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1. Introduction (Times New Roman 10pt) 
 

In prosthetic dentistry, single crowns restoration is the most 
common procedure in the US [1], the global market of dental crowns 
and bridges will further increase at a compound annual growth rate 

(CAGR) of 7.78% to USD 3.8 billion in 2026 [2]. Traditionally, this 
process is completed by impression taking, gypsum mould and metal 
casting, ceramic firing and plastic PMMA flasking. All these are 
labour-intensive and time-consuming, in addition, the dusts generated 
in the process could generate health and environmental hazards. 
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OBJECTIVES: In prosthetic dentistry, Computer-Aided Design and Computer-Aided Manufacturing (CAD/CAM) has been 
widely used in the design and manufacturing process of dental crowns with high accuracy and efficiency compared with 
traditional way. Large amount of digitalised dental crown models have been created with the help of CAD. However, the 
digitalised prosthetic data is only used to assist CAM process. With the development of AI, big data and digital technologies, these 
data can be anticipated to guide the dental crown design process, thus achieving the transformation from knowledge-based design 
to big data driven design. In this work, a fully automatic dental crown design method by utilising AI and big data is presented with 
the potential of improving current partially digitalised dental crown design workflow. 
METHODS: 500 sets of mandibular second premolars, their adjacent and antagonist teeth from healthy and young adults 
(19-22y.o.) were collected digitally, and machine learned with 3D-Deep Convolution Generative Adversarial Network 
(3D-DCGAN) approach. 12 sets of data were randomly selected as test dataset. The 12 natural teeth in the test dataset were 
compared with (1) our 3D-DCGAN design, (2) knowledge-based design (commercially available as CEREC), and (3) technician’s 
design individually in parameters of 3D similarity, cusp angle, occlusal contact point number and area, and Finite Element (FE) 
static and fatigue simulation using Lithium disilicate ceramic as crown materials. The data were statistically analysed by SPSS 
22.0 (IBM) at �=0.05. 
RESULTS: 3D-DCGAN design and natural tooth had lowest discrepancy in morphology compared with other groups. 
Knowledge-based design showed a statistically significant (p<0.05) higher cusp angle compared with our 3D-DCGAN design 
and natural tooth. No significant difference was observed regarding the occlusal contact point number and area among all four 
groups. FE analysis results showed 3D-DCGAN design had a comparable performance with natural teeth regarding the stress 
distribution in crown, adhesive layer and dentine; the two groups also showed similar fatigue lifetimes under simulated cyclic 
loadings of 100-400 N. 
CONCLUSION: Dental crowns designed by the big-data 3D-DCGAN method in this study showed no statistical differences 
among morphological, occlusal and mechanical parameters compared with natural teeth. This study demonstrated suitable AI 
can be utilised to design personalised dental crowns with high accuracy. 
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Computer-Aided Design and Computer-Aided Manufacturing 
(CAD/CAM) has been widely used in dentistry for over 3 decades, 
which enables fast and accurate design and manufacturing of the 
dental prostheses. However, it still encounters problems such as lack of 
accuracy, expensive and still needing human to operate. 

Current dental prostheses CAD software mainly utilises library 
approach, which includes hundreds of standard crowns, further 
adjustments are still needed by the operator to meet patients’ individual 
conditions. The adjustments are mainly based on factors such as 
distance between crown and adjacent teeth as well as the opposite 
dentition. Large amount of digitilised crown designs are generated 
every year, but those data can be only used to assist CAM process 
according to current workflow. With the development of AI, big data 
and digital technologies, more and more applications can be finished 
automatically by machine itself. In restorative dentistry, these crown 
data can be anticipated to guide the dental crown design process, thus 
achieving the transformation from knowledge-based design to big data 
driven design. In this work, a fully automatic dental crown design 
method by utilising AI and big data is presented with the potential of 
improving current partially digitalised dental crown design workflow. 
 
