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Abstract: The digitalisation of maritime systems, including ships, ports, and operational networks, has significantly 
increased their exposure to cyber threats and risks. These risks can disrupt critical infrastructure and cause global 
repercussions, requiring new solutions to improve maritime cybersecurity risk prediction. This study aims to develop 
a new AI solution with limited data to enable cybersecurity risk prediction. It utilises Large Language Models 
(LLMs) for prompt-based zero-shot learning, enabling accurate classification of text and extraction of key cyber 
risk factors. A comprehensive dataset spanning 2001 to 2020 was developed, introducing new risk factors critical 
for assessing cyber threats that are yet to appear in any state-of-the-art studies in the field. This extracted dataset 
was integrated into a Bayesian Network (BN) model to identify probabilistic relationships and predict potential 
cybersecurity risks. The hybrid approach is among the pioneers of using new AI technologies for text mining to 
enrich risk data and realising multiple source data fusion for improved risk prediction, hence making significant 
theoretical contributions to safety sciences. By leveraging the advanced capabilities of LLMs alongside probabilistic 
modelling, the study has shown its methodological novelty through a scalable, adaptive methodology that can 
enhance risk predictive accuracy and strengthen general and maritime systems against evolving cyber risks in 
specific. From an applied research perspective, it provides an in-depth analysis of maritime cybersecurity within the 
context of the fast growth of maritime digitalisation and brings significant managerial insights into practice. Such 
insights are invaluable for stakeholders, enabling them to identify vulnerabilities, anticipate threats, and prioritise 
resources effectively. This integrated framework equips policymakers with the tools needed for proactive decision-
making, supporting the development of targeted cybersecurity strategies to minimise operational disruptions.  
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1. Introduction 
Maritime transport is important in global 

trade, facilitating the movement of goods and 
resources across continents and supporting 
economic stability worldwide (Li and Yang, 
2023). With over 80% of international trade 
dependent on maritime transport, the industry 
plays a crucial role in connecting global markets, 
particularly in regions characterised by extensive 
waterways and coastal economies (Cao et al., 
2023; Li et al., 2024a). As international trade 
expands due to globalisation, population growth, 
and rising living standards, the maritime sector 
has embraced technological advancements to 
enhance efficiency, sustainability, and 

environmental friendliness. Emerging 
technologies such as the Internet of Things (IoT), 
big data analytics, and Artificial Intelligence (AI) 
have enabled the transition from traditional 
maritime operations to interconnected and 
digitalised infrastructures (Bures et al., 2021). 

However, this digital transformation has 
introduced significant cybersecurity challenges. 
The increasing reliance on interconnected 
systems has amplified vulnerabilities, making 
maritime infrastructures—such as vessels, ports, 
and operational networks—prime targets for 
cyberattacks (de la Peña Zarzuelo, 2021). Cyber 
threats range from phishing and ransomware to 
advanced methods that exploit weak points in 
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navigation systems, communication networks, 
and operational frameworks. The implications of 
such attacks extend far beyond financial losses, 
affecting global supply chains, economic stability, 
and environmental safety. This growing risk 
highlights the urgent need for a comprehensive 
and adaptive maritime cybersecurity framework 
to protect critical assets and ensure operational 
resilience. 

Traditional approaches to maritime 
cybersecurity risk analysis often rely on 
qualitative methods, such as expert-driven 
insights and risk matrices, which are prone to 
subjective biases and limited scalability. While 
quantitative risk analysis methods, including the 
Bayesian Network (BN) (Li et al., 2024b; 
Mohsendokht et al., 2025), offer a more objective 
approach by modelling probabilistic relationships 
between risk factors, they require extensive and 
well-structured datasets to deliver accurate results. 
This results in their inability to tackle maritime 
cybersecurity risk quantification and prediction. 
In the maritime sector, the scarcity of high-quality, 
labelled datasets poses a significant challenge for 
implementing robust cybersecurity models. This 
limitation is further compounded by the evolving 
nature of cyber threats, which necessitates new 
cyber risk analysis frameworks by AI powers in 
text mining and data training. 

