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1. Introduction  
 

In metal material cutting processes, condition of cutting tools 
plays a vital role in overall quality as well as yield performance. 
Unexpected tool failure can greatly increase manufacturing losses 
(materials, time to re-work, machine downtime, etc.). For aerospace 
MRO (Maintenance, Repair and Overhaul) shopfloor, awareness of 
tool condition is particularly critical especially during finishing phase. 
Here, parts-to-repair are of substantial sizes comparing with cutting 
tool and machining cycles prolong in several hours. In finishing phase, 
tool changing is not allowed due to elevated precision requirement 
and thus having a visibility of tool condition for such cutting is 
necessary. 

Tool condition monitoring has been an interesting topic with 
several publications [1 - 4] in last decade. However, there are still 
some existing challenges while investigating tool condition during 
cutting process. One of the most common approaches for in-situ 
monitoring tool condition is to employ on-machine optical 
measurement with wear texture analyses. These configurations are 
usually with high cost and generally require assembly space. This is 
not always achievable in most MRO shopfloors due to large size of 
parts-to-repair. Another approach is to off-machine measure the tool 

condition via optical measurement, radioactive, or electrical 
resistance. Nevertheless, this technique faces a lot of difficulties for 
application require long cutting runtime without interrupts permitted.  

Recently, a lot of studies have relied on in-direct tool-work 
interaction signals in real time for tool condition monitoring purpose 
[5 - 12]. In these studies, parameters from added sensors, e.g., force, 
vibration, acoustic emission (AE), current or power, sound, 
temperature, surface roughness, etc. are fed to AI model, e.g., 
artificial neural networks (ANN), fuzzy logic, neuro-fuzzy, generic 
algorithms, and support vector machines, to predict the tool’s 
condition. Although these models have shown great potentials in 
many applications, there are still 2 main challenges to be solved: 

� In real production scenarios, having multiple measurements 
of tool dimensions is generally difficult. Hence, training AI 
model for tool condition monitoring has to deal with limited 
labeled dataset. 

� Major portion of sensors data are unlabeled and usually 
underutilized in conventional approaches. It would be 
desirable to better utilize unlabeled data during model 
training for performance improvement. 
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In precision machining process, part fabrication quality often has a great deal to do with tool condition. For aerospace 
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operator of the best moment for a tool change in achieving both part quality assurance and tool cost saving. The work starts 
with process data collection in realtime including vibration, current, spindle load, feed rate, etc., and the actual tool wear 
(flank wear) condition measured from a microscope. Since the tool condition can only be inspected after prolonged machining 
cycles, the amount of labeled tool wear samples is limited. Hence, a 2-views semi-supervised approach is chosen to utilize 
information from both labeled and unlabeled datasets. Experimental results support the capabilities of the proposed model in 
predicting tool condition for a turning process in MRO shopfloor.     
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In this paper, we study the feasibility of a semi-supervised 

learning ML model for tool condition prediction task in milling 
process. Process parameters considered in this paper include spindle 
load, vibration, speed, acceleration, cutting depth and cutting cycle. 
For model training, a 2-view k-NN (k-nearest neighbor) approach is 
used to better utilize unlabeled data together with limited labeled data. 
Experiments are carried out and evaluation results confirm the 
proposed approach. 

 
2. Tool Condition Modeling and Prediction  
2.1 Experiment setup  
 

The experimental work (Fig. 1) is carried out on the Makino F3 
vertical 3 axes machining center. The Aluminum T6061 grade is 
selected for test material and a single 6 mm diameter carbide milling 
cutter with 4 cutting flutes has been used until the end of the tool life. 
Each machining cycle is carried out with the constant parameters: 
cutting speed= 150 m/min, federate= 0.025 f/ tooth, depth of cut – 
Radial, Ap= 2.4 mm & Axial, Ae= 1 mm. A total of 200 machining 
cycles with dry cut condition are conducted, and a total of 37 cutting 
tool flank wear are recorded for the entire machining cycles. The 
cutting tool flank wear, VB are inspected and measured using 
Keyence VHX- 1000 digital microscope.  

 
2.2 Monitoring of process parameters 
  

To monitor the milling process, we obtain position, speed, and 
acceleration of the spindle together with the spindle load. These 
parameters are read directly from CNC controller. In order to observe 
other features of machining process we additionally use a 3 axis (X, Y, 
Z) wireless vibration sensor that can stream data continuously to our 
laptop and 3 wireless current sensors to measure the 3 phases of the 
spindle current. The vibration sensor data is mounted on the spindle 
shaft to detect vibration caused by the interaction between the tool 
and the workpiece. The vibration data can be streamed at 1kHz. Also, 
a current sensor, rated at 100A, is clamped at the 3 phases of the 

spindle controller to measure the current drawn by the spindle. The 
electrical current data can be streamed at 5Hz continuously via 

MQTT. 
All process parameters are collected and synchronized by a 

middleware before feeding to data analytic layer to ensure the quality 
of the data stream. The middleware in this paper is developed with 
three functional layers: Shopfloor Connectivity Layer, Data Traffic 
Control Layer and Data Aggregation & Dispatch Layer. Details of the 
developed middleware are in Fig. 2.  