2. Materials and Methods 
 
2.1 Dataset 
    In the study, 3D digital dental prostheses dataset including 600 
healthy dental stone models with full arches of both upper, lower jaws 
and occlusal relationship was obtained with informed consent (IRB 
Reference Number: UW 21-571). The impression and casts were 
prepared and scanned by Cerec Omnicam (Sirona Dental Systems, 
Bensheim, Germany). STL files of the cast models were exported from 
the CEREC Software 4.6 (Sirona Dental Systems, Bensheim, 
Germany). In this study, tooth Number 44, 45, 46 and 47 (Figure 1) in 
the ISO 3950 notation system are segmented manually in the software 
Meshlab [3] and reserved for GAN model training. 

As shown in Fig. 1, tooth No. 45 is the target teeth for crown 
generation. Each set of the training data includes three teeth including 
Nos. 44, 45 and 46 teeth (Fig. 1A). A masked No. 45 tooth is prepared 
(Fig. 1B), representing the missing tooth which the crown needs to be 
designed. Its adjacent teeth (Nos. 44 and 46) are used as a reference for 
ML training, i.e. the ML algorithm generates the No.45 crown based 
on the information of Nos. 44 and 46.  

Fig. 1 Training dataset A) No. 44, 45, 46 tooth; B) No. 44, 46 tooth. 
 
2.2 GAN Training 

3D-DCGAN was adopted to train the ML model. The network 
was built on PyTorch platform. The generator model consisted of four 
deconvolution layers with the number of filters as 128-64-32-1. Kernel 
size, stride and padding size were set as 3*3*3, 1, 1, respectively. A 

Tanh function was used at the last layer of the generator. The 
discriminator model consisted of four convolution layers, reflecting 
the same structure of the generator, except for the stride was set as 2 
and a Sigmoid function was applied at the last layer of the 
discriminator. Batch normalization was applied after every 
convolutional layer. LeakyReLUs were used in both generator and 
discriminator models with a slope of 0.2. 

The training was performed on a desktop computer with 
configurations of Intel(R) Xeon (R) W-2123 3.6 GHz CPU, an Nvidia 
GeForce RTX 2080 Ti GPU and 16GB RAM. Different parameters 
such as learning rate, batch size, number of epochs and training data 
were investigated to find the optimal parameters. To monitor the 
quality of the generated tooth morphology with the epochs increases, 
the interval between image sampling was set as 400, i.e. the training 
results were exported and saved every 400 epochs. 
 
2.3 Quality Evaluation 
    Twelve additional cases were randomly selected as the testing 
dataset, and twelve crowns were generated with the trained 
3D-DCGAN. These AI crowns were compared with the original 
natural tooth (NT), CEREC biogeneric individual design (BI), and 
technician CAD (Zfx Manager 2.0) design (TD) operated by one 
experienced dental technician in the parameters of cusp angle, 3D 
similarity, occlusal contact, static and dynamic Finite Element (FE) 
analysis. 
 
3. Results 
 
3.1 Cusp Angle 
    The mean cusp angles of NT, AI, BI and TD groups were 
respectively 54.05°, 49.43°, 67.11° and 63.34°. NT group had a 
significantly lower mean cusp angle compared with BI group; while BI 
and TD group had significant higher mean cusp angles than AI group. 
No significant differences were found between NT and AI, and NT and 
TD groups, respectively. 
 
3.2 3D Morphology Comparison 

Discrepancies of crown designs in AI, BI and TD groups were 
compared pairwise with NT group. The numerical comparison results 
are listed in Table 1. 

 
Table 1 Comparison of the mean discrepancies of premolar crowns 

designed by AI, BI and TD groups with NT group. 