To address these challenges, this study 
proposes an innovative hybrid approach that 
integrates prompt-based zero-shot learning with 
BN modelling. The application of Large 
Language Models (LLMs) within this framework 
allows for the extraction of nuanced risk factors 
from unstructured textual data, such as 
cybersecurity incident reports, even in the 
absence of labelled datasets. Prompt-based zero-
shot learning leverages pre-trained LLMs to 
classify and extract critical information with 
minimal training data (Brown et al., 2020), 
making it an efficient solution for data-scarce 
environments like maritime cybersecurity. The 
extracted risk factors are then incorporated into a 
BN framework, enabling the modelling of 
probabilistic relationships, identification of 
interdependencies, and prediction of potential 
cyberattack scenarios.  

By leveraging advanced AI-driven 
methodologies and addressing critical gaps in 
traditional risk analysis approaches, this research 

aims to develop a scalable and adaptive 
framework for maritime cybersecurity risk 
prediction. This novel approach not only 
improves predictive accuracy but also empowers 
decision-makers with the tools needed to navigate 
the complexities of an increasingly digitalised and 
interconnected maritime domain. As the sector 
continues to evolve, this study lays the foundation 
for a more secure and resilient future in global 
maritime operations. 

This study proceeds as follows: Section 2 
explores the existing body of literature, 
emphasising key advancements and unresolved 
challenges in maritime cybersecurity. Section 3 
details the methodological framework employed 
in this research, including the integration of 
advanced analytical techniques. Section 4 focuses 
on validating the proposed model and discussing 
the results in depth. Lastly, Section 5 concludes 
the study. 
2. Literature review 

Over the past decade, numerous studies have 
focused on developing robust frameworks and 
methodologies to identify, assess, and mitigate 
cybersecurity risks within the maritime sector. A 
notable contribution is the Maritime Cyber Risk 
Assessment (MaCRA) framework by Tam and 
Jones (2019), which provides a model-based 
approach to identifying critical risks, potential 
attackers, attack vectors, and systems requiring 
enhanced security. Similarly, Söner et al. (2023) 
utilised a Failure Mode and Effects Analysis 
(FMEA)-based approach to assessing 
cybersecurity risks associated with the Voyage 
Data Recorder (VDR), highlighting specific 
vulnerabilities in this critical component. Hybrid 
methods have also gained traction, such as the 
integration of FMEA with BN by Park et al. 
(2023), enabling a structured and quantitative 
evaluation of cyber-attack risks. However, most 
of these studies are qualitative analyses and rely 
on subjective data primarily collected through 
expert judgment. Since expert opinions inherently 
involve biases, this approach is prone to 
controversy. The reliability of the research 
depends on factors such as the number of experts 
responding to the questionnaire and the quality of 
their responses. 

To address the complexity of cybersecurity 
challenges, researchers have increasingly turned 
to quantitative and hybrid approaches that 
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combine traditional risk assessment with 
advanced probabilistic models. BN have proven 
particularly effective in this context due to their 
ability to represent dependencies among risk 
factors and predict potential outcomes. Previous 
studies in the relevant literature (e.g. 
Mohsendokht et al. 2024) demonstrate the 
efficacy of BN in maritime risk analysis, 
leveraging historical data to quantify the 
likelihood and consequences of cyber-attacks. 
The shift toward integrated methodologies 
reflects the growing recognition of the 
multidimensional nature of maritime 
cybersecurity risks, which require a combination 
of machine learning, probabilistic modelling, and 
scenario simulations to capture their full scope. 
Nevertheless, due to the typically limited size of 
maritime cyber attack datasets, the manually 
extracted Risk Influential Factors (RIFs) do not 
fully cover all cyberattack scenarios. It is crucial 
to leverage advanced AI methods to overcome 
this limitation, particularly in data processing, as 
this plays a vital role in subsequent research and 
analysis. 

