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1. Introduction

In many real-life contexts, particularly those
where the impact of potential errors is high, mak-
ing maximum-likelihood predictions is not suffi-
cient. Rather, one is interested in whether a predic-
tion is certain or uncertain, that is how large one
should expect the error to be. This paper focuses
on a use case from the EU HORIZON Project
AI-ARC (AI-ARC, 2024), which involves Al-
based detection of icebergs from satellite images
for naval navigation. The high-risk task carries
significant consequences for incorrect predictions.
Thus, an automated analysis of the uncertainty of
iceberg predictions is essential.

A relevant restriction on the uncertainty quan-
tification task was the fact that the model un-
der evaluation, what we will call the first-order
model, was provided by external partners and thus
had to be treated as a black box. Standard tech-
niques of uncertainty quantification, like ensem-
bling or Monte Carlo dropout (Gal and Ghahra-
mani, 2016), require in depth tinkering with the
model architecture or at least various retrainings
of the same model. This paper applies the simple
but under-explored approach of training a second-
order machine learning model to predict the error
of the first-order model. The results are interpreted

as follows: High predicted error corresponds to
uncertainty, low predicted error corresponds to
certainty in the first-order model.

The contribution of this paper consist in a pre-
sentation of error-modelling as a simple and effec-
tive way of quantifying the uncertainty of machine
learning models. The approach has the advan-
tage of not relying on changing or even knowing
the architecture of the first-order model we are
trying to evaluate. We furthermore compare our
approach to uncertainty estimates produced using
Monte Carlo dropout qualitatively and quantita-
tively. While Monte Carlo dropout outperforms

Fig. 1.

Example of the iceberg detection results for
which we want to quantify uncertainty. (a) shows a
satellite image, (b) shows iceberg predictions generated
by an FPN architecture (Lin et al., 2017) in blue. The
black bar is the result of image padding.
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error-modelling, the results they produce are very
similar. Finally, we investigate the impact of hav-
ing an additional dataset reserved to train the
error-model versus using the original dataset that
has been seen by the first-order model before.
We show that error-modelling does not necessar-
ily require an independent dataset. Thus, error-
modelling is an effective alternative to standard
uncertainty quantification techniques in black-box
settings.

2. Related Work

One might assume that the numeric output of a
classification model encapsulates all uncertainty
information. By calculating the entropy of this
output, one can derive uncertainties usually re-
ferred to as predictive entropies. However, the
numeric result, for instance as produced by a sig-
moid layer, does not properly represent whether
a new sample is close to the training distribution
(Gal and Ghahramani, 2016). More sophisticated
solutions are called for, even though predictive
entropy can sometimes perform surprisingly well
(Weiss and Tonella, 2022).

Monte Carlo dropout (MCD) has for some time
been considered the standard technique for the
quantification of predictive uncertainty in machine
learning. In MCD one randomly deactivates nodes
during inference, given the model was trained with
dropout, to obtain a distribution over predictions
instead of a singular point prediction. The tech-
nique goes back to a paper by Gal that demon-
strated that MCD approximates the predicted vari-
ance of a Bayesian neural network, a neural net-
work where every node is associated with a second
value representing uncertainty or variance (Gal
and Ghahramani, 2016).

It is well established now that MCD is typically
outperformed by using different kinds of ensem-
bling techniques (Rahaman and thiery, 2021), ei-
ther by re-initializing the same model with dif-
ferent weights (Lakshminarayanan et al., 2017),
or by retraining a model with different subsets of
the training data (Rahaman and thiery, 2021). The
variance of the predictions at an inference point
can be used as a powerful uncertainty measure.
However, the construction of ensembles of this

kind is computationally expensive. Furthermore,
just as MCD, ensembling techniques are inappli-
cable where the model under evaluation is a black
box because model retraining requires access to
the model and to the relevant training data.

The approach of modelling uncertainty by di-
rectly building a second-order model has not got-
ten much traction in the machine learning litera-
ture. The approach can be used in combination
with other approaches like ensembles (Rahaman
and thiery, 2021; Hu et al., 2020) and there have
been some attempts to capture uncertainty in this
manner in the context of predicting material prop-
erties (Tavazza et al., 2021). Here, the approach
was limited to a regression task and the authors
did not systematically investigated the relation
of error-modelling as a standalone technique to
other state of the art uncertainty quantification
approaches.