Groups 
Mean Positive 
Deviation (SD) 

Mean Negative 
Deviation (SD) 

Root Mean 
Square (SD) 

NT vs. AI 0.2502 (0.0494)a -0.3106 (0.1215)d 0.3611 (0.1160)f 

NT vs. BI 0.3480 (0.0576)b -0.4379 (00883)e 0.5065 (0.0700)g 

NT vs. TD 0.2919 (0.0455)c -0.3894 (0.1183)e 0.4550 (0.1019)g 

*Different superscript letters indicate significant differences (p<0.05) 
 

As indicated in Table 1, NT vs. AI group exhibited statistically 
significant lowest discrepancies by means of Mean Positive Deviation 
(MPD), Mean Negative Deviation (MND) and Root Mean Square 
(RMS). The discrepancies between NT vs. BI group and NT vs. TD 
group were not statistically significant in the latter two measured items 
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(MND and RMS). Besides, NT vs. BI group exhibited a significantly 
lower MPD value compared with TD vs. NT group. 
 
3.3 Occlusal Contact 

Two types of virtual articulating paper with the thicknesses of 100 
µm and 200 µm were used. Occlusal contact point number and area 
were measured for all groups. Fig. 2 revealed the mean contact point 
number and area for groups NT, AI, BI and TD. No significant 
difference was found in contact point numbers and areas for 100 and 
200 µm articulating papers among the four groups.  

Fig. 2 Mean occlusal contact point number and area of crowns 
within different groups. 

 
3.4 Finite Element Analysis 

The stress distributions of adhesive resin cement layer and 
abutment under physiological occlusal forces (300 N) for AI group are 
shown in Fig. 3. The corresponding numerical value of stresses for all 
four groups are illustrated in Table 2, the areas around the central fossa 
and contact point were selected for each sample for measurement.  

Fig. 3 Max principal stress (A,C) and Tresca (Shear) stress (B,D) of 
tooth preparation (A,B) and adhesive cement layer (C,D) for AI 

group. 
 
Table 2 Stress distribution of crowns, maximum principal and shear 

stress in adhesive layer and dentine area with different designs 
subjected to physiological occlusal forces. 

Groups 

Stress Distribution 
on Crown 

Max Stresses on 
Dentine 

Max Stresses on 
Adhesive Layer 

Central 
Fossa 
Area 

(MPa) 

Around 
Contact 

Area 
(MPa) 

Max. 
Principal 

Stress 
(MPa) 

Max. 
Shear 
Stress 
(MPa) 

Max. 
Principal 

Stress 
(MPa) 

Max. 
Shear 
Stress 
(MPa) 

NT 23.97 24.13 74.79 147.16 67.22 41.00 

AI 26.73 28.48 79.98 150.60 70.25 138.41 

BI 20.04 18.90 60.79 125.30 63.18 110.05 

TD 40.72 54.18 72.22 155.66 74.71 160.43 

In general, as Table 2 shows, the stresses at the central fossa area 

were lower than those at the contact point area, except for BI group. 
TD had the highest values of stresses in both measured areas. In the 
inner layers of the crown (adhesive layer and dentine), the maximum 
principal stresses and shear stresses varied. AI group had the highest 
maximum principal stress followed by NT, TD and BI in dentine; 
while in the adhesive layer, TD had the highest maximum principal 
stress followed by AI, NT and BI. An obvious distinction was found in 
the maximum shear stress for TD group, in which the number was 
2.5-4 times lower than the other groups. 
    As shown in Fig. 3, the maximum principal stress and maximum 
Tresca (shear) stress of the adhesive layer and dentine were found in 
the shoulder area, while no stress concentrations were found on the 
occlusal directions in the adhesive layer and dentine as expected, as the 
shoulder area should be the main load bearing structure. 

Estimation of fatigue life circles was calculated. As illustrated in 
Fig. 4, AI had the closest estimated fatigue lifetime compared with NT. 
AI could achieve ca. 10e32 (1032) cycles lifetime at the area near the 
contact area and ca. 10e35 (1035) cycles at the central fossa area under 
400N loading, while the numbers in NT group were determined as ca. 
10e38 (1038) for both areas.  

