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1. Introduction 
 

Inspired by the great success of Masked Language Modeling 
(MLM)[1-3] in natural language processing (NLP) and the rapid 
development of Vision Transformer (ViT)[4] in computer vision (CV), 
Masked Image Modeling (MIM) has achieved superior results in 
computer vision. Mask Autoencoders (MAE)[5] is a representative 
self-supervised approach in MIM, and has gradually become a 
paradigm of self-supervised pre-training leading the computer field. 
By using a random masking strategy on the original image, MAE[5] 
takes only visible image patches as input images and makes 
predictions for the masked image patches. It expects the encoder 
network to learn features containing rich semantic information by 
recovering the pixels of the masked image patches. 

In essence, the asymmetric encoder-decoder structure is the 

optimal design for MAE, in which the encoder operates only on 
visible patches, and the lightweight decoder aims to recover all 
patches. On the one hand, this method not only improves the training 
speed of pre-training and reduces the memory footprint of GPU, but 
also achieves excellent performance on downstream tasks. On the 
other hand, ViT[4], as an encoder network for MAE[5], has major 
obstacles in industrial detection applications due to its heavy 
computational cost and its huge amount of parameters. The 
self-attention module possessed by ViT[4] can learn the long-term 
dependencies of features, which enables ViT[4] to have stronger 
global context modeling ability than convolutional neural networks 
(CNNs)[6-11]. In fact, local inductive bias and hierarchical 
architecture are crucial for boosting the performance of ViT[4]. Many 
recent works have explored the combination of Convolutional Neural 
Networks and Transformers. Hybrid convolution-transformer 
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Vision Transformer (ViT) has become the most popular architecture for existing vision tasks, but it is difficult to apply to the 
industrial domain due to its heavy computational cost of its self-attention mechanism. Masked AutoEncoder (MAE) has 
recently led the trend of self-supervised learning with a simple, scalable, and efficient ViT-based asymmetric 
encoder-decoder architecture. To mitigate the quadratic complexity of self-attention, we design a hybrid 
convolution-transformer pyramid network that effectively combines the respective advantages of convolution and 
self-attention. However, it is still unclear how our convolution-transformer pyramid network can be adopted in MAE 
pre-training, as it uses the local convolution operation, making it difficult to handle random sequences with only partial 
visual tokens. In this paper, we present a novel and efficient masked image modeling (MIM) approach, 
convolutional-contextual transformer masked autoencoder (CoTMAE). The pipeline of CoTMAE consists of: (i) a window 
masking (WM) strategy that ensures computational efficiency, (ii) an encoder that only takes visible patches as input to our 
hybrid convolution-transformer network, (iii) a multi-scale fusion module that enhances the output features of the encoder, 
which allows the decoder to focus on the reconstruction task. (iv) a feature alignment module that handles the distribution of 
encoded features and masked patches, and (v) a decoder that reconstructs the missing pixels of the masked patches. 
Specifically, WM directly divides the original image into equal-sized windows, using a random mask strategy within each 
window. Afterwards, only visible patches are reordered and reorganized into images as input to the hybrid 
convolution-transformer pyramid network. Our WM significantly improves the training efficiency of hybrid 
convolution-transformer networks and reduces GPU memory, while maintaining a competitive advantage with supervised 
training models in downstream tasks. We demonstrate that CoTMAE successfully enables self-supervised pre-training of a 
hybrid convolution-transformer pyramid network and achieves good fine-tuning performance on instance segmentation 
datasets. The encoder of CoTMAE is trained on ImageNet-1K dataset classification and fine-tuned on COCO 2017 dataset 
to achieve 52.9% APbox and 45.8% APmask. On industrial instance segmentation datasets, CoTMAE shows better 
fine-tuning performance than supervised models. 
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networks[12-16] have demonstrated incredible performance on vision 
tasks, e.g., image classification, object detection, instance 
segmentation. However, it still cannot achieve industrial application. 
Inspired by CoAtNet[17], we propose a hybrid 
convolution-transformer pyramid backbone network that exploits 
self-attention to maximize the performance of CNNs. Our backbone 
network not only achieves good performance on public datasets, but 
also achieves good performance and computational efficiency on 
industrial instance segmentation data. 