3. Methods

3.1. Evaluating Uncertainty
Quantification Methods

A key challenge in uncertainty quantification is
the limited access to ground truth data, meaning
true uncertainty values. Consequently, the reli-
ability of uncertainty results must be evaluated
based on their correlation with error in the test
set. Although there is no consensus on evaluation
methods in the light of these difficulties, we will
adopt those proposed in Mobiny (2021). We aim
at classify predictions into certain and uncertain
ones, which facilitates efficient decision making
for the end users. Thus, the evaluation methods
use the binary (thresholded) output of the first-
order model. If we then also threshold the output
of the uncertainty quantification method (assum-
ing it gives float results) we have a binary clas-
sification into certain and uncertain results. We
can treat results that are both certain and correct
as true positives (TP), ones that are certain and
incorrect as false positives (FP), ones that are
uncertain and correct as false negatives (FN), and
finally, ones that are uncertain and incorrect as
true negatives (TN). A good uncertainty metric
will then be one where the following probabilities
are high. First the correct-certain ratio:
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CCR =P(correct|certain)

P(certain, correct) TP (1)
P(certain) ~ TP+FP

Secondly, the incorrect-uncertain ratio:

IUR =P (uncertain|incorrect)

P(uncertain, incorrect) TN (2)
~ TN+FP

P (incorrect)

And finally, the uncertainty-accuracy:

TP+TN

VA= —————————
TP+TN+FN+FP

3

Here we run into the problem that the scores are
defined with respect to a classification problem.
For continuous values this problem can be allevi-
ated by considering the area under curve between
the minimum and maximum of the uncertainty
predictions on the relevant dataset. Note that the
resulting scores are relative to the minimum and
maximum of the uncertainty metric on the relevant
dataset. Our application of a minmax scaler on the
uncertainty results will thus not impact scores.

3.2. Error-Modelling

Uncertainty can be defined as the expected error
in some inference task (Hiillermeier and Waege-
man, 2021). The idea of building a model that
predicts the error of the first-order model directly
from the data is thus straightforward. Assume a
dataset D = {(x1,v1), (z2,¥y2)...} and a first-
order model from approximating the functional
relationship f(x;) = y;, that generates the ground
truth, by from(z;) = ;. Typically, the first-
order model will be trained using some subset
DfaﬁM C D by minimizing a loss function
Lrow(y,¥), with y = {f(z)lz € D)} and
¥ = {from(z)|z € D}

We define a second-order dataset for some
dataset D, given some loss function L, which will
typically be the mean squared error MSE, as:

D = {(1’17L(y1,g1)),(mz,L(y27Q2))--.} €]
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A (second-order) error model will then be a
model fsom(zi) = f/FOM(yi, 9;) approximating
the functional relation obtaining in the second-
order dataset by minimizing a second-order loss
Lsom(Lrom(y, 9), Lrom(y, 9))-

Intuitively, the effective training of an error
model requires that we reserve a subset of the
available data Dlsr?ilr\l/[ C D that can be used for the
generation of the second-order dataset DSOM* af-
ter the first-order model has been trained (Tavazza
et al., 2021). However, below we will also con-
sider the case where first- and second-order model
are trained based on the same dataset, i.e. we will
assume that DSOM = DFOM i these cases.

An error model captures the fotal uncertainty
involved in an inference, i.e. it does not differ-
entiate between aleatoric uncertainty due to the
inherently in-deterministic nature of the data and
epistemic uncertainty, i.e. uncertainty due to lim-
itations of our modelling capacities, may they be
due to lack of data or due to the model architecture

we employ.

4. Experimental Setup

We use two datasets. The primary use case con-
sisted of 481 satellite images from the SENTINEL
satellite together with iceberg- and land-masks.
The iceberg dataset is quite small, considering that
there is a serious under-representation of iceberg
images as opposed to clouds and open water. This
imbalance results in poor performance both for the
first-order model and for the uncertainty evalua-
tion techniques. As the primary purpose of this
paper is the demonstration of the feasibility of
the error modelling approach, we also tested our
pipeline on the public UAV landing site dataset
which consists of 1359 aerial imagery captured by
unmanned aerial vehicles (UAVs). The target is to
identify potential landing sites. It includes various
environmental conditions and terrains, providing a
richer resource evaluating the performance of our
approach.