Traditional text classification methods in 
NLP, such as rule-based approaches and Machine 
Learning (ML) models, rely heavily on feature 
engineering to classify and interpret textual data. 
While effective for structured tasks, these 
methods struggle to capture the complexity and 
nuances of natural language, especially in 
unstructured datasets (Keerthi et al., 2001; Xu et 
al., 2012). In contrast, Deep Learning (DL) 
models, including Convolutional Neural 
Networks (CNNs) and Recurrent Neural 
Networks (RNNs), enhance performance by 
automating feature extraction. However, they 
require large labelled datasets and substantial 
computational resources. The advent of LLMs, 
such as Bidirectional Encoder Representations 
from Transformers (BERT) (Devlin, 2018), Text-
to-Text Transfer Transformer (T5) (Raffel et al., 
2023), Generative Pre-trained Transformer 3 
(GPT-3) (Brown et al., 2020), and Large 
Language Model Meta AI (LlaMA) (Touvron et 
al., 2023), has revolutionised text classification by 
enabling zero-shot and few-shot learning 
capabilities. Although showing attractiveness, 
these models that can leverage pre-trained 
knowledge to perform specific tasks with minimal 
labelled data have yet to be applied to predict 

maritime cybersecurity risks. To make them 
effective in the data-scarce context of maritime 
cybersecurity, prompt-based zero-shot learning is 
applied in this work, allowing LLMs to extract 
nuanced risk factors from textual data without 
extensive preprocessing, providing a powerful 
tool for analysing maritime cybersecurity reports. 
This approach has demonstrated remarkable 
efficiency in identifying previously 
underexplored or complex risk factors, 
contributing to a deeper understanding of the 
threats facing the maritime sector. 

The new framework proposed in this paper 
will bridge the mentioned gaps, offering 
improved predictive accuracy and scalability. By 
focusing on evolving cyber threats, the 
methodology provides a dynamic and responsive 
tool for mitigating risks and enhancing maritime 
system resilience. As cyberattacks grow more 
sophisticated, this integrated approach supports 
proactive strategies to safeguard critical 
infrastructure and operations globally. 
3. Methodology 
3.1. Dataset generation 
To support advancements in maritime 
cybersecurity research, the creation of a 
comprehensive and reliable dataset is essential. 
This study utilised a systematic process to 
compile and refine a dataset specifically focused 
on maritime cyber-attacks. The Maritime Cyber 
Attack Database (MCAD), an open-source 
resource curated by the Maritime IT Security 
Research Group at NHL Stenden University of 
Applied Sciences in the Netherlands, served as 
the primary data source (MCAD, 2024). In this 
study, a total of 138 maritime-specific cyber 
incident records from the MCAD dataset 
spanning 2001 to 2020 were extracted for testing, 
providing a valuable foundation for further 
research and analysis. The following 
methodology is applied to collect, cleanse, and 
structure the data into a usable format. 

The data collection process employed an 
automated web crawler to extract information 
from publicly available maritime cybersecurity 
sources. This crawler gathered incident details 
such as the date, attacker and victim countries, 
attack methods, impacted areas, and incident 
reports. The open-source nature of the web 
crawler ensures transparency and encourages 
replicability for future studies, allowing 
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researchers to build upon this initial dataset. The 
collected data offers a wealth of insights into the 
characteristics and consequences of cyber-attacks 
within the maritime sector. 

Following data collection, a rigorous data 
cleansing was undertaken to ensure quality and 
accuracy. Duplicate records were removed to 
eliminate redundancies, while incomplete or 
invalid entries—such as those lacking critical 
fields or containing empty summaries—were 
excluded. Non-visible characters, which could 
interfere with text analysis by LLMs, were also 
identified and removed. This multi-step cleansing 
process ensured that the dataset retained only 
valid and relevant information, providing a solid 
basis for further processing and analysis. 

By implementing these steps, a robust and 
reliable dataset was created, forming the 
foundation for the application of advanced 
methodologies such as prompt-based zero-shot 
learning and BN modelling in maritime 
cybersecurity research. This dataset not only 
supports the objectives of the current study but 
also serves as a critical resource for future 
explorations in the field. 
3.2. Definifation and identification of RIFs 

A comprehensive understanding of cyber 
risks in the maritime domain relies on the precise 
identification and definition of RIFs. These 
factors serve as the foundation for effective data 
analysis, classification, and modelling in 
cybersecurity studies. This research undertook a 
rigorous process to define and expand the scope 
of RIFs, ensuring a more detailed and structured 
framework for analysing maritime cybersecurity 
risks. 

The original RIFs from the MCAD dataset 
include “Year”, “Attacker country”, “Victim 
country”, “method”, and “Impact area”. For 
detailed descriptions of these RIFs, please refer to 
the referenced sources (MCAD, 2024; 
Mohsendokht et al., 2024). Drawing from a 
thorough literature review of cybersecurity of the 
other sectors, four new RIFs were developed and 
incorporated into this study: “Intent”, “Origin”, 
“Asset Exploited”, and “Consequence Type”. 
These factors were specifically designed to enrich 
the analysis by capturing motivations, 
vulnerabilities, and impacts more 
comprehensively. The overview of four extended 
RIFs is listed in Table 1. 