Compared with many self-supervised methods, the masked 
auto-encoding strategy in MAE[5] has a remarkable effect. Yet, it has 
limitations due to only supporting the isotropic VIT structure. At 
present, many methods utilize masked auto-encoding strategies by 
zero-padded masked patches to restore the entire image. While this 
works, it only acquires a suboptimal model and also sacrifices 
training efficiency. We consider whether the mask auto-encoding 
strategy can be applied to the hybrid convolution-transformer 
pyramid backbone network for self-supervised learning tasks, so as to 
further improve the detection performance of industrial data and 
reduce the time cost.  

Our work focuses on extending the masked auto-encoding 
strategy and the asymmetric encoder-decoder architecture to 
convolutional transformer pyramid networks. To this end, we present 
a simple and effective convolutional-contextual transformer masked 
autoencoder (CoTMAE) approach, illustrated in Fig  1. Our approach 
is simple and mainly consists of five components, which are a 
window masking strategy, an encoder, a decoder, a feature alignment 
module, and a multi-scale fusion module. The encoder, a hybrid 
convolution-transformer pyramid network, effectively combines 
convolution and self-attention, which downscale the input image by 
1/4, 1/8, 1/16, and 1/32 in four stages, respectively. The first two 
stages fully exploit convolution to encode local feature, and the 
convolution and self-attention fusion modules are used in the latter 
two stages. The encoder also exploits overlapping windows at the 
beginning to improve performance and reduce input resolution, which 
also determines that our framework is not suitable for the masked 
auto-encoding strategy in MAE[5]. The window masking strategy 
with sequential reconstruction and alignment operations divides the 
image into different windows, each of which adopts a random mask 
strategy. Finally, we extract the visible patch and reassemble it into an 
image as the input to the encoder. The decoder is a lightweight 
architecture following the design in MAE[5], which inputs all patches 
to predict the masked patches. The multi-scale fusion module allows 
the decoder to focus more on the reconstruction task and improve the 
quality of representation by fusing the features of different scales of 
the encoder. Furthermore, we align the multi-scale fused features with 
the predicted mask patch representations via the feature alignment 
module. 

In summary, we make the following main contributions: (1) We 
design a simple, effective, and general self-supervised framework 
CoTMAE, which enables any pyramid network to act as its encoder. 
(2) We present a window masking strategy that is naturally integrated 
into our Hybrid Convolutional Transformer Pyramid Network 
architecture to help achieve masked auto-encoding. (3) Compared 

with supervised pre-training and other pre-trainings that utilize 
strategies such as zero-filling of original images, our framework 
achieves better results in industrial instance segmentation tasks, 
which not only reduces computational and training costs, but also 
ensures image segmentation performance. 
Fig. 1 Our CoTMAE architecture. Our approach makes visible 
patches as encoder input through a window masking strategy and 
enables the decoder to focus on the reconstruction of masked patches 
through a multi-scale fusion module and a feature alignment module. 
 
