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Engineers often need to understand long-term behavior of complex models in stochastic settings, such as when
performing Ultimate Limit State (ULS) calculations. Models are expensive to run (in runtime or resources), meaning
directly calculating the value of interest is often infeasible. Bayesian surrogate modeling with Design of Experiments
(DOE) is one approach to this computational challenge and offers advantages over traditional methods such as
environmental contours. However, despite its advantages, the adoption of Bayesian surrogate modeling with DOE
in engineering has been limited, due in part to the technical expertise required to implement the methods.
To address this, we have developed Axtreme, an open-source Python package extending state-of-the-art Bayesian
optimization frameworks for these engineering challenges. Axtreme enables engineers to build accurate surrogate
models, compute quantities of interest, and conduct DOE to minimize uncertainty in these calculations efficiently.
The package provides a flexible toolkit of ready-to-use functions, helpers, and tutorials, all built on top of robust,
industrial-grade frameworks. By reducing the technical barriers to applying Bayesian surrogate modeling and DOE,
this package makes advanced uncertainty quantification techniques more accessible, improving decision-making and
design efficiency for engineers.
In this paper, we introduce the Axtreme package and demonstrate the application on a numerical example.

Keywords: Bayesian surrogate modeling, Gaussian Processes, Design of experiments (DOE), Active Learning,
Uncertainty Quantification.

1. Introduction

Structural reliability analysis is an essential step
in designing a wide variety of structures, such as
ships, buildings, and offshore structures. The goal
of structural reliability analysis is to determine if
a given structure is sufficiently strong for the task
and environment it is designed for. In other words,
it determines if the structure can withstand the
forces of the environment for the required length
of time.

Structural reliability analysis is comprised of a
variety of calculations and tests, but a common
task is the need to understand the extreme (largest)
responses a structure is likely to experience over a
given time period (e.g., the structure’s lifetime).
A response is how the structure reacts to the load
placed upon it. For example, the response could
be the stress and strain, or the bending moment,
experienced by a wind turbine (i.e., the structure)

at a certain location due to wind and waves (i.e.,
the environmental conditions).

This can be formalized as followsa:

• The environmental conditions are mod-
eled as a piece-wise stationary stochastic
process, with each piece being of dura-
tion Ts. A single piece is parameterized
by x, and the behavior within the piece
is refereed to as ”short-term” behavior.
X is the distribution of the parameters
(x ∈ X), and is called the long-term envi-
ronment. ”Long-term” refers to behavior
across pieces of the stochastic process.
As a general example, x may be the av-
erage wind speed for one-hour, and X is
the distribution of the one hour condi-
tions that represents the environment the

aRandom variables use upper case, fixed realizations use lower
case, and variables in bold are vectors.
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structure is in. X is a continuous random
vector where X ∈ R

N and has joint
probability density fx(x).

• Y |x is the short-term conditional re-
sponse of the structure (also written as
Y (x)). For a given long-term environ-
mental realization x, the maximum phys-
ical response within a time interval of
length Ts is a random variable Y |x with
probability density gy|x(y|x).

• The marginal maximum physical re-
sponse within a time interval of length
Ts is denoted Y . For a random long-term
environment X, Y has density

g(y) =

∫
gy|x(y|x)fx(x) dx. (1)

• The long-term Ny-year extreme struc-
tural response is YNy . If Ts is defined
in terms of hours, then let N = �NY ·
365.25 · 24/Ts�. The Ny-year extreme
response is defined as the maximum

YNy = max{Y1, . . . , YN} (2)

where Y1, . . . , YN are i.i.d. with proba-
bility density g(y).

• gNy
(y) is the probability density of YNy

.
This is referred to as the Extreme Re-
sponse Distribution (ERD).

• The Quanitity of Interest (QOI) z is some
statistic (e.g., median) of YNy .

In summary, the relevant variables are:

• X: Long-term environmental conditions.
• Y |x: Short-term conditional structural

response.
• g(y): Short-term marginal response dis-

tribution
• gNy

(y): the Extreme Response Distribu-
tion (ERD).

• z: The Quantity of Interest (QOI).

Extreme response behavior is influenced by
variability of long-term environmental conditions
(i.e., an extreme x value) and short-term variabil-
ity of the response (i.e., an extreme Y |x realiza-
tion).

