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The resilience of Critical Infrastructures (Cls) in the process industry is fundamental to the common good of the
environment, economy, and society. Hazard identification is the starting point of risk and resilience management.
However, state-of-the-art techniques like HAZOP and FMEA highly depend on the expert group's subjective
judgment. Business managers complain about the multiple safety certificates required from different regulators, as
the hazard identifications from various groups are inconsistent and do not recognize each other.

There are already many established accident report databases. However, they only provide information and other
knowledge about the accident hazards data and are usually unstructured. Thanks to the development of large
language models, this research aims to propose a framework to connect and extract evidence-based hazard
information from these databases and keep updating the data at season intervals. The extracted data could be
structured into a dynamic Knowledge Graph (KG) according to the different functions of Cls and the category of
the hazards. An example of KG based on the Major Accident Reporting System (eMARS) dataset is developed as a
case study.

Keywords: Critical infrastructure, resilience, hazard identification, knowledge graph.

1. Introduction making requires more intuitive data
demonstration for possible deviations.

Strengthening the resilience of Critical

Infrastructures (CIs) in the process industry Hazard identification provides the foundation
during disruptions is more challenging than knowledge  for risk and resilience
ever. Cls are increasingly complex and management. However, current popular
interdependent, and they should be viewed in hazard identification techniques in the process
connected scenarios rather than as isolated industry, such as HAZOP, are often isolated
pieces of equipment. Recent studies (e.g. and rely heavily on the subjective judgment of
Twumasi-Boakye, R., & Sobanjo, J. 2019) expert groups. Business managers complain
show a clear need for developing resilience about the numerous safety certifications
capacities and indexes demonstrated on real- required from various regulators, as hazard
life regional network models. In addition to identifications from different groups are
hazard identification, resilience decision- inconsistent and do not recognize one another.
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The accident dataset could provide evidence
for hazards and identify connected scenarios.
Regulators increasingly use accident report
databases to share previous experiences and
lessons learned. These online databases are
well-established for unstructured
investigation reports or basic category data
(e.g., eMARS by the EU, Chemical Safety
Board (CSB) Incident Reports by the U.S.,
and ARIA Database by France). However,
they are limited to essential information-
sharing functions. Integrating ontology-based
knowledge graph (KG) into accident data
analysis could offer a transformative approach
to understanding and managing process
industrial safety concerning Cls.

2. Literature Review
2.1.Hazard Identification

Indices are widely wused for hazard
identification in the process industry. Some
focus on substance hazards, like the Dow
Chemical fire and explosion index(Company
1967). The  safety-weighted  hazard
index(SWeHI) not only identifies and ranks
hazards but also indicates corresponding
safety measures(Khan, Husain, and Abbasi
2001). The draw of static checklist and cue
word methods is their possibility of limiting
creative divergence(Pasman, Rogers, and
Mannan 2018).

System Theoretic Process Analysis(STPA)
based on an extended modal of accident
causation gave hazard identification technique
a systematic angle(Leveson and Thomas,
2018). However, this method is quite time-
consuming. Pasman, Rogers, and Mannan
reviewed the history of hazard identification
methodologies and compared them to accident
investigation  methods. An  important
suggestion from their work was to fully utilize
the potential of IT technologies(Pasman,
Rogers, and Mannan 2018). Additionally, KG
is a fundamental step in the digitization and
computer understanding of real-world
conceptual hierarchy systems.

2.2.Knowledge Graph

The KG concept was proposed by Google in
2012. The definition of KG G is composed by
a series of entities E(in form of nodes), a series
of relational links R(in form of edges), and the
facts F they represent (Entityned, Relation,
Entitywi)(Zhang et al. 2025). There is a
consensus that KG is an efficient knowledge
representation and storage tool that supports
rational and propagation processes among
people or computers.

Early research on KG of accidents and hazards
mainly focuses on the construction and
transportation industry ( Fang et al., 2020, Liu
et al., 2021). Peng et al. collected data from
structured inspection reports and unstructured
text sources to build a KG regarding utility
tunnels(Peng et al.2023). Additionally, Huo et
al. employed a data-driven approach to create
a KG concerning subway construction
accidents(Huo et al.2024). Zhang et al.
incorporated real-time information into
knowledge graphs for dynamic hazard
analysis and ensured their work was updated
based on changes in site conditions. They also
developed metrics to evaluate system hazards
at micro, meso, and macro levels(Zhang et
al.2025). Hong et al. proposed an intelligent
ontology to evaluate accident risks on
construction sites utilizing a Natural
Language Processing (NLP)-based
framework(Hong et al. 2024).