 
2. Related Work 
 

Vision Transformer. Transformers[1-3] have significantly 
advanced the development of natural language processing (NLP) and 
computer vision (CV). Vision Transformer (ViT)[4] demonstrates the 
power of Transformer in the field of computer vision, with 
performance that outperforms Convolutional Neural Networks 
(CNNs). ViT[4] splits an image into equal-sized blocks as input to a 
pure transformer architecture and achieves excellent performance on 
classification tasks. Yet, it performs poorly on intensive prediction 
tasks, and the heavy computational cost also becomes a huge obstacle 
for industrial applications. To this end, a series of works present a 
ViT-based hierarchical architecture[13,18-22] to reduce the 
computational complexity and further unleash the potential of ViT as 
a general model. PVT[14] reduces the complexity of the global 
self-attention mechanism through non-overlapping spatial reduction 
windows (SRW). Swin Transformer[13] restrains self-attention 
operator within non-overlapping, shifted local windows. DaViT[23] 
presents a dual attention mechanism to achieve global modeling by 
stacking attention mechanisms in spatial and channel dimensions. 
Hybrid Convolution-Transformer Network exploits the strong 
inductive bias in traditional CNNs to address the redundancy and 
slow convergence of self-attention in shallow features. 
State-of-the-art performance has been achieved in tasks such as image 
classification, object detection, semantic segmentation, and video 
understanding. CoAtNet[17] utilizes a simple and effective method to 
stack convolutional blocks and self-attention blocks vertically and 
analyze their respective characteristics in detail. Uniformer[18] 
seamlessly integrates convolution and self-attention, which solves the 
redundancy and dependency problems of efficient expression learning. 
Inspired by hybrid architectures in the visual backbone, the encoder in 
our CotMAE can better incorporate features learned from convolution 
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and self-attention while balancing efficiency and performance. 
Contrastive learning. Contrastive learning[24-33] has been 

very popular in self-supervised representation learning for vision 
tasks.  The basic idea of contrastive learning is to maximize the 
consistency between different transformed views of the same image, 
such as random cropping, random flipping, color transformation, etc., 
and minimize the consistency between transformed views of different 
images. In this way, the encoder learns an image-level representation 
of an image rather than a pixel-level generation.  

Masked image modeling. Inspired by BERT[1] for masked 
language modeling, BEIT[34] solves masked image modeling tasks 
by predicting pixels or discrete tokens based on the VIT architecture. 
But there is no explicit encoder-decoder structure. In recent works, 
MAE[5] presents an asymmetric encoder-decoder structure in which 
the encoder operates only on visible blocks and predicts mask patches 
through a lightweight decoder. MaskFeat[35] and PeCo[36] improve 
the quality of representations for self-supervised learning by studying 
prediction targets. CAE[37] separates the encoder representation from 
the prediction task and makes predictions in the latent representation 
space from visible patches to mask patches. UM-MAE[38] 
successfully uses quadratic masking strategy to achieve 
self-supervision in pyramid networks like Swin Transformer[13], 
PVT[14], etc. ConvMAE[39] presents a simple self-supervised 
learning framework with a block-wise masking strategy, which 
demonstrates that multi-scale features from supervised encoders can 
improve the performance of downstream tasks. The very recent 
approach Green-MAE[40] is similar to our approach, allowing the 
hierarchical models to discard masked patches and operate only on 
the visible ones. Our CoTMAE benefits from the development of 
hybrid convolutional-transformer pyramid networks and useful 
experience gained from recent works[34-42]. 
 
 
3. Approach 
 

Our convolutional-contextual transformer masked autoencoder 
(CoTMAE) pretrains hybrid convolutional-transformer pyramid 
networks by solving masked image modeling tasks. The architecture, 
illustrated in Fig. 1, consists of five components: a window masking 
strategy, a hybrid convolution-transformer backbone network, a 
multi-scale fusion module, a feature alignment module, and a 
transformer decoder. We introduce them respectively in the following 
subsections. 

 
3.1 Window Masking 

We present a simple and effective window masking (WM) 
strategy to support the hybrid convolutional transformer pyramid 
backbone network. Masked Autoencoders[5] adopt a random 
masking strategy on the input tokens and only provide visible patches 
to the encoder. However, the same strategy cannot be directly devoted 
to our hybrid convolution-transformer pyramid backbone network. 
Adopting a random mask strategy directly on the original image and 
zero-padding the masked patches to maintain the original image size 
is a common approach for pre-training on convolution-transformer 

pyramid networks, but this seriously reduces training efficiency and 
affects the performance of downstream tasks. Instead, our Window 
Masking strategy supports the encoder in CoTMAE to operate only 
on visible patches. 