Fig. 4 Force vs. lifetime estimation (in log scale) for crowns in (A) 
central fossa area and (B) contact point area. 

 
4. Discussion 
  
    AI-generated crowns by 3D-DCGAN revealed a higher degree of 
similarity compared with natural teeth (NT) morphology regarding 
cusp angle, MPD, MND and RMS, and fatigue biomechanics than BI 
and TD groups. The proposed 3D-DCGAN learned from natural teeth, 
while BI and TD have different mechanisms. BI utilised a tooth library 
and adjustments were needed by a technician. With regards to TD, as 
there were no regulated standards for the design of occlusal surfaces, 
the position and dimension of the design such as groves and cusps 
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varied. Different technicians might have their preferences and ideas. 
Current designs mainly rely on an intra-oral ‘try-in’ of a crown to 
evaluate its quality, if patients found no discomfort or a ‘high’ bite, 
then this design is regarded as acceptable. These design aspects, 
however, are shown in this study that can affect the biomechanical 
performance and thus showing different fatigue life-times (Fig. 4). The 
tiny difference in the design played an essential role regarding the 
long-term success rate. 
    This study has seminally evaluated the biomechanical 
performance of an AI-generated 3D dental subject using an in silico 
fatigue developed by Homaei et al. [4], that is a dynamic non-linear FE 
model encompassed of multi-layered teeth, materials (crown and resin 
cement) and design. This model has shown a close match about the 
simulated fatigue lifetimes and experiment results for premolar crowns 
with different materials. Ideally, the FE analysis estimates the fatigue 
properties based on material type, stress distribution, Young’s modulus 
and Poisson’s ratio, etc. Although the simulated fatigue lifetimes are 
representing the ideal condition that might have certain deviations 
compared with experiment results, the numbers still have good 
correlations at least in terms of consistency. As such, higher fatigue 
lifetimes in numerical simulation may be incurred due to the material 
used in the experimental setup might have some nonhomogeneity 
structures or the interfaces between ceramic, adhesive layer and 
dentine may not have constant elastic moduli or strength. 

In FE analysis, the amount of loading applied on the indenter was 
determined based on the average fatigue failure loads in an 
experimental study [5]. In the previous study [6], S–N fatigue curve for 
LD dental ceramic was formulated. Using the fatigue properties of LD 
material from the reported S-N curve and finding the stress value in the 
presented ceramic crowns, the number of cycles under loading can be 
calculated by the nonlinear Basquin formula [7, 8]. The present study 
has considered different occlusal forces (from 100 to 400 N). For each 
load, the stress values were computed. To compare the lifetime of each 
crown design in informative approach for the readers, the Force vs. 
Lifetime curve (F-N curve) was demonstrated. This representation 
provides valuable information on the lifetime of different crown 
designs and their relationships with exceeding loadings. However, it 
should be noted that the estimated lifetime based on the FE analysis 
have some limitations. Due to the complex geometry of dental crowns, 
various parameters such as the degree of polished surface and possible 
existence of microcracks might affect the failure phenomena. For 
instance, monitoring the initiation of a microcrack can provide more 
insightful data on lifetime of a ceramic crown rather than recording 
maximum stress, Thus, the FE models in the presented study can be 
improved with various advanced computational methods to estimate 
lifetime [9-11]. 

 
5. Conclusions 
 
    We proposed a new approach to design dental crowns based on an 
AI algorithm (3D-DCGAN) that has shown the least discrepancy with 
natural teeth compared with BI and TD. In terms of occlusal contact 
point and area, 3D-DCGAN, BI and TD are comparable occlusal 
relationships matched better with natural teeth. Regarding the fatigue 

properties of lithium disilicate crown, dynamic FE analysis revealed 
that no stress concentration was found for 3D-DCCAN designed 
crowns and the estimated lifetime was best matched with natural teeth. 
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