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1. Introduction 

With taller buildings dominating the modern urbanised cities, 
vertical transportation, which often taken for granted, is becoming 
more critical to serve people moving within these buildings. There is 
wide variations in industry practices and standards of lift 
maintenance companies. Current lift maintenance and inspection are 
on a periodic check basis, with a large percentage dependent on 
engineers and technicians’ skill set.  Monitor of vibration to analyze 
performance of lift operation has been the research attention in recent 
years. To collect data for vibration monitoring, quantity of sensors 
and placement of sensors are investigated to correctly determine how 
structure status of lift components is [1][2]. Lifts are constantly 
subject to changing operating parameters, the most dynamic of which 
is the lift load. The vibration characteristics of important components 
of the lift are studied deliberately before the sensors can be installed. 
In [3], anomaly detection algorithm to detect abnormal stops in lift 
operation due to faults in pressing of emergency stop button was 
presented. To detect abnormal door behaviour, frequency and pattern 
of door closing as well as door opening were analysed. 
Accelerometer and magnetic field sensor deployed on top of lift car 
were used to monitor health level of guide rails. Another feature was 
studied in this approach is the estimation of travel pattern. Abnormal 
or sudden stoppage of the lift is alarmed by detecting the abnormal 
status of deceleration. Vibration signal has been mainly the 
development focus of lift monitoring algorithms [4]-[6]. For 
example, in [4], the authors also explore the most optimal placement 
for vibration sensors to harvest rich data about the operation of the 
lift. However, the signals collected from electric components are not 
popular in the literature review. Recently, in [7], a framework for lift 
monitoring and diagnosis is described by using current sensor signals 
of electrical lift components. In the proposed monitoring framework, 
there is no need to install extra equipment or devices that change 
original system. Therefore, it makes flexible to install more sensors.  

Acoustic sensor is another sensor that studied in lift monitoring 
system [8][9]. The study in [8] shown that combination of using 
vibration and acoustics data is efficient in lift fault detection. Cloud-
based approach for condition monitoring (CM) and predictive 
maintenance (PdM) has been more studied due to the popularity of 
cloud computing and there are more cloud service provides such as 
Amazon Web Service, Google Cloud etc. [10][11][12]. The main 
concept of cloud computing is that all IT resources including 
infrastructure and application for data storage, data processing, data 
analytics etc. are provided as services over the internet. 

 In this paper, we present an intelligent real-time lift safety 
monitoring system, incorporating Artificial Intelligence (AI) 
analytics for early fault detection and diagnosis, to improve labour 
productivity and benefit the society through digital transformation. 
We have analysed historical data, find most frequent faults, find 
sensors that can give early signals that the fault can happen. To build 
the real time analysis, cloud architecture based on AWS is used as 
the framework.  Selected sensors are tested in lift model before being 
installed on site in real lift. Simulation data from lift model are 
collected to build initial model. We build unsupervised machine 
learning model to detect slow moving and stoppage between two 
floors. From collected lift event data, we also can find outliers of door 
opening and closing behaviour that can be early signal for abnormal 
operation.  

2. Architecture of cloud-based lift monitoring system 

In our research, an automated, consolidated data collection 
protocol towards a minimal-human-interference system using 
Amazon Web Service (AWS) is proposed as in Fig. 1. The advantage 
of cloud architecture is the competency to scale up the system easily 
for test-bedding of the advanced AI engines during the pilot trial, as 
well as to commercialize the fully developed system in larger 
numbers. The proposed cloud-based analytics framework for lift 
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monitoring and diagnostic is to utilize the advantages of cloud 
computing platform such as scalability, pay per usage, built-in 
security feature, flexible fleet management and device configuration 
management. It has addressed the capacity issue to support up to 
thousands of devices online, publishing and subscribing message at 
same time. By tapping on the cloud services from AWS, it is able to 
build the data analytics pipeline from data collection, data processing, 
feature extraction, result prediction based on the model. The collected 
data can be used to further train the model by using the GPU 
computing power from the cloud provider. 

 
Fig. 1: Clouded-based framework architecture for real-time lift monitoring 
and diagnostic system 

 In proposed architecture of lift monitoring system, the core data 
acquiring, and processing device is designed by our project 
collaborator, SoftGrid company. It is called Lift Black Box 300 
(LBB300), that is the third generation of LBB series. Two 
accelerometers are built-in and other sensors are connected externally 
via cables in order to meet the requirement of AI analysis for lift parts 
predictive diagnosis. Certain high-end laboratory level sensors 
needed, specifically, are two types of accelerometers. One kind is for 
acquiring moving parts velocity change from tri-dimensional, the 
other kind is to detect component vibration signal. 