Fig. 2 Illustration of a window masking strategy. In our approach, the 
input X is divided into equal-sized partial windows, resulting in . A 
random mask is taken within each window, most of which are 
invisible. We reorganize the visible patches in each window to form 

. Finally, we recover a complete graph  from each group. 
As shown in Fig. 2, patches of equal size are first directly 

extracted on the original image. We verify that the extraction process 
without convolution operation has better performance on downstream 
tasks. After that, we divide windows of equal size and randomly mask 
with a fixed 75% mask ratio in each window. Then, the visible blocks 
in each window are extracted, which are reordered and reassembled 
into the input image of the encoder. The actual image resolution is 
half of the original image, which not only improves the training 
efficiency, i.e. only the visible blocks are trained, but also simply and 
effectively uses the mask auto-encoding strategy. We also compare 
random masking strategies without splitting windows and verify that 
our WM enhances the localization of image location information, 
allowing convolution to learn finer boundary information. 

 
3.2 Hybrid Convolution-Transformer Pyramid Backbone 
Network 

In the research of visual transformers, a pyramid transformer 
architecture with a hierarchical structure has been shown to enhance 
the performance of ViT[4]. In addition, powerful hybrid 
convolution-transformer structures have also emerged, such as 
CoAtNet[17], Uniformer[18], etc., which demonstrate the great 
potential of hybrid convolution-transformer pyramid structures, while 
achieving good performance on various downstream tasks.  

As shown in Fig. 3, our encoder consists of four stages with 
output spatial resolutions of H/4×W/4, H/8×W/8, H/16×W/16, and 
H/32× W/32, where H and W are the height and width of the input 
image. In the first two stages, the resolution is reduced by half using 
consecutive convolutional layers, where overlapping convolution 
operations are used to reduce the resolution while improving 
performance. The output of our second stage is transformed into 
token Embeddings as the input of the third stage. We propose a 
Transformer-Convolution Fusion (TCF) module that combines 
convolutional and self-attention layers simply and efficiently. We also 
add DW-Conv as an implicit positional encoding in the multi-head 
self-attention (MHSA) module[43], which can help the transition 
between attention and convolutional blocks. 
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Fig. 3 Illustration of the backbone network of CoTMAE. The patch 
downsample module uses 3*3 overlapping convolutions, which can 
improve performance. The convolution block uses a 7*7 convolution 
kernel to increase the receptive field. It also shows the structure of the 
transformer-convolution fusion module, which effectively utilizes the 
features of convolution and self-attention with a simple vertical 
stacking approach. 

 
3.3 Decoder and Loss Function 

The decoder in CoTMAE adopts a structure similar to the decoder 
in MAE[5], a lightweight transformer layer. The input of the decoder 
is also added with a positional embedding, which contains the 
encoder output and the masked patches that need to be predicted. A 
feature alignment module is added before the decoder, which aligns 
the features learned by the encoder with the mask patch in space, 
otherwise, the reconstruction effect will be garbled. Unlike MAE[5], 
the multi-scale fusion module fuses features from the last three stages, 
which can enable the decoder to focus on the prediction of masked 
patches. Due to the need to fuse features of different scales, our 
multi-scale fusion module consists of a downsampling module, a 
linear layer, and an upsampling module. The downsampling module 
uses 2*2 non-overlapping convolutions. The patch-expand module as 
our upsampling module can achieve better performance than other 
upsampling modules. The linear layer enables the fused features to 
maintain the same dimension as the decoder. 

 
Among them, Conv(*,k) represents the convolution operation 

with the size of k in both kernel and stride, and PatchExpand( ,s) 
represents the upsampling operation with the magnification of s. 

We use mean squared error (MSE) as our loss function. We 
compute the loss only on masked patches, similar to BERT[1]. 
Following MAE[5], we also normalize the pixels of the original 
image as our prediction target, which improves the representation 
quality. 

 
where m is the set of mask tokens and i is the token index. I(i) is 

the normalized pixel value of the input image and Î(i) is the decoder 
output. 