In the context of engineering, accurate but slow
simulators (such as finite element models) can
provide samples of Y |x. The expense (time or
resources) of these simulators precludes directly
calculating QOIs using brute-force Monte Carlo
simulation. Instead, approximate methods must be
used. Approximate methods essentially make use
of two different types of approximation, simula-
tor approximation and environment approxima-
tion Wang et al. (2024). Environment approxima-
tion aims to establish extreme response estimates
by using the simulator on a limited number of
environment samples. Environmental contours is
one such technique widely used within the in-
dustry, particularly in ocean engineering DNV
(2021). A central assumption of this method is
that extreme responses occur in the most extreme
environments. It can be difficult to determine to
what extent this assumption holds, so additional
conservatism is often added based on domain
expertise Wang et al. (2024). Alternatively, one
may keep the full environmental distribution X
and instead approximate the structural response,
irrespective of whether the extreme responses
are driven by long-term environment variability
or short-term conditional response variability (or
some combination of the two). By replacing the
model Y (x) with a computationally efficient al-
ternative one can then make use of methods that
need to evaluate Y (x) a large number of times,
such as sampling-based methods. Such approxi-
mations are often called response surface models,
surrogate models, or emulators. Gaussian Process
models are a popular alternative (Gramstad et al.,
2020).

While surrogate approaches are robust to dif-
ferent underlying drivers of extreme responses,
the use of a surrogate model introduces new chal-
lenges. Firstly, the quality of the surrogate fit must
be determined, and standard quality of fit metrics
such as Mean Squared Error are typically not
sufficient. This is because small surrogate inac-
curacies in regions important to the QOI calcu-
lation can have a far greater impact than large
inaccuracies elsewhere. Secondly, data must be
collected from the simulator to train the surro-
gate model. As the simulator is expensive, data
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should be collected from regions that contribute
most to uncertainty in the QOI. As mentioned,
these regions are not necessarily those where the
surrogate has the greatest uncertainty.

Gaussian Process (GP) is a type of surrogate
model that is well suited to the challenges out-
lined above. GPs are probabilistic, and provide
estimates of the possible error in the surrogate pre-
diction for any input. Additionally, GPs are widely
used to optimally select additional training data
through Design of Experiments (DOE). While
GPs have been increasingly applied to extreme
response problems (see Moustapha et al. (2022)
for a recent survey), the majority of work has pri-
marily been focused on deterministic simulators
and responses. Treating Y |x as a random variable
requires additional considerations to account for
the stochasticity. Gond and Pan (2022) considers
a simulator with heteroscedastic Gaussian noise,
and heteroscedastic non-Gaussian noise is consid-
ered in Mohamad and Sapsis (2018); Wang et al.
(2014); Gramstad et al. (2020); Wang et al. (2024).

The Axtreme package has been developed to
facilitate the adoption of Bayesian surrogate mod-
eling and DOE methods by industry. It provides
an industrial-grade tool for performing QOI es-
timation and DOE, in a way that is applicable
to extreme response estimation. The following
section (Section 2) provides an overview of the
package, while Section 3 demonstrates the use
of the package on a toy problem, and finally in
Section 4 we conclude and summarize the work.

2. Axtreme

The Axtreme (Ax for Extremes) package has been
developed to lower the technical barrier of using
GPs and DOE for extreme response calculations
b. It aspires to simplify the process of applying
these methods, empowering non-specialist engi-
neers to benefit from the potential reduction in
conservatism the methods offer. It is designed as
a modular and extensible toolkit that can be run
at an industrial scale, and can be adapted and
extended to different types of extreme response

bCode can be accessed through Winter et al. (2025) or
https://github.com/dnv- opensource/axtreme

problems. Conceptually Axtreme divides the cal-
culation process into the following steps:

(1) Build a probabilistic surrogate model Ŷ |x.
(2) Estimate the QOI ẑ using Ŷ |x.
(3) Reduce QOI uncertainty through DOE.

Axtreme’s key contribution is that it facilitates
the above using established industry-grade soft-
ware. Axtreme is built on top of the Ax package
and it extends Ax for use on extreme response
calculations. Ax is an open source industry-grade
adaptive experimentation platform which offers
an established interface and approach for many
components of DOE orchestration (Bakshy et al.,
2018). While extensive, Ax is designed primarily
for A/B testing and does not support extreme re-
sponse calculations directly. In general, extreme
response problems often use fundamentally dif-
ferent acquisition functions which are not part of
standard Bayesian optimization packages.

2.1. Build a probabilistic surrogate model

The surrogate model should be probabilistic
and capable of representing outputs with non-
Gaussian error. Axtreme implements support for
this following the approach detailed in Winter
et al. (2025). This involves describing the surro-
gate model (Ŷ |x) as a parametric distribution with
parameters θ(x). For example, this distribution be
a Gumbel, making θ(x) = (location(x), scale(x)).
A GP θ̂k(x) is used to estimate θ(x), where k

is the number of observations in the dataset Dk

used to train the GP. Figure 5 from Section 3.2
demonstrates the use of the surrogate Ŷ |x to make
a prediction at a point, and compares it to the true
distribution of the simulator Y |x.