To address the limited and imbalanced nature
of these datasets, we employed data augmen-
tation techniques using the Albumentations li-
brary (A. Buslaev and Kalinin, 2018). For the
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ice dataset, spatial augmentations—including hor-
izontal and vertical flips—were utilized to in-
crease orientation variability. In contrast, the
drone dataset underwent comprehensive pixel-
level spatial augmentations, where multiple trans-
formations such as random cropping, brightness
and contrast adjustments, geometric distortions,
rotations, and resizing were applied simultane-
ously to create diverse imaging conditions. Mul-
tiple augmented versions were generated for each
original image to ensure sufficient variability.
These augmentation methods not only expanded
the dataset size but also improved the overall qual-
ity and diversity of the otherwise scarce data.

The first-order model used in both cases was
an FPN (Lin et al., 2017) segmentation model
from Takubovskii (2019) with a resnet34 encoder
and imagenet pretrained weights. A simply sig-
moid was chosen as activation of the output layer.
The loss-function was DICE to counteract target
imbalances (Milletari et al., 2016). The network
was further trained with decoder dropout with a
dropout rate of 0.3 for the later application of
MCD. Our MCD variances are calculated from
a drawing of 30 samples. The only difference
between models in the ice vs. the drone case is
that the ice model has an additional input channel
for land-masks (ice on land does not count as an
iceberg).

Our second-order model is a UNET model
(Ronneberger et al., 2015), with a resnet34 en-
coder but featuring no pre-trained weights and
no dropout. We employed Smooth L1 loss to ef-
fectively address the imbalance between predom-
inant zero values and the non-zero target pixels
in the image error prediction task. The loss func-
tion was chosen because an error prediction task
is not a segmentation task, where DICE would
have been preferable. Rather, we are interested
in pixel-wise uncertainty estimates (i.e. estimates
with maximal log likelihood). Furthermore, we
employed an ADAM and ADAGRAD optimizer
with weight decay of 0.0005 and a learning rate
scheduler in the first-order model and the second-
order model, respectively. To augment the input,
we include a fourth channel that incorporates the
prediction from the first-order model, which have

been scaled to match the RGB channel range of 0
to 255.

Where we create wholly distinct datasets, we do
this by diving the dataset in halve. We then use a
train, test and validation split of 0.7, 0.2 and 0.1,
both for the first-order dataset the second-order
dataset (which may or may not overlap).

5. Results

The central result of our experiments is that nei-
ther dropout, nor error-modeling gives superior
uncertainty measurements across the board. While
dropout produces tighter uncertainty bounds, the
error model is better at detecting some sources of
uncertainty like clouds in the ice-dataset or differ-
ent anomalies in the UAV dataset. Quantitatively,
with respect to the more robust UAV datset, the
error-model outperforms both reference metrics,
as is visible in table 1. Here, we will first discuss
the visual, qualitative results and then validate our
observations using the quantitative analysis.
Generally, the error-models generates more
equally distributed uncertainty estimates on the
iceberg dataset. Our model predicts more or less
continuous higher errors for white surfaces on the
ice dataset. Predicted peaks in error are sparse.
What might seem like a mistake first is a natural
and desirable result. The main obstacle to straight-
forward iceberg predictions are clouds. All white
surfaces might potentially turn out to be clouds.
The central distinguishing factors are the tight
borders of icebergs. Thus, the further one moves
from the borders of an iceberg the higher one
should expect the error to be. In this way the
error-model captures what we would intuitively
call uncertainty better than the MCD variance.
Of course, this does not explain the systematic
spatial distortions visible in figure 2. These come
about largely due to the inherent limitations of
the dataset mentioned above. As these constrain
the kinds of inference that can be drawn from the
results, we will now focus on result obtained using
larger and more evenly distributed UAV dataset.
Qualitatively, the results on the UAV dataset,
illustrated by figure 3, are more favourable to
the error-modelling approach. While MCD mainly
picks up on the the boundaries of segmented areas,
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the error-model is more sensitive to anomalous
and hard to identify features.
The quantitative analysis on the test sets,
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Fig. 2. Example results from the iceberg dataset. (a)
shows the original image, (b) shows the error, (c) de-
picts the normalized variance of MCD samples and (d)
shows the error predicted by the second-order model.
(All results are scaled using a minmax scaler across the
test set.)
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shown in table 1, supports the above conclu-
sions. Dropout consistently outperforms the error

1.0

o o
s o
MCD Var

predicted MSE
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Fig. 3. Example results from the UAV dataset, using
the same data for the error-model as for training the
first-order model. (a) shows the original image, (b)
shows the error, (c) depicts the normalized variance
of MCD samples and (d) shows the error predicted by
the second-order model. (All results are scaled using a
minmax scaler across the test set.)
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model on the iceberg dataset. As the black box
approach is here set against the white box ap-
proach of dropout, the results are still promising.
The main disadvantage of the error model is its
lower incorrect-uncertain ratio, i.e. there are more
errors that are not correctly captured as uncer-
tain. This might seem surprising at first, given
higher propensity of the error model to predict
uncertainty, relative to MCD. However, given that
the relevant scores are calculated across thresh-
olds, the low incorrect-uncertain ration can be
explained by the reluctance of the model to predict
an error of 1.

