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This article introduces an innovative, data-driven strategy for modeling the deterioration of the neutron generator
component within logging-while-drilling tools. The research commences by identifying the initial failure modes of
the neutron generator and creating a health indicator (HI) to quantify the component’s health status. The derived
HI can be employed for further analysis and decision-making. Subsequently, a decision tree classifier is trained
to establish the connection between the obtained HI values and the corresponding degradation level labels. The
proposed approach is verified using real data obtained from oil well drilling operations. The experimental findings
affirm its efficacy in precisely categorizing the health condition of the neutron generator component. This study is
part of a prolonged initiative aimed at developing a digital fleet management system for drilling tools.
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1. Introduction

The multifunction logging-while-drilling (LWD)
tool depicted in Fig. 1 represents a cutting-
edge technology specifically designed for oil well
drilling applications SLB (2023).

Fig. 1.: Multifunction LWD service

This versatile tool delivers an integrated set
of functions, including formation evaluation, well
placement, and drilling optimization measure-
ments, all encapsulated within a single hous-
ing. Notably, it incorporates a crucial subsystem
known as the pulsed neutron generator (PNG)
as shown in Fig. 2, a self-contained particle ac-

celerator employing fusion reactions to generate
neutrons. The PNG eliminates the need for an
americium-beryllium chemical source, reducing
health and safety risks during transportation and
well site operations, while also enabling diverse
and advanced measurements for customers.

Fig. 2.: Pulsed neutron generator

During each drilling operation, the LWD tool
collects a wealth of data, including drilling and
formation information from clients and diagnos-
tic data from original equipment manufactur-
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ers. This information is transmitted in real-time
via mud pulses and stored in high-resolution on
two built-in memory boards for additional analy-
sis upon completion of drilling operations. Inte-
grating functions from two or three LWD tools
reduces drilling rig operating time, minimizes
electrical and communication failures, and en-
hances geological data quality through simultane-
ous measurements.

However, the PNG, being a highly complex and
sensitive device, must operate under harsh envi-
ronmental conditions. The electrical and physi-
cal complexity of the tool introduces potential
failure modes, some of which are challenging
to reproduce at the maintenance base and may
only manifest in extreme downhole environments.
Furthermore, the intricacies of the PNG system
make training technicians for proficient mainte-
nance and troubleshooting a time-consuming and
costly process. Field engineers often face deci-
sions on whether to rerun the tool under time
constraints when it must operate multiple times
without returning to the maintenance base.

Given the essential role of the PNG and tak-
ing into consideration its complexity, the devel-
opment of an automated health assessment tool is
crucial to accurately and consistently determine
the health status of PNGs and mitigate potential
negative consequences. This assessment tool not
only reduces the potential for human error but also
empowers users to make efficient and effective
decisions Zhan et al. (2010) Isermann (2006).

The subsequent part of this paper is dedicated
to providing an overview of previous work and
research pertaining to the PNG system. Subse-
quently, the paper will delve into a detailed ex-
amination of the PNG system and its incipient
failure modes. Following this exploration, the next
section will articulate the formulation of research
problems. Subsequent sections will then proceed
to discuss the degradation modeling approach and
present the experimental results. The paper will
conclude with a final section summarizing the key
findings.

2. Pulsed Neutron Generator System:
Previous Work and Research

In prior research, a data-driven fault detection
model for the PNG subsystem was introduced
Mosallam et al. (2018). This approach utilized a
univariate representation known as a health indi-
cator (HI) with a decision tree classifier trained to
distinguish healthy and failed PNG runs.

Subsequently, a fault diagnostics method for the
PNG system was developed, specifically target-
ing failures associated with power supply boards
Mosallam et al. (2023). This work complemented
the earlier fault detection model for the PNG
subsystem Mosallam et al. (2018) by pinpointing
which electronic board or boards failed. Features
were extracted from data channels reflecting fault
symptoms, and support vector classifier models
were built for each board. Experimental results
achieved an average accuracy of approximately
99%, significantly reducing troubleshooting time
and enabling automatic maintenance triggers for
faulty boards.

