replacement of feature engineering with feature
learning, i.e. the algorithm learns suitable features
automatically, and have made unsupervised learn-
ing possible, overcoming the need for labeling.
Various types of auto-encoders (for instance vari-

ational auto-encoders) support that approach.

Hybrid PHM methods. Finally, hybrid meth-
ods combine data-driven and physics-based ap-
proaches. They include physics-informed ma-
chine learning (PIML), and in particular physics-
informed neural networks (PINN) (Arias Chao
et al. (2022)). Diverse combinations have been
considered; from embedding physical equations
into the neural network, to constraining the neural
network by some high-level physics-based law
(Bajarunas et al. (2023)).

2.4. Benefits and Limitations of PHM

Thus PHM is benefiting enormously from those
recent very promising developments. In particular,
complex nonlinear time-varying patterns can be
investigated (as this is one of the hallmarks of
artificial neural networks). At the same time, limi-
tations must be recognized: 1) Data are often lack-
ing (for instance for highly reliable items, which
by definition fail rarely), or of insufficient quality.
This will adversely impact the performance of the
algorithms: false detections (false negatives and
false positives), wrong diagnosis,inaccurate prog-
nosis. 2) Intensive domain expert involvement is
needed for model-based methods and supervised
learning methods. 3) Explainability is often lack-
ing with data-driven methods: the reasoning that
has led the algorithms to its conclusion, so that the
human maintainer or operator can be convinced,
is not available (this area is currently a focus of
research and good progress can be expected (see
for instance Forest et al. (2024)) 4) Finally, as the
approach is component-based, it usually does not
consider the interactions between the components
that make up a system. One last comment is that,
while PHM algorithms focus on one item (say, an
aircraft or an aircraft engine in a fleet of aircraft,
a train or a train subsystem in a fleet of trains),
health management decisions must consider the
fleet implications.

Health monitoring tends to be costly. The busi-
ness case is often challenging, unless the assets to
be monitored are critical in terms of availability
or maintenance costs. Then a convincing case can
be made that PHM will bring about substantial,
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quantifiable improvements.

3. RAMS

3.1. Concept

RAMS stands for Reliability, Availability, Main-
tainability and Safety. It is an engineering dis-
cipline that offers methods and techniques for
making systems more dependable. The field is
closely related to Probabilistic Risk Assessment
(PRA) and reliability engineering. These fields
adopt a system-level perspective on the system’s
risks, exploiting engineering knowledge and logi-
cal system modeling, capturing how failures arise
at component level and propagate through the sys-
tem, causing system-level failures.

The main purpose of RAMS is to make risk-
informed decisions regarding system design and
operations. Typical design decisions concern the
overall system architecture, the level of redun-
dancy and the required quality of components.
Operational decisions concern maintenance, such
as inspection frequencies, spare parts manage-
ment, repairs, and replacements, as well as health-
aware control, such as stress reduction, and
changes in operational profiles. This purpose can
included other purposes, such as certification, doc-
umentation, and diagnosis.

RAMS methods are deployed in many differ-
ent industries, such as nuclear power generation,
rail, avionics and aerospace, automotive, water
management. Moreover, several regulatory bodies
require RAMS methods for certification.

Example 3.1. Figure 1 depicts a tiny example
of a fault tree. For the top event (MeC; Medium
Corrosion) to happen, two conditions are needed:
the presence of water (WW), and a medium acid
level (AcM). The latter can be achieved through
the presence of either Hydrogen sulfide H2S or
oxygen O2 or carbon oxide CO2 is required.

3.2. Applications

Safety-critical domains include trains, planes, and
nuclear power plants, where system reliability is
paramount. Even in scenarios where safety is not
the primary concern, availability often plays a cru-
cial role—such as ensuring the smooth operation

WW

MeC

AcM

H2S O2 CO2

Fig. 1. Fault tree modeling corrosion in an oil-gas
pipeline

of services like passenger and goods transport,
which heavily depend on consistent performance
and uptime.

(1) Understanding and documentation. RAMS
analysis provides a systematic overview of
vulnerabilities and failure scenarios, enhanc-
ing understanding and serving as valuable
documentation.

(2) Compliance and certification. RAMS anal-
ysis supports dependability metrics like re-
liability and MTTF, making it essential for
demonstrating compliance in safety-critical
systems.

(3) Design and operational decisions. By iden-
tifying cost-effective measures, RAMS anal-
ysis helps improve system dependability and
reduce the probability of failures.

(4) Diagnosis and monitoring. RAMS analysis
aids in tracing failure causes systematically,
providing insights into how failures occurred.

3.3. Methods

Numerous RAMS methods exist. As in Boudali
et al. (2007), we divide them into three classes.