Clearly defining and generating RIFs 
significantly enhances the granularity of maritime 
cybersecurity analysis. By integrating factors 
related to motivations, origins, vulnerabilities, 
and consequences, this study provides a 
comprehensive framework for understanding 
maritime cyber risks. 
Table 1. The overview of four extended RIFs. 

 
3.3. Prompt engineering-based BN 
modelling 
With a clear definition of RIFs, this study 
proposes an automated text classification method, 
which can significantly reduce biases associated 
with manual or expert classification and improve 
classification accuracy. By using AI-driven tools, 
the framework classifies textual data with 
precision that reflects the intricate relationships 
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influencing cybersecurity risks within the 
maritime domain. 

Prompt engineering enables accurate 
classification of RIFs from unstructured cyber-
attack reports by using carefully crafted textual 
prompts. Traditional classification methods face 
challenges in scenarios with limited labelled data, 
as is common in maritime cybersecurity. By 
adopting a zero-shot prompting strategy, this 
study overcomes these limitations, allowing for 
high-quality classification without requiring 
extensive training data. LLMs like GPT-4 (Mao 
et al., 2024), which possess pre-trained 
knowledge across a vast corpus of text, are used 
to classify critical risk factors such as 
“Consequence Type,” “Asset Exploited,” “Intent,” 
and “Origin,” based on the refined dataset. These 
well-defined RIFs enrich the analysis, capturing 
essential attributes and offering deeper insights 
into maritime cybersecurity threats. 

The prompt engineering process was 
carefully tailored to ensure accuracy and 
interpretability. To enhance programmatic 
accessibility, output responses were formatted in 
JavaScript Object Notation (JSON), while 
reasoning requirements aligned with the Chain of 
Thought (CoT) prompting principles (Wei et al., 
2022). This approach not only improved 
transparency but also enhanced the accuracy of 
classifications by requiring the model to explain 
its decisions systematically. For instance, when 
categorising “Consequence Type,” the prompt 
explicitly instructed the model to identify the 
impact type while justifying its classification. 
This iterative design enabled continuous 
refinement and debugging, further improving the 
classification performance. 

Following the prompt-based classification, 
the enriched dataset was integrated into a BN 
framework to model the probabilistic 
relationships among the identified RIFs. In this 
step, a Tree Augmented Naïve (TAN)-based data-
driven BN model is applied. Specifically, TAN 
used “Consequence Type” as the target node, 
reflecting its significance in understanding the 
broader implications of cyber incidents. 

The BN was constructed using the classified 
data and developed using Netica software. The 
TAN structure visualised in this model reveals the 
interconnected dynamics of maritime 
cybersecurity risks. For example, it illustrates 

how an external origin attack targeting critical 
hardware might lead to specific consequence 
types, such as business disruptions or data 
breaches. This structured representation enhances 
interpretability, making the model a powerful tool 
for scenario-based risk assessments and real-time 
decision-making. The constructed BN model is 
presented in Fig. 1. 

 
Fig. 1. The prompt engineering-based BN modelling. 
4. Model validation and analysis 
4.1. Mutual information 
Mutual Information (MI) (Wu et al., 2020) 
quantifies the dependency between the target 
node, “Consequence Type,” and other variables in 
the BN, reflecting how much knowledge of one 
variable reduces uncertainty about another. In this 
study, MI was calculated to evaluate the influence 
of different factors on “Consequence Type,” with 
the results presented in Table 2. These values 
highlight the degree of dependence between the 
target node and its associated factors, providing 
insight into their relevance for maritime 
cybersecurity risk modelling. 

The “Consequence Type” node had the 
highest MI value, underscoring its central role in 
the BN for predicting cybersecurity risks. Among 
other variables, “Asset Exploited” had the 
strongest dependency (0. 25634), emphasising the 
critical role of the targeted asset, such as hardware 
or software, in determining the consequences of 
cyberattacks. Temporal patterns, represented by 
the “Year” variable (0.21201), also played a 
significant role, indicating that evolving attack 
techniques and changes in cybersecurity practices 
over time notably impact outcomes. 