A later publication focused on data-driven
degradation modeling for the PNG system, ad-
dressing one of its incipient failure modes: the
reduction of neutron generation flux due to doped
target wear over time Mosallam et al. (2023). HI
values were extracted from data channels to quan-
tify component health degradation, with a random
forest classifier achieving an average accuracy of
90.4%.

Building on this, the necessity for remaining
useful life (RUL) estimation was addressed in sub-
sequent research. Also targeting the reduction of
neutron generation flux due to doped target wear,
this study estimated the system’s remaining useful
time Sobczak-Oramus et al. (2024). Experimental
results showed a mean absolute percentage error
of 16%. Integrating RUL estimation facilitated
proactive maintenance planning, improved well-
site decision-making, and optimized manufactur-
ing forecasts and equipment delivery based on the
worldwide RUL of active PNGs.

Despite these advancements, the PNG system
includes two incipient failure modes that can com-
promise its functionality. This paper aims to con-
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struct a data-driven health state estimation target-
ing the second failure mode: internal cathode wire
discontinuity caused by overheating. Integrating
degradation modeling for both failure modes will
assist maintenance engineers in promptly assess-
ing the PNG’s health state and anticipating main-
tenance needs.

3. Pulsed Neutron Generator System
Description

For numerous years, the oil and gas industry
has employed high-energy neutron generators in
neutron-gamma-ray or neutron-neutron logging, a
practice well-documented by Tittle (1961). These
generators offer several advantages over conven-
tional chemical sources, including the ability to
deactivate the PNG and eliminate radiation risks
when not in use downhole. Additionally, they en-
able precise control over neutron output, facili-
tating more accurate measurements of formation
properties.

In the realm of nuclear well logging, achiev-
ing accurate formation measurements hinges on
emitting neutron pulses to irradiate the Earth’s
formations and detecting the resulting radiation
from the interaction between the Earth’s formation
atoms and the emitted neutrons. Understanding
the characteristics of the neutron pulse, including
its output and timing, is crucial for achieving pre-
cision. Ideally, the neutron pulse should exhibit a
substantially square wave shape. The PNG, de-
picted in Fig. 3, is instrumental in overcoming
these technical challenges and facilitating the gen-
eration of desirable neutron pulses. Serving as a
stand-alone particle accelerator, the PNG utilizes
fusion reactions to produce neutrons.

This paper focuses on the early failure modes of
the PNG. Two major failure modes are identified
after a failure investigation and root cause analy-
sis. These failure modes include:

(1) Internal cathode wire discontinuity due to
overheating

(2) Reduced neutron generation flux due to doped
target wear

These two failure modes can potentially com-
promise the functionality of the PNG and even

cause the LWD tool failure. As previously men-
tioned, the health state estimation method for the
target wear failure mode has been described in
Mosallam et al. (2023). In the following sec-
tions, a method to model the cathode degrada-
tion responsible for the first failure mode will be
presented, complementing the previous published
work.

Fig. 3.: PNG architecture

4. Problem Formulation

The primary aim of prognostics is to minimize
equipment or system downtime by anticipating
the remaining useful life of the system or crit-
ical components, as illustrated in Fig. 4. RUL
prediction methods are broadly categorized into
three groups: physics model-based, data-driven,
and hybrid approaches Lei et al. (2018). Physics
model-based methods employ mathematical mod-
els to articulate the physical behavior of the sys-
tem or component and forecast its RUL. While
these methods demand a profound understand-
ing of failure mechanisms and precise estima-
tion of model parameters, they can yield accurate
RUL estimations. In contrast, data-driven methods
leverage pattern recognition algorithms to discern
patterns from historical data and formulate RUL
predictions. Although data-driven methods don’t
necessitate an exhaustive understanding of system
failures, they do require high-quality data. Hy-
brid methods amalgamate the strengths of both
approaches to enhance RUL predictions.

