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1. Introduction (Times New Roman 10pt) 
 

The finite pupil size and aberrations limit the resolution of the 
imaging system. By analyzing the point spread function (PSF) and 
modulation transfer function (MTF), we can figure out the imaging 
system's theoretical resolution. When the lens group design of the 
microscopy is known, we can simulate the imaging system with some 
simulated optical software. In Zemax, they assume each point on a 
wavefront as an ideal point light source that radiates a spherical 
wavelet. The diffraction of the wavefront as it propagates through 
space is given by the interference of all the aspherical wavelets 
radiated. Also, we can model the imaging system by diffraction 
theorem and the Huygens-Fresnel principle[1], which will be the 
theoretical solution. Once we can got the PSF of the system, we can 
do the deconvolution with the blurred image and finally got a clear 
one. Recently, machine learning has been used for the image 
deconvolution process and got an outstanding result [2-4]. However, 
sometimes we don't know the specific system design. Even if we can 
get the specific system design and simulate it, there still exists some 
uncertainties during imaging, like the dark current in CCD, 

turbulence and the deformation of the lenses, etc. Blind 
deconvolution can efficiently solve the problem. We can estimate the 
imaging system's PSF from single or multi-images by solving the 
inverse problem. How to model the PSF ‘inside’ the image is an 
ill-posed problem. Some researches model the PSF with Gaussian 
function [5-7], these kinds of methods can generally model the PSF 
but lack the physical meaning. Some researches use the more 
complex model to estimate the PSF model. However, these researches 
mostly focus on specific fields[8, 9], which means the physical 
models of PSF between them would be different. Besides, most of 
them do not take aberration into account. However, it cannot always 
be sure that the optical imaging system can be an aberration-free 
system.   

We proposed parameterizing the PSF model which based on 
diffraction theory and performing the Wiener-based deconvolution[10] 
process with the optimization method. By analyzing and iterating the 
implicit parameters of the PSF, we can model and fit the actual PSF of 
the imaging system. For the diffraction limit induced by the finite pupil, 
considering most of the imaging systems are composed of circle lenses, 
we take the JINC-liked function to model the diffraction-limited PSF. 
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Image resolution degrading problems can roughly be classified into two groups, diffraction limit and optical aberrations. In 
general, the image resolution is limited by the optical diffraction limit. Again, optical aberrations induced by the lenses can also 
lead to severe image blurring or quality degradation. The article presents a novel image deblurring algorithm by proposing a new 
parametric point spread function (PSF) estimation in a modified Wiener deconvolution process. The optical PSF is first modeled 
using a JINC-liked function by considering linear-spatial invariant aberrations and imaging parameters. An iterative Wiener 
deconvolution algorithm is used to optimize the quality of test images. The test image's coefficient of variance (CV) is set as the 
objective function for model optimization. Furthermore, to minimize undesirable ringing artifacts and noise amplification that 
may be generated in the above process, the gradient map density and CV of the image gradient map are proposed and developed 
for the regularization terms. Since pixel-wise deconvolution operation may suffer color distortion, a multi-channel parametric 
fitting method for image color correction is also applied. In addition to using JINC function as the PSF estimated basis model, we 
also take other types of function to model the PSF which introduce more freedom degrees for the modeling. By testing the 
developed method on some microscopic biomedical images, the experimental results show that the proposed method can 
effectively restore image detail information and improve the sharpness while maintaining the chrominance and chroma of the test 
images. As seen from the test as a preliminary verification, image super-resolution can be achieved by the developed method. 
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We introduce Seidel coefficients as the optical path (phase) parameters 
for the aberrations, which will deform the diffraction-limited PSF. Last, 
considering other uncertainty factors, we proposed using linear gain, 
nonlinear gain, and bias as global system adjustment parameters. With 
the three types of parameters above, we can physically model the PSF.  

To restore the high-frequency information of the image while 
avoid the noise amplification and ringing artifact during the 
deconvolution process, a well objective function design is necessary. 
Our objective function is defined as minimizing the coefficient of 
variance (CV) of the deconvolved images’ intensity and defines two 
regularization terms as the energy density of the first order gradient 
map and the CV of the first order gradient map. By adjusting the 
coefficients of regularizing terms, the design can restore the 
high-frequency information while suppressing the noise and ringing 
artifacts. 
 
2. Simulation 

Before estimating the PSF, it’s necessary to consider the 
resolution of the blurred image. If the image resolution is too low, we 
should estimate the PSF with a small matrix, which means the low 
resolution of PSF leads to poor deconvolution results. In view of this, 
we will up-sample the low-resolution image to over 1200 x 1200 
pixels and estimate the PSF with a 127 x 127 pixels matrix. A bigger 
matrix size should be considered when the image is severely 
degraded. We believe that the chrominance and the chroma of the 
image before and after blurring should be similar, so we retain the Cb 
and Cr channels of the blurred image, an only process in the Y 
channel.  

Error! Reference source not found. shows the simulation and 
the comparison of the mouse primary microglia cell, alpha-tubulin 
image which credit to CrestOptics[11]. The top-left figure is the result 
form the conventional confocal microscopy. The top-right figure is 
the result form CrestOpttics’ DeepSIM microscopy[11]. The 
bottom-left one is our result which took the confocal result to operate 
the deconvolution process, and the bottom-right one is the 
corresponding estimated PSF. 

 
Fig. 1 The simulation and the comparison of the mouse primary 
microglia cell, alpha-tubulin image. 

In addition to taking the JINC function as the PSF basis function, 
we also experimented with five different models, including the Sinc 
function, raised cosine function, Gaussian function, Mexican hat 
function and the decay-Dirichlet function. These functions have 
low-pass, roll-off, periodic, and varying idempotent properties, which 

can provide higher flexibility of the fitting process.   
Error! Reference source not found. shows the simulation which 

based on the five different models. The left figure is the 
deconvolution result and the right figure is the corresponding 
estimated PSF. We can find that these models can achieve a good 
image quality with the proposed deconvolution operation. 

 

 
Fig. 2 Deconvolution simulation with five PSF estimated models. 

 
Error! Reference source not found. shows the simulation of 

the image of the fixed BPAE cells labeled with Alexa 488-phalloidin 
(actin) and mitotracker CMXRos (mitochondria) from confocal 
microscopy[12]. Through the experiments, we also found that 
those models which have low power or low periodicity have the 
poor fitting ability, such as the Gaussian and Mexican hat 
functions. In contrast, models with higher power perform better, 
such as Raised cosine[13] and Decay-Dirichlet. 
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Fig. 3 Comparison of original confocal image and ours result with 
different PSF estimated models. 
 
3. Conclusions 

We propose a super-resolution method for imaging systems by 
parameterizing the point spread function of the imaging system  We 
considered the diffraction pattern of the imaging system which 
include the diffraction-limited PSF pattern, aberrations, and other 
factors, we take these parameters to model the physically point spread 
function of the microscopy. The optimization algorithm will iterate 
the estimated PSF to fit the real one by deconvolving with the blurred 
image. In addition to modeling the theoretical solution (JINC 
function), we also take other functions with varying properties for 

simulation and comparison. It can be seen from the results that our 
method can effectively restore high-frequency information and 
successfully remove the blurring. In the future, we will take machine 
learning technology into our research which aims to build a 
model-based super-resolution model and apply it to optical 
inspection. 
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