  
2.3 Data pre-processing and feature engineering 
 

The mapped real-time monitored machining process and tool 
wear measurement from selected cycles yields a raw data sheet for 
correlation analysis. In the raw data sheet, target variable to predict is 
Tool Flank Wear. Candidate independent variables are limited to 
Cycle Number, Spindle Load, Vibration, Position X, Position Y and 
Position Z. Feedrate and spindle revolution per minutes (i.e. rpm) are 
out of concern because although they ramp up and decline naturally at 
every start and end of a machining cycle, they are considered as 
constant setting parameters throughout the experiment. Furthermore, 
all the spindle position variables are not meaningful on their own, 
instead we converted them into Speed and Acceleration with the help 
of timestamp recorded, to represent movement of the spindle in a 
better way. All of these have resulted in a list of complete independent 
variables as shown in Table 1: 

 
Table 1 List of independent variables for modelling 

Cycle Number Spindle Load Vibration

Speed X-dir Speed Y-dir Speed Z-dir 

Acceleration X-dir Acceleration Y-dir Acceleration Z-dir 

As independent variables are recorded in time-series manner, we 
extract 9 features from all except Cycle Number, based on every 

Figure 2. Middleware for data communication 

Figure 1. Experimental Setup of the milling process 
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machining cycle, to establish data model. Features include absolute 
energy, autocorrelation of the specific lag (i.e. lag 1), kurtosis, the 
highest value, mean, the lowest value, skewness, standard deviation, 
variation coefficient [13]. Upon feature engineering, the ultimate 
mapped data sheet consists of 73 process features (columns) and 176 
usable machining cycles (rows), of which 37 cycles are labeled with 
flank wear measurement.

 
2.4 Semi-supervised regression by co-training 
 

Since the dataset used in this paper consists of limited labeled 
data (37 samples), a semi-supervised regression approach is 
employed to take into account useful features from unlabeled data 
(139 samples). In this paper, we consider an approach introduced by 
Zhou and Li named as COREG for semi-supervised regression task. 
In COREG, two separate k-nearest neighbor (k-NN) regressors are 
selected as the based models. Then, predictions with appropriate 
confident level of each based model are used to pseudo labeled 
samples in unlabeled dataset of the other model. The selection of 
samples for pseudo labelling is considered by evaluating its influence 
on the performance of labeled dataset. The pseudo labeling is looped 
until the prediction confident drop below acceptable threshold. The 
final prediction of the trained model is made by averaging the 
estimation made by both regressors. Details about COREG can be 
found in [14] while the training loop can be shown in Fig. 3.   

 
2.5 Benchmark with other models 
 

Let’s take the conventional approach, supervised learning based 
on labeled dataset, be our baseline approach. In order not to disregard 
vast amount of unlabeled dataset, we then apply COREG so the entire 
dataset would be involved in modelling. Basically, we use the 

k-nearest neighbors algorithm (k-NN) as the base estimator for both 
baseline and co-training approach to ensure fair comparison. What we 
are interested to evaluate is whether the 2-views co-training regressor 
leveraged on both labeled and unlabeled datasets could outperform a 
single view k-NN regressor in term of prediction accuracy.  

For COREG, we establish 2 views of input data, namely 
estimator1 and estimator2, for which the distance orders are set to be 
2 and 5 respectively, to make the estimators sufficiently distinct and 
independent. The same distance order values are used for baseline 
approach – single view kNN1 and kNN2. The number of neighbors 
to be considered for determining the prediction accuracy for COREG 
is 5, and unlabeled pool size to be updated by each training iteration 
is 20. A Python module CTRegressor is used to implement co-training 
approach [15]. Normalization of all the input data is conducted before 
training process, as a pre-requisition for k-NN to function properly. 
Cross validation is carried out (5-fold, repeated 20 times) for all 3 
regressors to avoid biased model performance due to unfair training 
testing split. 

Fig. 4 has depicted the averaged testing root mean squared error 
(RMSE) for each cross-validation experiment, over 20 iterations. 
When estimating tool wear against measured values, all three 
regressors experiences fluctuation at different iterations with shuffled 
train-test data split, which is expected. But in general, in most 
iterations, COREG yields lowest averaged testing RMSE, which 
means it performs the best in prediction tool wear compared to two 
other baseline regressors. However, one has to admit that advantage is 
not significant. We would assume by including more types of process 
parameters (such as multi-channel current, 3-phase vibration) with 
increased sample size, performance of COREG could be further 
justified. 

2.6 Tool condition prediction 
 

With the best model built on COREG regressor (selected based on 
lowest test RMSE), we then predict the Tool Wear for all 176 
machining cycles and mark the measured Tool Wear only for 37 
machining cycles in the same graph (See Fig. 5). One thing to take 

Figure 3 Workflow of COREG approach 
 

Figure 4 Comparison on testing Root Mean Squared Error 
(RMSE) among different regressors at different iterations 
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note is that measured Tool Wear is not ever increasing along 
machining cycles, which is due to cutting tool cyclic build-up edge 
(BUE) formation and collapse, discussed in a prior research work 
[16]. Predicted value tries to catch up with this oscillation, therefore 
accuracy is affected. Practical recommendation to avoid BUE is to 
select sharper tool and adjust federate and speed accordingly, which is 
out of the scope of current study. This operational issue would need to 
be resolved before we can have cleaner flank wear measurement to 
retrain the model and predict. 

 

3. Conclusions  
 
In this paper, a semi-supervised learning approach was 

successfully employed for tool condition prediction task for milling 
process. Validation results confirm the effectiveness of proposed 
approach in benchmarking with conventional supervised learning 
approach. Further enhancement of the model can be made through 
incorporating more sensor signals of cutting process, and more 
accurate measurement of cutting tool flank wear. This is a significant 
advantage since frequent measurement of tool dimensions are 
generally not possible. With the well-trained model, operators can 
make a better decision whether to replace a new tool for important 
cutting passes, especially for the finishing phase. 
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