 
 

4. Experiment 
Our experiments focus on fine-tuning accuracy on downstream 

tasks rather than linear probing. The performance of our 
self-supervised model is directly compared to supervised models 

trained on ImageNet-1K[44], COCO datasets[45] using the encoder 
in CoTMAE. We demonstrate that our approach is more efficient and 
less time-intensive by validating the performance of both models on 
an industrial instance segmentation dataset. Furthermore, all ablation 
experiments are performed on our industrial instance segmentation 
dataset. 

 
4.1 Setting of Backbone Network 

We preliminarily design the number of layers of each stage of the 
encoder in CoTMAE according to the configuration of ResNet[46]. 
According to previous works[13,17,47], if an image of size H×W is 
input, a feature embedding with a resolution of H/2×W/2 and 64 
channels can be obtained after the first stem layer. After the four 
downsampling modules, along with the resolution reduction to 
H/4×W/4, H/8×W/8, H/16×W/16, and H/32×W/32, the number of 
channels increased to 96, 192, 384, and 512, respectively. In Stem, we 
use a 7*7 convolution and two consecutive 3*3 convolutions to 
extract prior knowledge. The kernel, stride, and padding values for 
each patch embedding layer are 3, 2, and 1, respectively. The 
backbone network in self-supervised pre-training is only employed as 
a module in CoTMAE, which can be replaced by any other CNNs or 
isotropic backbone network without any modification. 

 
4.2 Downstream Tasks 

Pre-training Setup. Self-supervised pre-training is conducted 
on the industrial instance segmentation dataset with our CoTMAE. 
We specified the input image to 256*256, which uses simple random 
augmentation, including random cropping, horizontal flip, and 
normalization. We trained for a total of 1600 epochs. The number of 
warm-up epochs is 40. We use the AdamW[48] optimizer with the 
cosine annealing schedule, which uses a base learning rate of 
1.5×10-4, a weight decay of 0.05, and a batch size of 1024.  

Instance Segmentation Setup. Our industrial annotation dataset 
has a total of 30,000 images, of which the test set has 1,500 images. 
We use the Encoder from CoTMAE as the backbone network of 
Cascade RCNN[49]. Our architecture uses FPN as detector. We 
finetune Cascade RCNN on the industrial instance segmentation 
dataset and report APmask and ARmask on the test dataset. We also 
use the AdamW[48] optimizer with a learning rate of 1e-4 and a 
weight decay of 0.05. We train for 36 epochs with a fixed-step weight 
decay strategy. 
Table 1 Instance Segmentation on Industrial Annotation Datasets. All 
the methods use the hybrid convolution-transformer pyramid network 
architecture of CoTMAE. All results are based on the same 
implementation of instance segmentation. COCO-APmask represents 
the masked average precision of the supervised model on the COCO 
2017 dataset[45]. Segm-* represents the segmentation performance 
metrics on the industrial instance segmentation dataset 

Methods Segm-AP@0.5 Segm-AR@0.5 COCO-APmask 
No-pretrained 

model 
89.7% 92.0% - 

Supervised 
model 

92.5% 94.0% 45.8% 

Ours 92.5% 94.5% - 
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Results on Instance Segmentation Dataset. As shown in Table 1, 

we adopt AP and AR as our evaluation metrics on instance 
segmentation data. We separately experiment with the performance of 
the no pretraining model, supervised pretraining model, and 
self-supervised pretraining model on industrial annotated data. 
Compared with no pretraining model finetuned for 36 epochs on 
industrial annotated data, CoTMAE can significantly improve AP and 
AR by 2.8% and 2.5% with 25 finetuning epochs. Our self-supervised 
pre-trained model outperforms supervised pre-trained model by 
0%/0.5% in terms of AP/AR. Although the performance gain is small, 
our model greatly improves the pre-training efficiency. It can be 
contended that our approach is appropriate for hybrid 
convolution-transformer pyramid networks and achieves better 
performance than supervised models in downstream tasks. 