While this is the default approach used by Ax-
treme, the package is flexible enough to be ex-
tended to alternate surrogate representation should
they be required.

2.2. Estimate the QOI

Axtreme establishes the interface
QoIEstimator for estimating the QOI using
a surrogate model. It expects a surrogate model
as input, and returns a list of estimates of the
QOI, where each estimate is produced using a
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different posterior sample of the surrogate model.
Algorithm 1 presents a high-level implementation
of the interface c.

The following implementations of this interface
are provided:

• GPBruteforce uses the surrogate model in
place of the simulator and runs a brute-force
Monte-Carlo estimation of the QOI. This gen-
eral method is expected to be a useful founda-
tion for custom QOI functions.

• MarginalCDFExtrapolation im-
plements the QOI method described in Winter
et al. (2025). This can make use of impor-
tance sampling and unscented transforms to
improve sample efficiency. The runtime of
this method is independent of N (the number
of time steps considered for a single extreme
response) which allows fast estimation for
large N .

It is expected that users may need to create cus-
tom implementations of QoIEstimator if their
QOI is not supported by the methods provided.
To facilitate this, modular helpers are provided to
assist with common QOI calculation tasks such as
integrating environment data, sampling posteriors,
and performing importance sampling.

2.3. Reduce QOI uncertainty through
DOE

Axtreme implements a generic acquisition func-
tion for extreme response calculation following
the method detailed in Winter et al. (2025). This
involves quantifying the uncertainty in the QOI,
denoted as Hk, under the probability measure Pk
d.

Hk = varPk
[ẑ]. (3)

Here, the estimate ẑ of z is uncertain because
we are using a surrogate model Ŷ (x) in place

cThe Python
interface definition can be found at https://github.com/dnv-
opensource/axtreme/blob/main/src/axtreme/qoi/qoi estimator.py
dThe surrogate model, through the GP θ̂k(x), serves as the
probability measure Pk

of Y (x). As the surrogate model Ŷ (x) is proba-
bilistic, we can propagate uncertainty in Ŷ (x) to
the corresponding uncertainty in ẑ. Hk represents
the variance of ẑ when Ŷ (x) is a surrogate model
created using a dataset Dk of k observations (i.e.,
k experiments). One observation in Dk is obtained
by running the simulator Y (x) m times at an
input x of our choice, and the sequence of inputs
x1, . . . , xk is determined by the DOE strategy. The
DOE strategy is to let xk+1 be the input of the
experiment that reduces Hk+1 the most in expec-
tation. The ’in expectation’ is needed as Hk+1 is
uncertain before the new experiment number k+1

has been done. Formally, we write

s(x) = EPk
[Hk+1], (4)

where Hk+1 depends on x through Dk+1, and
EPk

is the probability measure obtained by the
surrogate model after k experiments. We call s(x)
the acquisition function, and the DOE strategy is
to select the next experimental input xk+1 such
that

xk+1 ∈ argmin s(x) (5)

Algorithm 2 presents an overview of the acquisi-
tion function, Algorithm 3 presents an overview
of the full DOE process. For details on how to
compute s(x) we refer to Winter et al. (2025).

3. Example

The following example shows the use of the Ax-
treme package to solve a toy extreme response
problem. The QOI calculated is a component used
in ULS calculations. The complete example can
be found in the tutorials provided with the pack-
age.

3.1. Problem inputs
3.1.1. Environment samples

The environment data used consists of samples
from a two dimensional multivariate normal dis-
tribution (see Figure 1). We treat these samples
as independent (as is commonly done in offshore
engineering), but it is worth noting the helper
functions provided in Axtreme also allow for fine-
grain control of sampling. This can be used to
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Algorithm 1 Example QoIEstimator implementation
Require: GP : Gaussian process fitted to available simulator data

1: function EXAMPLEQOIESTIMATOR(GP)
2: qoi estimates ← empty list

3: � environment data contains many data points �

4: θ posterior ← GP.PREDICT(environment data)

5: for all sample ∈ SAMPLE(θ posterior) do
6: � a sample contains a θ for every environment data point �

7: response distributions ← DISTRIBUTION(sample)

8: � qoi estimate defines how the QOI is calculated if the response distribution is known �

9: estimate ← QOI ESTIMATE(response distributions)

10: qoi estimates.append(estimate)

11: return qoi estimates

Algorithm 2 Acquisition Function
Require: x: a candidate point (within the environment)

1: function ACQUISITIONFUNCTION(x)
2: qoi estimates ← empty list

3: θests ← ESTIMATE EXPERIMENT RESULT(GP, x)

4: for all θ ∈ θests do
5: GPnew ← UPDATE GP(GP, x, θ)

6: estimate ← QOIESTIMATOR(GPnew)

7: qoi estimates.append(VARIANCE(estimate))

8: estimated variance ← MEAN(qoi estimates)

9: return estimated variance

implement more advanced sampling regimes such
as those that consider serial correlation.