Moderate dependencies were observed for 
“Impact Area” (0.17675) and “Method” (0.139), 
showing the importance of attack locations and 
techniques in shaping cyber incident 
consequences. Factors like “Attacker Country,” 

Asset exploited
Network
Application/Software
Hardware
People/Processes
Media/Data

16.4
21.1
30.1
15.0
17.3

Intent
Intentional
Unintentional

71.4
28.6

Origin
External
Internal

78.9
21.1

Year
2001
2008
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020

2.58
2.58
5.31
3.98
6.89
3.13
4.46
4.58
8.49
11.1
13.1
16.6
17.2

Attacker country
Unknown
USA
Other
North Korea
China
Iran
Russia
Nigeria

21.6
8.60
10.6
11.5
11.6
11.1
15.0
9.96

Impact area
Shore
Offshore
Vessel
Onshore

37.8
15.8
33.8
12.6

Consequence type
Business Disruption
Data Breach
Manipulation of Maritime Infor...
Theft or Loss of Funds or Car...

28.9
24.6
35.2
11.3

Method
DDoS
Hacking
Malware
Jamming
Phishing
Unknown
Going Dark
Spoofing
Ransomware

8.19
11.8
11.3
10.4
9.70
8.13
12.0
14.0
14.5

Victim country
USA
South Korea
Other
Japan
Netherlands
Iran
Norway
Australia
UK
Germany
Russia
Canada
Singapore
China
France

8.61
6.40
14.0
5.19
5.17
6.86
5.69
5.89
6.75
5.91
5.84
5.25
5.28
7.43
5.71
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“Victim Country,” “Origin,” and “Intent” 
exhibited lower MI values, indicating weaker but 
still relevant relationships with “Consequence 
Type.” These insights help prioritise high-impact 
factors, allowing stakeholders to focus on 
protecting critical assets and addressing emerging 
attack methods. The analysis demonstrates how 
the BN model provides actionable insights to 
enhance decision-making and build resilient 
maritime cybersecurity systems. 
Table 2. The results of MI. 

Node MI 
Consequence type 1.90061 
Asset exploited 0.25634 
Year 0.21201  
Impact area 0.17675  
Method 0.13900  
Attacker country 0.06303  
Victim country 0.03145  
Intent 0.00351  
Origin 0.00337  

4.2. True risk influence 
The True Risk Influence (TRI) (Alyami et al., 2019) 
metric quantifies the impact of each RIF on the 
target node, “Consequence Type,” across various 
outcomes such as Business Disruption, Data 
Breach, Manipulation of Maritime Information, 
and Theft or Loss of Funds or Cargoes. Table 3 
presents the TRI values for each RIF, highlighting 
their relative importance in predicting specific 
consequences. 

“Asset Exploited” emerges as the most 
influential factor, with an average TRI of 19.9, 
particularly for Manipulation of Maritime 
Information (28.1), emphasising the importance of 
safeguarding critical assets like hardware and 
software. Similarly, “Year” (average TRI: 19.6) 
ranks as a key determinant, reflecting the critical 
role of temporal trends in shaping cyber incidents. 
It has the highest TRI for Business Disruption (20.2) 
and Manipulation of Maritime Information (23.2), 
underscoring the impact of evolving attack 
techniques and technologies over time. 

Other factors such as “Impact Area” (average 
TRI: 17.3) and “Method” (15.7) show moderate 
influence, highlighting the significance of attack 
locations and techniques. Meanwhile, “Origin” 
(1.6) and “Intent” (1.2) exhibit lower TRI values, 
offering context but less direct impact on outcomes. 
These findings help prioritise high-impact factors, 
enabling stakeholders to allocate resources 

effectively and enhance maritime cybersecurity 
resilience. 
Table 3. TRI of RIFs for the target node. 