The above-mentioned research validated the
feasibility of applying KG in hazard
identification and accident analysis. However,
only a few works were given to the guild on
KG regarding accidents in the process
industry. Mao et al. developed KG on the
delayed coking process(Mao et al. 2020).
Wang et al. built KG of the indirect coal
liquefaction process for the industry design
stage(Wang et al. 2022). Xue et al. proposed a
KG model for process accidents in
Chinese(Xue et al. 2025). These results mostly
focused on some special scenarios. Therefore,
this research aims to propose a more
transformative KG model framework for Cls in
the process industry.

3. Methodology
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As shown in Fig.1., the holistic framework
includes four steps. Step 1 is building the
general ontology for accidents in the process
industry. This step is mainly based on the
“4Ws” narrative framework proposed in our
early work(Yang and Demichela 2023).

General Ontology Building for Accidents
in the Process Industry

2 2

Map Data Categories of the Accident
Dataset to the Ontology

¥

Transfer Each Accident Report data to an
Instant to Update the Ontology

. 2

Utilizing Al Tools to Query, Statistics,
and Visualize the KG

Fig. 1. The holistic framework.

Step 2 maps the accident dataset categories to the
ontology classes and properties. This step needs
to carefully check the categories of the target
accident dataset, considering the different data
types. Step 3 transfers each accident report data to
an instant to update the ontology. This step needs
to utilize data mining tools to clean and process
data. Integration tools are also required to
incorporate the instants into the ontology. Step 4
is mainly about the KG building and
demonstrating. The case study part will explain
the framework step by step.

4. Case Study and Results

The eMARS dataset® was chosen for the case
study because it includes multiple process
industries and is open-access.

4.1.0ntology building for accidents in the
process industry

This step could use the owlready2 package in
Python or utilize the ontology design tool Protégé
developed by Stanford University (Musen 2015).
This research chooses the Protégé for its better
ability at visualization. The whole ontology is

@https://emars.jrc.ec.europa.eu/en/emars/accident/search,acce
ssed at 2025.01.14

centered on the concept of an accident, as shown
in Fig.2.

The proposed Accident Ontology(A Ontol.0)
has 37 classes under the default class thing, as
shown in Fig.3., including Event, Accident, Time,

DateTime, Duration, Location,
ProcessEquipment, StorageEquipment,
TransferEquipment, TransportEquipment,
People, Operator, Contractor, FactoryStaff,
Cause, HumanFactor, = OrganizationFactor,
PlantEquipmentFacotor, Occurrence,  Fire,
Release, Explosion, Consequence,
EnvironmentPolluntion, HumanHealthHarm,

Fatality, Injury, Substance, HazardSubstance,
Hazard, Explosive, Flammable, Oxidizing,
Pyrophoric, Toxic, and SelfReactive.
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Fig. 2. The main ontology graph focuses on the
Accident class.

Fig4. shows the data properties list.
The Accident class has four data properties:
eid, title, and type. Duration class has
duration_in_days, DateTime class has
start_date. EnvironmentPollution, Explosion,
Fire, Release, HumanFactor, OrgnationFacor,
PlantEquipmentFactor,  ProcessEquipment,

StorageEquipmen, TransferEuipment, and
TransportEquipment all have type data
properties.

Fig.5. shows the object properties list.

These are the relationships between classes.
The HazardSubstance class connects to the
Hazard class with the has hazard object
property. The Accident class connects to the
Occurrence class with the has_occurrence
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object property. The Accident class connects
to the HazardSubstance class with the involve
object property. The Accident class connects
to the Operator class with the
is_performed by object property. The
Accident class connects to the Consequence
class with the lead object property. The
Accident class connects to the Cause class
with the is_triggered by object property. And
others are inverse object properties.

owl:Thing
Event

Cause
HumanFactor
OrganizationFactor
PlantEquipmentFactor
Consequence
EnvironmentPollution
HumanHealthHarm
Occurrence
Explosion
Fire
Release
Hazard
Explosive
Flammable
Oxidizing
Pyrophoric
SelfReactive
Toxic
Location
ProcessEquipment
StorageEquipment
TransferEquipment
TransportEquipment
People
= Operator
Substance
=) HazardSubstance
NoHazardSubstance
Time
DateTime
Duration

Fig. 3. The tree views of the ontology classes.
4.2.Mapping the Accident Dataset Categories to
the Ontology

Table 1 illustrates the corresponding mapping
between eMARS categories and the A_Ontol.0.

4.3.Transfering each accident report data to an
instant to update the ontology

As involving an extensive amount of data
processing, in this step, the Pandas and
Owlready2 packages in Python are chosen to
perform the tasks. Owlready?2 is employed to add
the instants into the build-up ontology and update
it to A_onto2.0 with the eMARS data.