Text-based methods. Textual approaches sys-
tematically explore components or behaviors in
complex systems, presenting findings in textual
form or tables. Common methods include fail-
ure mode effect analysis (FMEA) Rausand et al.
(2020) and Hazard & Operability Studies (HA-
ZOP) Kletz (1999). FMEA is often paired with
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fault tree analysis to identify components and fail-
ure modes as basic events.

Architectural methods. These methods use an
architectural system model, i.e., a decomposition
for the system into components and the way they
interact. Such methods are common in systems
with substantial software components, but apply
to any complex design. In nuclear safety, the Fi-
garo modeling language Bouissou et al. (1991)
is a prominent example. Other examples include
the AADL error annex Feiler et al. (2006), Al-
taRica Arnold et al. (1999), and Hip-HOPS Pa-
padopoulos and McDermid (1999), often referred
to collectively as Model-Based Safety Assess-
ment Sun et al. (2024).

Domain-specific methods. These methods are
tailored for specific risk analyses and include re-
liability block diagrams Modarres et al. (2009),
event trees Ericson (2005), STAMP Leveson
(2023), and bow tie diagrams Center for Chemical
Process Safety (2018). Several dynamic variants
of these models exist, enhancing their expressive-
ness and enabling the representation of common
dependability patterns—such as spares and tem-
poral orders—that cannot be captured by their
original static counterparts.

3.4. Analysis types

The purposes mentioned in Section 4.2 are sup-
ported by two types of RAMS analyses:

(1) Qualitative techniques focus on identifying
critical paths and failure causes. Common
approaches include determining minimal cut
sets and analyzing common cause factors.

(2) Quantitative techniques aim to calculate de-
pendability metrics, which serve as key per-
formance indicators for evaluating system de-
pendability. A variety of analytical and statis-
tical methods are available for this purpose.
Typical metrics include: (a) The System relia-
bility: the probability that a system operates
without failure during its mission time. (b)
System availability: the average proportion of
time a system is operational. (c) Mean time
to failure (MTTF): the expected time until a

system experiences its first failure.

3.5. Benefits and Limitations of RAMS

While RAMS excels at modeling component in-
teractions and computing system-level risk met-
rics, it is not well-suited for predictive mainte-
nance due to the following limitations

(1) Lack of Monitoring Data Integration:
RAMS does not leverage monitoring data,
instead focusing on average operating condi-
tions or predefined scenarios. Moreover, au-
tomatic scenario synthesis based on evolving
operating conditions or data analytics tech-
niques is rarely addressed.

(2) Limited Integration with Maintenance

Practices: RAMS typically relies on simplis-
tic maintenance concepts, such as fixed re-
pair times. As a consequence, maintenance
decisions are based on average performance,
while PHM approaches offer tailored just-in-
time maintenance strategies to be effective.

4. PHM and RAMS: Similarities and

Differences

Both RAMS and PHM share a common goal,
which is the improvement of system availability
and the cost-effectiveness of maintenance and op-
erations. They both can rely to some extent on
physical models. However, there are key differ-
ences, which are examined in more detail below.

(1) RAMS tends to model discrete events such as
failures; while PHM models continuous pro-
cesses such degradations leading to failures.

(2) Initially at least, CBM or PHM followed a
“deterministic approach” e.g. developing in-
dicators that trigger maintenance decisions,
but without quantifying the corresponding un-
certainty.

(3) RAMS is traditionally ”rational” and PHM
empirical

(4) PHM focuses on individual assets, and RAMS
on populations.

4.1. Discrete versus continuous behaviour

A key difference between PHM and RAM(S) is
that, beyond the binary state “operational/failed”,
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PHM introduces a notion of degradation which
progressively leads to a failure. This notion is
illustrated in Figure 2: a health index (HI), a
function of time, is defined, which measures the
state of degradation (HI = 1 when there is no
degradation, and HI= 0 corresponds to failure).
Then the relationship with the reliability function
is materialized by the relationship:

R(t) = P (HI(t) > 0] (1)

Fig. 2. Health Index and RUL as functions of time

4.2. Applications

However, beyond R(t), which is the concern of
the reliability engineer, the PHM specialists are
interested in HI(t) because they want to know how
much time (or how many cycles or how many
miles) is left before the failure threshold is hit;
that is, the remaining useful life at time t, RUL(t).
Knowledge of the RUL (or a good estimation of
it) will support predictive maintenance policies.

4.3. Deterministic versus Stochastic

Reliability theory since its inception has been
probabilistic by nature: among other, the very con-
cept of reliability is defined by a probability. Field
data statistics naturally include classical statistical
uncertainty quantifiers such as confidence inter-
vals. PHM has arisen from empirical condition
monitoring and, until recently,the notion of statis-
tical uncertainty was not included in its prediction,
although this has recently changed.