Fig. 1. KDE of environment samples.

3.1.2. Simulator

The toy simulator consists of two functions, which
parameterize the location and scale argument of a
Gumbel distribution. Running the simulator at a
point x consists of running the location and scale
function at this point, creating a Gumbel distribu-
tion from the output, and drawing a sample from
this distribution. Figure 2 shows the underlying
location function, Figure 3 shows the underling
scale function, and 4 visualizes the resulting sim-
ulator.

3.2. Build a probabilistic surrogate model

The problem must first be defined as an Ax
Experiment object. This involves providing the
simulator, defining the search space, and defining
the distribution that should be used to model the
simulator’s point-wise output.
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Algorithm 3 Single DOE iteration
1: Train GP on available simulator data Dk

2: qoi estimates ← QOIESTIMATOR(GP )

3: if VARIANCE(qoi estimates) is sufficiently small then
4: return qoi estimates

5: else
6: xk+1 ← argmin ACQUISITIONFUNCTION(x)

7: θk+1 ← SIMULATOR(xk+1)

8: Dk+1 ← Dk ∪ (xk+1, θk+1)

9: Repeat from step 1 using the new dataset Dk+1

Fig. 2. Location function. This function determines
the location parameter of the simulator’s Gumbel dis-
tribution.

exp = make_experiment(
simulator,
search_space,
output_distribution

)

Once the experiment has been defined a model
can be generated using the following standard Ax
code.

model = Models.BOTORCH_MODULAR(
experiment=exp,
data=exp.fetch_data()

)

Figure 5 demonstrates the use of the surrogate
to make a prediction at a point, and compares it to
the true distribution of the simulator.

Fig. 3. Scale function. This function determines the
scale parameter of the simulator’s Gumbel distribution.

Fig. 4. Simulator behavior over environment space.
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Fig. 5. Simulator and surrogate prediction at a point.
The posterior samples produce other distributions the
surrogate deems probable (i.e. they show the surrogate’s
uncertainty).

3.3. Calculate the QOI

The QOI is estimated using a provided QOI esti-
mator. Once the environment samples and prob-
lem specifics are provided to the estimator it can
calculate the QOI for any surrogate model.

estimator=MarginalCDFExtrapolation(
# Environment samples
env_iterable=dataloader,
# number of samples N
period_len= N ,
# The QoI of the ERD
quantile=torch.tensor(0.5),

)
estiamtes = estimator(model)

Figure 6 shows the QoI estimate distribution
generated. The impact of increasing the amount of
training data used by the model is clearly evident.

3.3.1. Reduce QOI uncertainty through DOE

Providing additional training data to the surrogate
model reduces its uncertainty, which in turn re-
duce uncertainty in the QOI, as demonstrated in
Figure 6.

The acquisition function for Section 2.3 is used
to guide the DOE process, intelligently choosing
new data points. Figure 7 shows the performance
of this method (named ”Look-ahead Acquisition”)
relative to a space-filling baseline (”Sobol Acqui-
sition”).

Fig. 6. QOI estimate distribution with additional train-
ing data.

Fig. 7. Look-ahead acquisition function vs. Sobol
baseline

4. Conclusion

Axtreme lowers the barrier for industry adop-
tion of surrogate-based approaches to extreme
response calculations and makes the associated
benefits such as robustness and reduced con-
servatism more accessible. Axtreme facilitates
adoption by integrating the unique requirements
of extreme response calculations into the estab-
lished, industry-grade, adaptive experimentation
platform Ax. Specifically, this includes support
for producing surrogates of stochastic black-box
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functions with non-Gaussian noise, and acquisi-
tion functions specific to extreme response prob-
lems.

Axtreme is expected to perform well with
higher dimensional inputs, especially when com-
pared to environmental contours (which is typi-
cally infeasible with more than 3 features). QOI
calculations can use importance sampling to ef-
ficiently explore the input space, and GPs (with
appropriate kernels) scale to higher dimensional
inputs. We also expect a larger difference between
the DOE method and space-filling baselines in
high dimensions. Future work should validate this
empirically by applying Axtreme to a variety of
industry use cases.

Axtreme represents a concrete first step toward
a larger aspiration of creating a conduit through
which specialist knowledge of Bayesian optimiza-
tion and extreme response calculation can scale to
everyday industry impact.

The package can be accessed through Win-
ter et al. (2025) or https://github.com/dnv- open-
source/axtreme.
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