The PNG system under examination exhibits a
high level of complexity, thereby constraining the
applicability of physics model-based and hybrid
methods for predicting the remaining useful life
of the PNG or its components. Consequently, the
objective is to develop a data-driven prognostic
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Fig. 4.: RUL forecast schematic

model that integrates information pertaining to the
incipient failure modes of the PNG target. This
model aims to provide estimations of the target’s
RUL along with corresponding confidence levels,
as illustrated in Fig. 5.

Fig. 5.: HIs for a system with two different failure
modes

There are two primary methods for building
data-driven prognostic models; i.e., direct RUL
mapping and cumulative degradation prognostics
Mosallam et al. (2016). The direct RUL mapping
approach uses empirical models to directly corre-
late sensor data with the end of life (EOL) value,
eliminating the need to determine the health status
of the monitored component (see Fig. 6).
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Fig. 6.: Direct RUL mapping approach

In contrast, the cumulative degradation prog-
nostics approach uses empirical models to de-
scribe the system’s degradation progression. This
degradation information can then be used to esti-
mate the health status of the system and predict
the RUL based on the system’s expected future
behavior (see Fig. 7).
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Fig. 7.: Cumulative degradation approach

The direct RUL mapping approach relies signif-
icantly on the availability of EOL data to construct
the prognostic model. In the case of PNG, EOL
data are constrained due to early maintenance.
Furthermore, instances of EOL for the cathode
degradation failure mode are even scarcer, as the
target often degrades before the cathode, further
limiting these cases. Considering the previously
mentioned challenges, the direct RUL mapping
approach is deemed unsuitable for this scenario.
Instead, prioritizing the development of a health
state estimation model for the PNG will furnish
maintenance engineers with valuable insights to
strategize efficient and cost-effective maintenance
activities. A comprehensive explanation of this
proposed method is outlined in the subsequent
section.

5. The Proposed Method

The proposed method aims to construct a HI from
sensor data that captures PNG degradation infor-
mation. The labeled HI values are then modeled
using a machine learning model, which can effec-
tively discriminate between different degradation
states of the PNG. The proposed method is di-
vided into four main steps; i.e., channel selection,
preprocessing, HI construction, and modeling, as
shown in Fig. 8. The process is happening itera-
tively, until the modeling results are satisfying.
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Fig. 8.: Proposed method flowchart

5.1. Channel Selection

As highlighted in Section I, the LWD tool accu-
mulates a substantial number of high-resolution
data channels during each drilling operation, lead-
ing to millions of data points. However, not all of
these channels contribute information pertaining
to the degradation of PNG over time. Enhancing
the efficiency and precision of the HI involves the
removal of irrelevant data channels. The selection
of pertinent data channels relies on the expertise
of subject matter experts (SMEs) with domain
knowledge in nuclear physics and instrumenta-
tion. This process is crucial for optimizing the
relevance of the data considered for the HI.

For the cathode failure mode, initially the fol-
lowing two data channels were selected:

• ICAT: Cathode’s electrical current.
• VCAT: Cathode’s electrical voltage.

Fig. 9 and Fig. 10 show respectively the raw
ICAT and VCAT channel data that will be used
to construct the HI. Note that the duration of each
run is different according to the job requirements,
and the data of the sixth, ninth and eleventh run
before EOL are missing.

Fig. 9.: Raw data of ICAT channel of fifteen consecutive
runs before EOL, where N denotes the last run, N-
1 denotes the first run before EOL, N-2 denotes the
second run before EOL, and so on.

Fig. 10.: Raw data of VCAT channel of fifteen consec-
utive runs before EOL, where N denotes the last run,
N-1 denotes the first run before EOL, N-2 denotes the
second run before EOL, and so on.