 
4.3 Ablation Studies 

We conduct some essential ablation experiments on CoTMAE to 
analyze the effects of different components. We report and analyze 
the results of the ablation experiments in detail 

Comparison results of different masking strategies. Table 2 
shows the results of instance segmentation with different strategies. It 
can be seen that our pretrained model achieves the best segmentation 
performance. Furthermore, Random Mask Reorganization 
outperforms Zero-Padding by 0.2%/0.1% in terms of AP and AR. In 
addition, Zero-Padding operates on all patches, requiring longer 
training time and larger memory. It can also be seen that the 
performance of Window Masking WM  and Random Mask 
Reorganization is almost the same when only WM is used and that 
the performance will increase significantly when multi-scale fusion is 
added. As we analyzed, the fused encoder features allow the decoder 
to focus on the prediction of mask patch pixels, allowing the encoder 
to learn more efficient features. This verifies that our multi-scale 
fusion module is effective for improving downstream instance 
segmentation performance. In Fig. 4, we also compare the fine-tuning 
performance variation curves of different masking strategies. Window 
Masking has higher fine-tuning accuracy throughout training 
Table 2 Comparison among different strategies using CoTMAE under 
1600 epoch pretraining. Zero-Padding represents filling all mask 
patches of the original image with zero pixel values. Random Mask 
Reorganization means reorganizing all unmasked patches into the 
whole image. Multiscale Fusion indicates that our multiscale fusion 
module is used. 

Mask Strategy
75%  

Im
age 
Siz
e 

MSE-
Loss 

epo
chs 

Segm-A
P@0.5 

Segm-A
R@0.5 

Zero-Padding 256 0.201
4 

160
0 

91.5% 93.5% 

Random-Mask-Re
organization 

256 0.198
9 

160
0 

91.7% 93.6% 

Window Masking 256 0.197
0 

160
0 

91.8% 93.8% 

Window Masking 
+ Multiscale 

256 0.195
4 

160
0 

92.5% 94.5% 

Fusion 
 

Fig. 4 Fine-tuning results for different masking strategies. Under the 
settings in Table 2, we can see that our strategy consistently 
outperforms random mask reorganization. 

Pre-training epochs. Based on MAE research, larger 
pre-training epochs can improve self-supervised fine-tuning 
performance without overfitting. We test the performance on 
downstream tasks based on pretrained models trained for 400, 800 
and 1600 epochs. The performance results are shown in Table 3. 
Table 3 Performance of instance segmentation for different 
pre-training epochs 

Epochs Segm-AP@0.5 Segm-AR@0.5 
400 91.6% 93.7% 
800 92.0% 93.9% 
1600 92.5% 94.5% 

Window size. Previous work has shown that larger window 
partitions are practical for fine-tuning performance. In the 
experiments, we divided the reconstituted windows into 4 and 16 
windows. To be clear, larger window size add little extra 
computational cost. Table 4 shows the fine-tuning results for different 
window sizes, which demonstrate that larger window sizes have 
better performance. We analyze that smaller window sizes may 
reduce the difficulty of pre-training. 
Table 4 The influence of different window numbers (Wn) on the 
performance of downstream tasks 

Wn Segm-AP@0.5 Segm-AR@0.5 
4 92.5% 94.5% 
16 92.3% 94.2% 

 
 

5. Conclusions 
 

In this work, we present a simple and effective self-supervised 
pretraining framework named CoTMAE, which uses a novel window 
masking strategy to allow our hybrid convolution-transformer 
pyramid network to operate only on visible patches. Compared with 
existing alternative strategies, it achieves stronger training efficiency 
and better performance on industrial instance segmentation datasets. 
We believe that our design scheme is also practical for CNNs to 
support self-supervised tasks with large amounts of unlabeled data in 
different industrial scenarios. 
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