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1. Introduction  
 
    With the increasing demand for intricated components or 
products in various industries, metal additive manufacturing 
technology is developing at an unstoppable speed. However, the poor 
surface quality of the 3D-printed metallic workpieces is one of the 
common and critical barriers to AM industry. That has limited the 
application of AM in some fields, like the optics industry. The poor 
and unexpected surface quality is usually due to the complicated 
physical phenomena of deposition and fusion of materials and the 
unique layer-by-layer fabrication method of AM [1]. Numerous 
factors, such as spatters, splashing particles, laser power, and process 
parameters, affect the surface quality [2-4]. Hence, improving the 
surface quality of AM fabricated metallic parts through optimising the 
AM process becomes extremely difficult. Instead, researchers are 
seeking surface post-treatment. Maleki et al. [5] have reported in 
detail in their review paper. One of the possible ways is polishing.  
    In this paper, the authors attempt to analyse the effect of fluid jet 
polishing (FJP) on surface quality after post-process finishing of 
3D-printed surfaces. This study assessed the surface quality by the 
surface integrity in terms of number of defects and the surface 
roughness, arithmetical mean height, . Experiments were 
conducted to examine the effect of FJP process parameters on surface 
roughness and surface integrity. A novel convolutional neural network, 
CenterNet-CL, developed by Wang and Cheung [6], was applied to 

detect, and count the surface of 3D-printed samples before and after 
FJP. 
 
2. Experimental Setup 
 
    As shown in Figure 1, selective laser melting (SLM) fabricated 
316L stainless steels blocks in a dimension of 10*10*10 mm were 
prepared for the study.  

 
Fig. 1 Experimental setup 
 
     The experimented surface is mainly on the top surface, top 
surface (TS) is the as built surface and bottom surface (BS) is the wire 
cut base. The FJP equipment was a Zeeko IRP200 and the FJP nozzle 
is a 7-jet with each orifice of 0.5 mm diameter. Taguchi method was 
adopted to obtain and verify the optimal parameter settings. Pressure, 
tool offset, scan interval, and feed rate are the target process 
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parameter to be studied. 10 wt.% #1000 aluminum oxide polishing 
slurry was used. Measurements of surface roughness, Sa, were taken 
before and after the polishing experiments with white light 
interferometer to check the surface roughness. of SLM printed 
316L stainless steel’s top surface is around 600nm – 800nm. A 
scanning electron microscope (SEM) was used to observe the defects 
of the surface before and after polishing. The images were taken by 
using 200x magnifying ratio. Figure 2 shows the target surface 
defects that are focused in this paper. 
 
2.1 Defect analysis by CenterNet 
A convolutional neural network training algorithm (CenterNet) 
developed by Wang and Cheung [6] was used in the training process 
of the machine-learning algorithm. CenterNet is a point-based object 
recognition system that can be effectively generalized to perform a 
variety of computer vision tasks such as object tracking, human pose 
prediction, 3D object detection, movement detection, human-object 
interaction detection, etc. Two corner heatmaps and a center key point 
heatmap are generated by a convolutional backbone network using 
cascade corner pooling and center pooling, respectively. A pair of 
identified corners and matching embeddings are used to detect a 
possible bounding packet. The final bounding boxes are then 
determined using the sensed core key points. A labelling software is 
applied to distinguish and label defects in the training set manually as 
shown as Figure 2.  
 

 
Fig. 2 The process of labelling defects by Labelme 

 
    The types and name of defects should be fixed before labelling. 
Also, the sequence of labelling the objects(defects) types should be in 
same order. A rectangular tool is used to surround the shape of a 
defect. Different colors of rectangular tool are employed to label 
various kinds of defects. The types of defects focused on this project 
are shown as Figure 3, which are crack, pore, unmelted material, and 
impurity. After labeling every training and validation set, they are 
re-examined by expert to validate the accuracy of labels.  
  
2.2 Design of experiment by Taguchi Approach 
    The parameter settings of the Taguchi Method are shown in 
Table 1. L16 orthogonal array was used. The Signal-to-Noise ratio 
(S/N ratio) characterisitics of “smaller the better” was chosen for the 
minimal number of surface defects and the lowest surface roughness 

value. 
 
 
 

 
Fig. 3 Type of target defects 
 
Table 1. Factors and Levels selected for polishing SLM SS316L 
    Factor 
 
Level 

Pressure  
(bar) 

Feed rate 
(mm/min) 

Tool offset 
(mm) 

Scan 
interval 
(mm) 

1 5 10 2.5 0.2 
2 6 15 5 0.4 
3 7 20 7.5 0.6 
4 8 25 10 0.8 

 
 
3. Results and discussion 
 
3.1 Defect analysis by CenterNet 
    The surface defects may vary greatly from different 
manufacturers, in order to enhance the algorithm samples from 
are two companies (named A and B here) were collected for the 
training of the algorithm, Figures 4 and 5 shows some sample 
surfaces. 3 set of data should be separated as they are produced by 
different companies. 100 pictures for each learning set. The 
pictures were then further divided into 3 subsets which 80% goes 
to training set, 10% goes to validation set and the remaining 10% 
goes to testing set. The training set is a set of data that is used to 
match the model. The validation dataset is a collection of data that 
is used to provide an impartial assessment of a model's fit on the 
training dataset when tuning model hyperparameters. As 
competence on the validation dataset is integrated into the model 
configuration, the assessment becomes more biased. The Test 
Dataset is a subset of data that is used to make an impartial 
assessment of a final model's fit on the training dataset. 
 