5.2. Preprocessing

The LWD data acquisition system begins to record
data once a field engineer initializes it for the
upcoming drilling job and follows the steps:

(1) Tool initialization: the field engineer config-
ures the acquisition parameters for the upcom-
ing job, formats the tool memory, and begins
the tool recording.

(2) Shallow hole test: the field engineer confirms
that the tool is functioning as expected inside
the well before deploying the tool to the full
well depth.

(3) Casing logging for caliper calibration: The
field engineer calibrates the tool’s ultrasonic
measurement by using the known internal di-
ameter of the metal casing connecting the rig
to the wellbore and the known drilling fluid
properties.

(4) Drilling operation: The field engineer places
the tool behind the drill bit for measurement
acquisition during the physical drilling of the
well.

For each run, the data collected during the first
three steps do not hold information about the PNG
degradation and are thus removed. Furthermore,
in the state when the PNG does not fire, the
firmware generates some dummy records to fill
the gaps in the data channels, which are discarded
because they do not contain any information about
the faults. The next step is the outlier filtering.
The Hampel filter is applied to smooth the signals
with the window size equal to 10% of each job’s
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length. This process helps to remove the data that
are obscuring the pattern of degradation. By using
a gradual filtering approach, the Hampel filter can
effectively account for the natural progression of
voltage and current levels, while still eliminat-
ing short-term anomalies that may misrepresent
the true degradation trend. This ensures that the
underlying trend of degradation is preserved for
HI construction. The preprocessed ICAT signal,
originally shown in Fig. 9, is presented in Fig. 11.

Fig. 11.: Preprocessed ICAT signal

5.3. Health Indicator Construction

In this algorithm step, a HI is derived using the
preprocessed data. The main objective of generat-
ing this HI is to represent the system’s degradation
level in a 1D array format. Due to the observed
differences in the voltage and current levels in the
beginning of life of different PNGs, the explicit
values of voltage and current cannot be used as an
indicator. However, it is visible at the Fig. 11 that
the value of current is growing much faster when
the PNG is reaching the EOL, than in its beginning
of life. The same applies to the voltage. Taking
that fact into consideration, the rate of change of
the signal remains our focus for the HI creation.
For each drilling job, the third degree polynomial
y = f(X) is fitted to the preprocessed signal,
where X = [x1, ..., xn] and n is the number
of observations in the signal in the current job.
Afterwards, the rate of change of the signal is
calculated following the formula:

Δ =
f(xn)− f(x1)

xn − x1
. (1)

Described process of the rate of change extraction
is applied for ICAT, VCAT and their multipli-
cation, which stands for the power of cathode.
Fig. 12 shows the constructed HI using the pre-
processed ICAT data show in Fig. 11.

Fig. 12.: HI constructed using ICAT signal

It is worth noting that the input data used repre-
sents the incipient failure mode. As such, the gen-
erated HI serves as a quantitative measure of the
system’s current health in a monotonic manner.
More simply, HI provides a numerical represen-
tation of the system’s health that can be used for
additional analysis or decision-making.

5.4. Modeling

HI constructed from the data collected during each
drilling job results in 1D array representation,
independent of the actual run duration. Thus, the
health state estimation problem can be converted
into a classification problem if the array of each
run is labeled. To accomplish that, the SME iden-
tifies three degradation states the PNG undergoes
throughout its lifecycle through failure analysis;
i.e., healthy, severely degraded, and EOL. These
degradation states serve as class labels for each
run, enabling accurate degradation level classifi-
cation of each run’s data using a classification
model. Specifically, this paper uses a decision tree
classifier to establish the relationship between the
input HI values and their corresponding labels;
i.e., y = f(X), where

X = Δ (2)
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and

y =

⎧⎨
⎩

0 when X is labeled as healthy.
1 when X is labeled as severely degraded.
2 when X is labeled as EOL.