 S1 S2 S3 S4 Ave
rage 

Asset 
exploite
d 

18.3 19.9 28.1 13.5 19.9 

Year 20.2 18.2 23.2 16.9 19.6 
Impact 
area 

22.3 18.6 27.5 0.9 17.3 

Method 15.6 10.6 24.2 12.4 15.7 
Attacker 
country 

12.9 4.9 11.9 12.8 10.6 

Victim 
country 

7 7.2 10.2 3.1 6.9 

Intent 0 0.45 1.9 2.4 1.2 
Origin 0.7 0.3 3.1 2.3 1.6 

Note: S1 indicates Business Disruption, S2 means Data 
Breach, S3 is Manipulation of Maritime Information, 
and S4 represents Theft or Loss of Funds or Cargoes. 

4.3. Model prediction performance 
The BN model’s performance was assessed using 
a confusion matrix to evaluate its accuracy in 
predicting “Consequence Type” across four 
categories: Business Disruption, Data Breach, 
Manipulation of Maritime Information, and Theft 
or Loss of Funds or Cargoes. Table 4 summarises 
the results, including correctly classified instances, 
misclassifications, and accuracy rates. 

The model achieved an accuracy of 96.9% for 
Business Disruption, correctly classifying 31 out of 
32 instances and 94.1% for Data Breach, with 16 
out of 17 instances correctly identified. For 
Manipulation of Maritime Information and Theft 
or Loss of Funds or Cargoes, the model reached a 
perfect accuracy of 100%, successfully classifying 
all instances. 

Overall, the model correctly classified 62 out 
of 64 instances, yielding an accuracy rate of 96.9%. 
These results highlight the model’s reliability in 
leveraging probabilistic relationships between 
RIFs and “Consequence Type.” The high accuracy 
across all categories underscores its effectiveness 
in supporting decision-making and prioritising risk 
mitigation strategies for maritime cybersecurity. 
Table 4. Confusion matrix of predicted results. 

Actual 
 
Predicted 

S1 S2 S3 S4 
Actu
al 
total 

Accu
racy 
rate 
(%) 
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S1 7 0 0 1 8 87.5 

S2 0 6 0 0 6 100 
S3 0 0 9 0 9 100 
S4 0 0 0 3 3 100 
Total 7 6 9 4 26 96.2 

4.4. Model consistency verification 
Ensuring the reliability of a predictive model is 
critical for its effective application in real-world 
scenarios. To evaluate the consistency of the 
proposed model in predicting maritime collision 
accidents, Cohen’s Kappa statistic (k) was utilised. 
This statistical measure assesses the agreement 
between predicted and actual classifications while 
accounting for the possibility of random agreement. 
A Kappa value closer to 1 indicates a higher degree 
of consistency and reliability in the model’s 
performance (Fleiss, 1971; Li et al., 2023). 

In this study, the model achieved a Kappa 
coefficient of =0.945, indicating a very high level 
of agreement. This result confirms the model’s 
excellent consistency and reliability in classifying 
collision risks under various conditions. 
5. Conclusion 
This study addresses the growing cybersecurity 
challenges posed by the digitalisation of maritime 
systems by introducing an innovative framework 
that combines LLMs with BN modelling. By 
leveraging prompt-based zero-shot learning, the 
framework effectively classifies text and extracts 
key cyber risk factors from limited datasets, 
enabling comprehensive risk analysis. The 
developed dataset, spanning from 2001 to 2020, 
incorporates four novel risk factors to enhance the 
granularity of maritime cybersecurity risk 
assessment. The integration of this enriched dataset 
into a BN model allows for the identification of 
probabilistic relationships and an in-depth 
evaluation of how various factors influence the 
likelihood and severity of cybersecurity incidents. 
This approach provides a nuanced understanding 
of maritime cybersecurity risks, equipping 
stakeholders with actionable insights to address 
vulnerabilities and enhance system resilience. 

The hybrid methodology offers a scalable and 
adaptive approach to maritime cybersecurity risk 
management, enhancing predictive accuracy and 
supporting proactive decision-making. By 
mapping interdependencies among risk factors, 
this study highlights the value of advanced 

technologies like LLMs and probabilistic 
modelling in addressing emerging threats. The 
proposed framework strengthens cybersecurity 
strategies, minimises disruptions, and enhances 
global maritime security. 

Future research can further leverage LLMs 
for analysing unstructured text. Techniques, like 
Named Entity Recognition (NER), can extract key 
entities, while Topic Modeling (TM) can identify 
hidden risk patterns. These approaches will refine 
maritime cybersecurity analysis, providing deeper 
insights and improving risk mitigation strategies. 
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