Each lift has been instrumented with a LBB300 that interfaces 
directly with the lift controller. The LBB300 senses and collects 
information, such as the lift door status (door opening/closing), 
movement direction (up and down), lift running or lift stationary. 
Type of sensors in LBB300 and their properties are presented in 
Table 1. Data collected in LBB 300 are then sent to AWS platform 
and stored in AWS database. Algorithms then process those stored 
data to detect anomaly. Fault alerts (after anomaly detection) are then 
sent to an alarm system that can automatically trigger the 
maintenance workflows, e.g., to inform the maintenance vendor (by 
generating the work orders) to examine the fault in a proactive 
manner to make sure the downtime of lift operation is minimized. 

TABLE I – TYPES OF SENSORS USING IN THE FRAMEWORK 

Type of sensor 
Where sensor is 

deployed 

When data is 

captured 

Format of 

collected 

data 

Accelerometer Car lift roof During a lift trip .log 

Accelerometer Car door When door open .log 

USB Microphone Car lift roof During a lift trip .wav 

 
3. Data collection and data pre-processing 

Since installation of data collection embedded device in real lift 
need different parties to be involved, it is good to test the device in a 
lift model before onsite installation. The lift model used in this project 
is a 4-level, miniature lift as shown in Fig. 2. There are several 
controls that are possible in this lift model as followings: 

� Two running speed modes: the lift can at normal speed or 
slow speed. 

� Lift call pushbuttons for each floor. There are two options: 
moving up or moving down as real lift.  

� Main lift controller 
 

 
Fig. 2: Lift model for data collection test and fault simulation 

The first purpose of using lift model is as a testbed to test data 
acquisition framework such as data template, data format, stored file 
name before deployment in live lifts. In other words, lift model is 
used to test the data capture framework for those sensors: 
accelerometers (csv or json format), acoustic sensor (wav format), 
levelling sensor, LBB300 operation function for data capture. 
Deploying the sensors on the lift model before deploying them on the 
real lifts enabled some amount of debugging of the installation 
process before the sensors are deployed. Changes to the sensor 
installation on actual lifts are more cumbersome due to the 
collaborative nature of the project; using the model as testbed in this 
way enabled a more concise deployment of the sensors in the live 
lifts. 

 The lift model is further open from the back, which enables easy 
deployment and access to the lift sensors. To further push the 
simulations in the lift model, the sensors were placed at the same 
places they would be placed in the actual lift (as described in Table 
I). Another hurdle in the deployment of this project is the absence of 
fault data in real lift operation since they have preventive 
maintenance frequently. One part of overcoming this hurdle is the 
usage of unsupervised learning elaborated later in this paper. 
However, even with the use of unsupervised learning, model 
validation requires some fault data to test the trained model. Given 
the rareness of detectable faults in live lifts, the lift model provided 
valuable fault simulation data which could be used to validate our 
machine learning model. And this is the second main purpose of 
using lift model in our proposed framework. 

Fault simulation experiments in lift model are conducted to 
obtain sensor data for fault cases to enable machine learning model 
validation. Based on the functions of lift models, we simulated some 
experiments as followings. Slow operation of lift: Lift model was run 
at normal pace, followed by slow pace. Occasional slowing down of 
lifts is usually very hard to detect, and as such, often goes unnoticed. 
This data is helpful in detecting lift operation in cases of a faulty 
speed controller. Abnormal stops between floors: The lift model was 
interrupted halfway between trips to simulate abnormal stops of the 
lift car between floors. This data will enable to detect if the lift is 
stopping between floors.  The detail of data analysis and machine 
learning model using those experimental data will be presented in 
Section IV.  

After tested in lift model, sensors in LBB300 are deployed on site 
lift to collect data as shown in Fig. 3. All sensor data are collected in 
LBB300, then it is packed in Message. The Message is sent to AWS 
storage by 4G module in LBB300 each second for further clouded 
based processing. Real time GUI portal and real-time analytics 
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algorithms access those stored Message in AWS by subscribing to 
corresponding AWS topic.   

 
 

Fig. 3: Diagram of deployed sensors in onsite real operation lift 
 
4.Feature extraction and machine learning models 

After data is stored in AWS cloud, noise removal, data cleansing, 
feature extraction are processed in cloud backend. Unsupervised 
learning model is used in the framework as shown in Fig. 4.  

 
Fig. 4: Feature extraction and machine learning diagram for anomaly 
detection 

For LBB300 lift event data, we extract some features etc.: 
� Change of status from running to stationary, time taken: to 

determine how long the lift takes to come to a stop.  
� Time taken to travel between each two floors. 
� Time taken for door to open. 
� Time taken for door to close. 
� Door open/close frequency. 