(3)

6. Experimental Results

A dataset containing operational data from 69
different LWD tool runs in different locations was
collected to validate the proposed method. The
dataset consists of historical runs from 7 different
PNGs. Each run was analyzed and labeled by the
SME. More specifically, as summarized in Table
1, there are 61 runs labeled as healthy, four as
severely degraded, and four as EOL. Fig. 13 shows
the label assignments performed by the SME for
the HI shown in Fig. 12.

Fig. 13.: Label assignments for the degradation states
performed by the SME

Due to highly imbalanced classes, several pro-
cedures were performed to correctly evaluate the
model performance and obtain reliable results.
Therefore, the balanced accuracy and F1-score per
class metrics are applied to ensure reliable results
in spite of the class imbalance. Let C = {0, 1, 2}
be the set of the labels assigned for the PNG
health states. The formulas for the performance
evaluation metrics are the following:

balanced accuracy =

∑
c∈C recall(c)

#C
(4)

F1 = 2 · precision · recall
precision+ recall

, (5)

recall =
True Positives

True Positives+ False Negatives
(6)

precision =
True Positives

True Positives+ False Positives
.

(7)
Additionally, a leave-one-out cross-validation

(LOOCV) method is used. This method provides
low-biased performance metrics results compared
with using a single test dataset Witten et al.
(2011). Hyperparameter tuning was conducted for
several classifiers to determine the best classi-
fication algorithm, including logistic regression,
support vector classifier, k-neighbors classifier,
decision tree classifier, random forest classifier,
and gradient boosting classifier. All those meth-
ods were applied to three HIs constructed based
on ICAT, VCAT and ICAT·VCAT values and the
results were compared to choose the best perform-
ing HI and classification algorithm. The highest
balanced accuracy per HI is presented in Table 2.

Table 1.: Number of drilling runs per degradation state
used in LOOCV.

Degradation State Number of Samples

Healthy 61
Severely Degraded 4
EOL 4

The HI constructed from the ICAT signal using
the decision tree classifier outperformed the other
algorithms; thus, this HI was implemented.

The LOOCV process yielded an F1-score of
100% for each class and a balanced accuracy of
100%. Additionally, the algorithm was validated
18 months after deployment using operational
data from 73 drilling operations, with the cor-
responding confusion matrix shown in Table 3.
This validation achieved a balanced accuracy of
96%, with F1-scores of 100% for the healthy, 94%
for the severely degraded, and 86% for the EOL
class. The model’s primary objective is to prevent
PNG failures by accurately identifying severely
degraded and EOL states. Notably, all cases of
those were correctly classified into one of these
two categories, demonstrating the model’s effec-
tiveness in identifying critical degradation stages.
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Table 2.: LOOCV balanced accuracy per HI.

Health Indicator Balanced Accuracy
(%)

ICAT rate of change 100
VCAT rate of change 83
ICAT · VCAT rate of change 83

Table 3.: Validation Confusion Matrix.

Predicted

Healthy S. Deg. EOL

A
ct

ua
l Healthy 50 0 0

S. Deg. 0 15 2

EOL 0 0 6

7. Conclusion

This paper introduces a data-driven approach to
model the degradation of cathode components in
the PNG system of LWD tools. The methodology
involves identifying incipient failure modes asso-
ciated with the PNG, extracting HI values from the
ICAT data channel to quantify the component’s
health degradation over time. Utilizing these HI
values, a decision tree classification model is
trained to estimate the PNG degradation state after
each drilling operation. Results from real opera-
tional data collected in the field demonstrate the
method’s effectiveness, with an average balanced
accuracy of 100% across all degradation states.
The trained machine learning model is integrated
into the LWD tool’s health analyzer software,
which is widely utilized by field and maintenance
engineers globally. This approach proves instru-
mental in reducing troubleshooting time and au-
tomatically initiating maintenance activities, pre-
empting downhole failures related to highly de-
graded nuclear components. Future efforts aim to
estimate the precise remaining useful life for PNG
considering cathode degradation failure mode.
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