4.4. Rational versus empirical

While RAMS typically relies on rational con-
structs (bottom-up such as FMEA or top-down

such as FTA), PHM tends to follow empirical
approaches, trying various algorithms and com-
paring their effectiveness on the same dataset. Ex-
plainability of the models is not necessarily inher-
ent, especially with ‘black-box’ machine learning
algorithms. This distinction applies to the system
evaluation process, where the RAMS approach is
mathematical while PHM rather uses empirical
assessment methods.

4.5. Asset versus Population

The RAMS approach is population based, while
PHM is customized to individual assets: RAMS
considers populations of identical assets un-
der supposedly identical operating conditions, as
those assumptions are prerequisites for probabilis-
tic and statistical approaches. For instance, MTTF
(mean time to failure), MRL (mean residual life)
or availability refer to a population, or an aver-
age asset in the population. In PHM, the relevant
metrics are asset-specific RUL and HI. The MRL
is the expectation of the RUL of all assets in a
population. Thus, an intimate link exists between
PHM and RAMS; the former acts at item level and
the latter at population level (Dersin (2023)).

4.6. Explainability versus Black box

In many fields, safety demonstration and certifica-
tion is a sine qua non condition for authorizing
operations ; an important aspect of it is causal
analysis: the causal chains that may lead to acci-
dents must be understood in detail so mitigation
measures can be taken and risks controlled.As
seen earlier,empirical data-driven methods are of-
ten black boxes; there is now a strong drive toward
explainability and causal inference but those are
recent trends.

4.7. Relation to Physics

One area where RAMS and PHM approaches tend
to coincide is their relation to physics. In RAMS,
failure mode and effects analyses (FMEA) take
into account the physical phenomena leading
to degradations and failures; in PHM, purely
data-driven approaches are increasingly comple-
mented by physics-based models (Arias Chao
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et al. (2022)) as seen earlier. In reliability engi-
neering, the physical degradation laws are used as
well, through accelerated life tests Bagdonavicius
and Nikulin (2019), but with a pre-defined mis-
sion profile which is deemed valid for an entire
population. In PHM however, the mission profile
is periodically or continually updated based on
the sensor measurements on each specific item;
therefore an estimate of the state of health and
its evolution is available for a given specific as-
set, whose RUL is thus predicted. The notion of
digital twin then embodies the bridge between the
physical and the real world.

5. The integration of RAMS and PHM

Given the common goals, it would seem quite
logical that both fields, RAMS and PHM, should
merge. However, in industry at least, this has not
happened so far. We believe the reasons to be
partly historical and partly methodological: the
two disciplines have evolved in different contexts
and rely on people with different backgrounds,
one community more mathematical and the other
more empirical. The arrival of AI and ML, will
probably contribute to accelerating the conver-
gence, but so far ML has permeated PHM faster
than RAMS; in particular, PHM application to
safety-critical items encounters great obstacles
due to insufficient explainability of the algorithms
and rigidity of standards.

In reliability engineering the entire population
is described by a time-to-failure (TTF) distribu-
tion, whose expectation is the MTTF; the condi-
tional expectation of the remaining life of an asset
of age t is the mean residual life (MRL) at time t.
For the reasons already mentioned,including cost-
benefit analysis, it seems therefore that a combi-
nation of RAMS-based fleet-level approach and
PHM at individual item might be a promising
avenue. For instance, RAMS-based estimates can
provide prior distributions, in a Bayesian frame-
work, for individual health indices.

6. Conclusion

The integration of PHM (Prognostics and Health
Management) and RAMS (Reliability, Availabil-
ity, Maintainability, and Safety) techniques shows

significant potential but poses substantial chal-
lenges. This complexity arises from their fun-
damentally different methodologies: PHM em-
phasizes continuous degradation processes,while
RAMS models failures as discrete events. PHM
approaches can be deterministic (model-based)
or statistical (data-driven), whereas RAMS tech-
niques are inherently stochastic. Evaluation cri-
teria also differ—PHM methods are assessed ex-
perimentally using confusion matrices and ROC
curves, while RAMS methods are analyzed math-
ematically. Developing a unified framework ne-
cessitates harmonizing these contrasting perspec-
tives. Recent trends show ways toward bridging
the gaps. For instance the use of FMMEA ( fail-
ure modes, mechanisms and effects analysis as
the first step of the PHM process); the notion of
digital failure twin Ge et al. (2023) ; inferring fault
trees from data Jimenez-Roa et al. (2023); and
Reliability-informed deep learning Dersin et al.
(2024). In addition to technical challenges, there is
also a cultural challenge which consists of break-
ing organization silos, particularly in industry.
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