The additional splitting of the dataset into an
independent first-order and second-order dataset
systematically decreases the performance of all
uncertainty metrics. This might seem surprising,
but it is readily explainable. The scores we calcu-
late quantify the performance of the whole setup
- first order model plus uncertainty quantification
technique - to generate predictions with an uncer-
tainty estimate. The better the first-order model
the easier the task. Thus, at least as long as the
first-order model is not over-fitted, using the same
data for both models is a reasonable approach.
Note however that this assessment is relative to the
model used, so the validity of the approach should
be assessed for every new model architecture.

On the more robust UAV dataset the error
model outperforms both reference metrics. Using
the same data for both models the uncertainty-
accuracy and correct-certain ratio are close,
while the incorrect-uncertain ratio is considerably
higher. Thus, the approach produced much less
instances where one is certain, even though one
is incorrect, a desirable result where the task is to
minimize risks.

6. Conclusion

We have shown that error modeling is an effec-
tive black box approach to quantifying the uncer-
tainty of a machine learning model. The method
produces results comparable to state-of-the-art
techniques like MCD and predictive entropy, but
yields the advantage of being easy to implement
without the need to change the prediction model.
We have addressed the intrinsically hard task to

Table 1. A summary of the scores for the two datasets.
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Uncertainty metric CCR IUR UA
[%] [%] [%]
Icebergs
predictive entropy 91.0 16.3 90.1
MCD 90.6 24.8 89.3
error-model 91.0 23.0 81.5
UAV (same data)
predictive entropy 94.2 27.6 92.0
MCD 94.1 27.3 914
error-model 96.0 55.0 89.6
UAY (independent)
predictive entropy 924 25.2 89.8
MCD 92.3 25.1 88.9
error-model 95.0 55.7 85.1

measure the performance of uncertainty quantifi-
cation methods by adapting established metrics
for binary classification. No single method out-
performed the others on all metrics consistently
over all data sets, but our results indicate, that the
error modeling is especially sensible to cases with
incorrect prediction, making it a valid candidate
for uncertainty quantification in high risk tasks.

We compared error modelling and MCD, which
capture total uncertainty and epistemic uncer-
tainty (Kendall and Gal, 2017), respectively. Even
under ideal conditions MCD would not yield
perfect scores because it would not represent
aleatoric uncertainty. Comparing those is not
straightforward. In principle, an error model with
uncertainty disentanglement, i.e. one differentiat-
ing between aleatoric and epistemic uncertainty,
would be necessary for a fair comparison. Such a
model might be based on an additional variance
layer, as proposed by Nix and Weigend (1994).
On the other hand, for practical purposes, the
quantification of total uncertainty is usually most
relevant.

While in our analysis we saw no negative im-
pact of using an independent dataset for the train-
ing of the error-model, there is an obvious path to
making our proposed method more data efficient:
Data augmentation on the training dataset, i.e.
utilizing assumed symmetries of the ground truth



312

data to add synthetic images, one could effectively
enlarge the dataset. As we are not modelling a
generative process outside our control but a model,
we can effectively probe its capacities by feed-
ing it such additional augmented datapoints. This
should be considered where the method is imple-
mented in a context where data is sparse or where
one fears the first-order model to be overfitted.

Looking ahead further, the choice of UNET as
the error model may not be ideal for this task.
While it effectively captures uncertainty at the
edges, it sometimes struggles to identify uncertain
shapes more broadly. Future work could explore
the use of GANSs, particularly through their ability
to generate high-quality representations, in com-
bination with perceptual loss as a potential al-
ternative to enhance uncertainty quantification in
segmentation tasks. Specifically, allowing GANs
to generate multiple plausible outputs could pro-
vide valuable insights into the range of possible
outcomes in uncertain regions, further improving
the robustness of uncertainty estimation.
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