I owl:topDataProperty
I accident_eid
Bl accident_industry
B accident_title
Bl accident_type
B duration_in_days
Il environment_pollution_type
Il explosion_type
I fatality_number
I fire_type
Il hazard_substance_name_cas
B human_factor_type
BN injury_number
I orgnization_factor_type
Bl plant_equipment_factor_type
Bl process_equipment_type
I release_type
I start_date
Il storage_equipment_type
Il tranfer_equipment_type
Il transport_equipment_type

Fig. 4. The tree views of the data properties.
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B owl:topObjectProperty

B has_hazard

Il has_occurrence
B involve

B is_involved_in
B is_last_for

B is_led_by

B is_occured_at

Bl is_occured_on
B is_performed_by
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Oxidizing has hazard
Self reaction has_hazard
Pyrophoric has hazard
Substance involve

Plant/Equipment causative
factor type

is_caused by

human causative factor type

is_caused by

Organizational causative
factor type

is_caused by

H
H
H
A
A
A
A
A
A
A

Human off + on site fatalities lead
Human off +on site injuries lead
Environment on +off site lead

quantity
*A represent Accident class, H represent

L_lis_triggered_by

W |ead HazardSubstance class

[ | perfo rm -

B trigger "
St

Fig. 5. The tree views of the object properties.

P===N
Fig. 6. The queried results for in Neo4j

Table 1. eMARS Categories map to A_Ontol.0. 4.4. KG building and demonstrating

eMARS Categories A_Ontol.0 The KG building tool Neo4j Desktop demonstrates
Accident ID A id the KG of A_Onto2.0. Fig.7. shows a small part of
Accident Titl A_t'tl the KG, the different colors represent different
cordent Titie e types of classes, and the piece of critical

Event type A_type infrastructure(CI) is highlighted with pink. and
Industry Type A_industry perform query function to find the HumanFactor is
Contractors A is_performed “operator error” and has release occurrence, results

by are shown in Fig.6.
StartDate A is_occured o

n

Release Major Occurrences A trigger
Fire Major Occurrences A trigger
Explosion Major Occurrences A trigger
Storage major occurrence A is_occured_at

equipment
Process major occurrence A is_occured_at

equipment
Transfer major occurrence A is_occured at

equipment
Transport major occurrence A is occured at

equipment
Toxic H has_hazard a ®
Explosive H  has_hazard Fig. 7. The small part of KG for A_Ont02.0 in Neo4j
Flammable H has_hazard Table 2. shows the query results of the most frequent

properties. The “uri” is the total amount of properties.
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Therefore, it is in the first place. The frequency of
accident eid is the instant count. Followed by
“involve hazard substance” and “plant_equipment
factor type”. Based on this frequency, the KG
relationship strength could be updated with the
corresponding coefficient calculated by the frequency
percentage.

Table 2. Most Frequent properties in A_onto2.0.

Property Frequency
uri 11058
accident _eid 1230

involve hazard substance 993
plant_equipment factor type 633

release type 625
orgnization_factor type 516
injury number 373
fire type 339
human_factor_type 277
fatality number 239
explosion_type 236
process_equipment type 234
storage equipment_type 158
tranfer equipment type 95

5. Discussions

This research is only a starting point for the
ontology and knowledge graph design for hazard
information from accident reports. There are some
limitations of this work, such as the ontology
needing more validation from different data
sources and formats. With data from eMARS, we
could calculate the frequency of the leading cause
factor and the probability of the event having
different consequences. However, eMARS is not
designed to provide statistical analysis, which
needs to focus on a unique industry area or fix
scenario. Therefore, the framework could be
applied within a company range to do quantitative
analysis with internal operational record data. The
critical structure of the proposed ontology of
accidents could transfer to guide the target
information contents. Accident reports in PDF
format in a storytelling way could combine the
ontology with the large language model or natural
language process technical to build the knowledge

graph.
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6. Conclusions

This research proposed a framework to build
ontology-based KG for accidents in process
industry-related hazard scenarios based on
accidents. And the eMARS dataset is selected to
perform a case study. With the help of a
visualization dynamic database tool Neo4j, the KG
for A_onto2.0 was built with 1230 instants.

By structuring data into interconnected entities and
relationships, KGs provide a holistic view of
complex accident scenarios, facilitating advanced
reasoning and inference to uncover hidden patterns
and cascading effects. This method enhances data
integration across diverse sources, delivering a
unified framework for hazard identification and
risk assessment. Furthermore, KGs enable
dynamic querying and visualization, thereby
improving  decision-making  processes and
supporting proactive safety management. Their
scalability and adaptability make KGs a powerful
tool for tackling evolving industrial safety
challenges.
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