Example of histogram of Running to Stationary time in one day data 
is shown in Fig. 5. We can observe that, there are outlier points in the 
range around 4.75s. Those outliers may hint a signal for slow moving 
of the lift. From lift event data, we can extract time for door to open 
or close. This can give some signals to detect abnormal behavior of 
lift door operation. Frequency and pattern of door openings or 
closings at outlier values as shown in Fig. 6 can be hint for abnormal 
operation if those outliers are repeated. Normally, lift door systems 
are automatic during normal operation. The control system controls 
the torque, but it does not control the speed of the door motors. 
Therefore, the wear and tear as well as other defects of the door 
system due to heavy usage of the lift can cause the lift doors to move 
more slowly.  
 For vibration data, we extract features in time domain (statistical 
features) and in frequency domain (using Fast Fourier Transform to 
extract features) 

 
Fig. 5: Histogram of running to stationary time in one day lift operation. 

 
Fig. 6: Time of door_to_open histogram of one day lift operation 

 
 For acoustic data, we capture data by trip (when the lift moves 
only). Librora, a Python library for sound, music and audio analys is 
used for acoustic analysis. Time domain and frequency domain 
features are also extracted. Example of acoustics graph in time 
domain is shown in Fig. 7. To avoid distortion due to Nyquist 
sampling rate, we capture acoustic data at high quality frequency 
44.1kHz. For acoustic analysis, the amplitude of the acoustic 
magnitude in time domain level can be converted into decibels. After 
conversion, the ranges of severe values are used for proactive 
maintenance decision making or anomaly detection. The standard 
design for acoustic signals in lifts can be referred as followings: 
maximum sound level of hoistway is 75dB. The limit sound level of 
the lift door is 65dB and the sound level from relay switching cannot 
surpass the value of 55dB [9]. Therefore, we can use those limits as 
indicators to detect anomaly. 

 
 

Fig. 7: Example of time domain plot of acoustic signal in one trip of the lift.  
To detect anomaly in lift operation, we propose to use Isolation 

Forest unsupervised machine learning algorithm [13]. As in the 
name “Isolation” Forest, it identifies anomaly by isolating outliers 
within the data set.  Isolation Forest model is built based on the fact 
that anomalies can be defined as data points that are “few” and 
“different”. To train the model, the algorithm needs to construct a 
collection (or a profile) of data points so called “normal”. Then, 
when new data points come, the algorithm can detect those new 
points that cannot considered “normal” and label them as 
“anomaly”. The basis behind Isolation Forest algorithm is the 
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popular Decision Tree algorithm. In Isolation Forest algorithm, 
based on features that are randomly selected, sub-sampled data is 
then processed in a tree structure. If samples travel deeper in the tree, 
they are highly considered as “normal” since they require more tree 
splits to isolate them. And those samples that are in shorter branches 
are likely “anomalies” as the split tree is easier to discriminate them 
from other samples [13].  To build the model, we collect data when 
the lift operates in normal condition. Example of “normal” floor 
time information is shown in Fig. 8. We can observe that the 
movement pattern in time domain in different trips are in similar 
shape. Statistical features are extracted from vibration data 
corresponding to the timestamps of these events and 75% of data set 
is used to train Isolation Forest model for anomaly detection. 

 
Fig. 8: Example of time in each floor when the lift operates normally 

After the model is trained offline, it can be run online to detect 
anomaly in real time. To illustrate approach of our real time anomaly 
detection, we shown an example of sequence of lift operation events 
in a short period of time. As shown in Fig. 9, there are 6 events 
totally, and the first occurred event is in left side. The first three 
events are “normal” signal, as we can that the shape pattern is similar 
as in Fig. 8. when we train the model. In next coming 4th event and 
5th event, the model can detect both are anomaly events.  In the 4th 
event, we can observe that there is slow moving up from floor 1 to 
2, 2 to 3, and 3 to 4. After reaching level 4, the lift starts to move 
down and we can see slow moving down from floor 4 to 3, 3 to 2, 
and 2 to 1. In the 5th event, the model can detect there is stoppage 
between floor 2 to 3, and 3 to 4. Moving down from floor 4 to 1 is 
normal condition. The 6th event the model does not detect any 
abnormal since it is in normal condition and normal pattern. 

 
Fig. 9: Online real time model running to detect anomaly  

5.Conclusion and future work 

 We present an intelligent real-time lift safety monitoring system, 
incorporating data-driven analytics for early fault detection and 
diagnosis using AWS cloud-based framework.  Lift model is used as 
the experimental testbed to test selected sensors before being 
installed on site in real lift. Simulation data from lift model are 
collected to build initial model before the model is deployed for real-
time onsite lift data. Unsupervised machine learning model to detect 
slow moving and stoppage between two floors is presented. Based on 
lift event data, outliers of door opening and closing behaviour can be 
early signal for abnormal door operation. In future work, when more 
data is being collected with more faults happening, the machine 
learning will be fine tuning for better accuracy. More machine 
learning models such as deep learning will be studied also in near 
future. There are not many studies to use energy anomaly patterns by 
power signals to identify lift faulty for diagnostics. Sudden 
unexpected changes in power consumption may hint at lift fault. In 
our approach, we installed equipment to collect onsite power meter 
data in real operation lifts and we will analyze this data in future 
work.   
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