 
Fig. 4 Some samples from company A 

672

©2022 ASPEN 2022 Organisers. ISBN: 978-981-18-6021-8. All rights reserved.



Proc. of the 9th Intl. Conf. of Asian Society for Precision Engg. and Nanotechnology (ASPEN 2022)
15–18 November 2022, Singapore. Edited by Nai Mui Ling Sharon and A. Senthil Kumar

 
 

 
Fig. 5 Some samples from company B 
 
   After repeated training, a model of machine learning 
algorithm was created, and images can be input to obtain an 
image with labelled defects on it and the number of defects of 
each image. the number of defects can be obtained. Figure 6 
shows an example of images after analyzed by machine learning 
algorithm 
 

 
Fig.6 Example of images after analyzed by machine learning 
algorithm 
 
3.2 Optimization of polishing parameter by Taguchi Approach 

Two series of experiments were conducted: (1) Set A: 96 samples 
were polished and measured for the surface defects analysis. There 
were 16 runs of experiments and 6 samples for each run. Samples 
were from 2 produced from 2 companies and 3 from each were 
picked randomly for the experiments. (2) Set B; 16 samples from one 
single source were polished for the analysis of process parameters 
affecting surface roughness.  

The results of the experiment are shown in table 2. The average 
S/N ratio of each factor for Set A and Set B was tabulated in Tables 3 
and 4. The delta is the value of subtraction of the largest S/N ratio and 
the smallest one. The larger the value of the delta means the 
corresponding factor contributes more to the removal of surface 

defects and the reduction of surface roughness. By ranking the value 
of delta, the relative magnitude of effects could be compared. The 
rank shows the rank of contribution of each factor. It is interesting to 
note that the Scan interval and Feed rate rank 1 and 2 in both set of 
experiments. They had a larger relative magnitude of effects 
comparatively. Tool offset contributes more than Pressure in the case 
of removal surface defect, which conversely in the improvement of 
surface roughness.  

 
Table 2. Results of the experiments 
Factors 
 
 
Run 

Pressure 
(bar) 

Feed rate 
(mm/min) 

Tool 
offse

t 
(mm) 

Scan 
interval 
(mm) 

Result of 
Set A 

(Average 
number 
defects) 

Result of 
Set B 

(Average 
Sa 

Values, 
nm) 

1 5 10 2.5 0.2 1.11 44 
2 5 15 5 0.4 3.44 146 
3 5 20 7.5 0.6 7.94 183 
4 5 25 10 0.8 7.11 229 
5 6 10 5 0.6 3.11 76 
6 6 15 2.5 0.8 7.00 151 
7 6 20 10 0.2 1.56 65 
8 6 25 7.5 0.4 6.11 165 
9 7 10 7.5 0.8 3.11 121 
10 7 15 10 0.6 4.11 111 
11 7 20 2.5 0.4 5.11 86 
12 7 25 5 0.2 2.50 66 
13 8 10 10 0.4 2.11 61 
14 8 15 7.5 0.2 0.89 30 
15 8 20 5 0.8 9.83 133 
16 8 25 2.5 0.6 6.94 144 

 
Table 3. Average S/N ratio of each factor for Set A 

Factors 
Level 

Pressure 
 

Feed rate 
 

Tool offset 
 

Scan 
interval 

1 -11.668 -6.776 -12.201 -2.929 
2 -11.585 -9.724 -12.099 -11.777 
3 -11.065 -13.970 -10.640 -14.239 
4 -10.538 -14.386 -9.916 -15.911 

Delta 1.130 7.610 2.285 12.983 
Rank 4 2 3 1 

 
Table 4. Average S/N ratio of each factor for Set B 

Factors 
Level 

Pressure 
 

Feed rate 
 

Tool 
offset 

 

Scan 
interval 

1 -42.15 -36.96 -39.58 -33.77 
2 -40.45 -39.33 -39.94 -40.51 
3 -39.41 -40.67 -40.20 -41.73 
4 -37.72 -42.78 -40.02 -43.73 

Delta 4.43 5.81 0.62 9.96 
Rank 3 2 4 1 
 
Figures 7 and 8 depict the main effect plots of each factor of the 
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two experiments respectively. The effect of Pressure and Tool offset 
have a proportional relationship with the reduction of number of 
defects and surface roughness, while that of the other two factors are 
inversely proportional. The optimal parameter level obtained is Table 
5, which are 8 bar Pressure, 10 mm/min Feed rate, 2.5 mm Tool offset, 
and 0.2 mm Scan interval. An validation experiment was conducted 
with the optimal parameters and the results are presented in Figure 9. 
It can be observed both surface defects and surface roughness 
improved after the polishing process. The surface roughness has 
decreased from 840 nm to 33 nm, which is a 95% improvement. 

 

 
Fig. 7 Main effect plots of each factor for Set A 

 

 
Fig. 8 Main effect plots of each factor for Set B 
 
Table 5 Optimal polishing condition obtained for polishing 316L 

Optimal Condition 
Pressure 8 bars 

Feed rate 10 mm/min 
Tool offset 2.5 mm 

Scan interval 0.2 mm 

 
4. Conclusions 

In the current study, the authors have presented the feasibility of FJP 
technology to the post-processing of 3D Printed surfaces. With the set 
of parameters, the current study has revealed an encouraging result 
that the surface integrity and surface roughness of a surface has been 
improved for more than 90% in only one polishing step. Also, the 
factors affect the surface have also been analysed. The study 
presented here provides an effective option to AM industry for the 
improvement of surface quality.  
 

 
Fig. 9 Snapshots of the 316L sample before and after polishing  
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