
Proc. of the 9th Intl. Conf. of Asian Society for Precision Engg. and Nanotechnology (ASPEN 2022)
15–18 November 2022, Singapore. Edited by Nai Mui Ling Sharon and A. Senthil Kumar

doi://10.3850/978-981-18-6021-8 OR-08-0053

NOMENCLATURE 
 
ISF = Incremental Sheet Forming 
cGAN = conditional Generative Adversarial Network 
CNN = Convolutional Neural Network 
CAD = Computer-aided Design 
CAM = Computer-aided Machining 
RMSE = Root mean squared error 

 
 
1. Introduction 
 

Sheet metal products are ubiquitous in aerospace, automotive, and 
marine industries because of their low cost, lightweight, and 
functional effectiveness [1]. Conventional fabrication of these 
products is done by stamping, where a rigid punch and die are used to 
permanently deform a flat sheet into the desired geometry. However, 
these tools are expensive to manufacture, which makes them 
economical only in mass manufacturing applications. Consequentially, 
this makes the process unsuitable for low-volume applications like 
prototyping, repair, and personalized products. 

Incremental sheet forming (ISF) is a flexible sheet forming 
process that eliminates the need for the die. ISF uses a moving 
forming tool to incrementally deform a sheet metal over a specified 
toolpath corresponding to the target geometry. This is advantageous 

as it not only removes the need to fabricate costly dies, but also 
minimizes storage costs as products can be stored digitally instead of 
in dies [2]. 

While ISF has tremendous potential in this regard, a big problem 
with the process is the poor geometric accuracy obtained after 
forming. This largely stems from an assumption made during the 
forming toolpath generation. ISF toolpaths are commonly made using 
computer-aided machining (CAM) milling software, which generates 
a toolpath across the surface of the target geometry. However, this 
approach assumes that there is no elastic recovery of the sheet 
material after permanent deformation. Because of this, a spring-back 
behaviour can be observed on the geometry after forming, causing 
severe changes in the resultant sheet geometry. 

In this paper, we present a novel approach to predict the complex 
ISF deformation behaviour using a conditional Generative 
Adversarial Network (cGAN) with Convolutional Neural Networks 
(CNNs). We first provide a review of relevant literature on addressing 
the ISF geometric error. Subsequently, we detail our methodology, 
data curation, and training process. We then report on the results from 
experimental validation. 
 
1.1. Literature Review 
 

Because of the poor forming accuracy, ISF cannot be reliability 
applied in precision-sensitive applications. Researchers have adopted 
several approaches to predict the spring-back error, which would be 
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reviewed in this section. 

The Finite Element Method (FEM) is a commonly used approach 
when trying to model the deformation process through mathematical 
modelling. Moser, et al. [3] used FEM to efficiently simulate 
double-sided ISF, where they found poor agreement with 
experimental results. Kulkarni and Mocko [4] also utilized FEM in 
simulating heat-assisted ISF, which reported an accuracy of 0.378mm 
root mean squared error (RMSE), albeit with a computation time of 
121 hours. Guzmán, et al. [5] proposed the use of the 
Gurson-Tvergaard-Needleman model in simulating ISF process. The 
researchers found that whilst the model had shown good agreement for 
a line geometry, it did not perform as well in a conical geometry. In 
literature, the FEM approach in modelling ISF is still relatively 
unproven in complex free-form geometries. Additionally, FEM also 
consumes a significant amount of time, in most cases forming the part 
would be faster than numerical simulation. 

Instead of using FEM, another approach to generating ISF 
predictions is by applying statistical models on empirical data. Khan, 
et al. [6] noted the importance of parameterizing the local geometry 
for empirical modelling. They proposed a rule-based classifier that 
predicts deviation using position and 8 qualitative labels of the 
neighbouring points. Therefore, specific details such as the magnitude 
of neighbouring points or points outside of these 8 coordinates are 
neglected. Behera, et al. [7] presented the use of multivariate adaptive 
regression splines to predict deviation in STL vertices. By separating 
the target geometry into planar features with the wall angle, the 
deviation was predicted. This approach is strictly constrained by the 
combination of features the target geometry must have, greatly 
reducing its applicability for general use. Möllensiep, et al. [8] 
reported on the use of exponential Gaussian progress regression in 
heat-assisted double-sided ISF. The researchers used 8 parameters to 
predict the geometric deviation at each individual toolpath coordinate. 
Consequentially, this approach to prediction is strictly constrained by 
the initially generated toolpath, therefore the geometric deviation of 
regions outside of these specific coordinates is not visible.  

In these works, researchers have shown different approaches to 
parameterizing forming geometries to predict forming errors. 
Effective parameterization of the forming geometry appears to be 
paramount to the accurate prediction of ISF geometric error. However, 
these approaches lack a means to effectively parameterize the entire 
forming geometry for error prediction of the entire ISF part. A likely 
reason might be due to the large size of input data make it challenging 
to implement on many statistical models. 

Recently, artificial neural networks have sparked significant 
interest in research because of their strength in modelling highly 
complex systems. Inspired by the biological brain neurons, 
McCulloch and Pitts [9] first proposed a basic concept which was 
further refined later by Rosenblatt [10] in the form of a perceptron. 
When these layers are stacked sequentially, deep learning was 
realized [11], which greatly improved the capabilities of modern 
artificial neural networks. In 1980, Fukushima [12] proposed what is 
now regarded as a Convolutional neural network (CNN), which is a 
class of artificial neural networks. CNNs use convolution kernels that 
slide across input features to generate a feature map and are used 

commonly with image or video data. A well-regarded example of 
CNN is ImageNet [13], which outperformed other competing 
networks in classifying a database of 1.2 million images into 1000 
different classes. While impressive, such networks purely make a 
single classification prediction based on an image. In 2014, 
Goodfellow, et al. [14] conceptualized the Generative Adversarial 
Network, which generated realistic predictions based on a training set. 
This was done using a duelling network architecture where a 
generator is constantly trying to fool a discriminator, which attempts 
to separate real from generated images. Subsequently in 2016, Isola, 
et al. [15] utilized a similar network but in a conditional setting to 
realize image to image translation tasks. Skip connections were added 
between specific layers to mitigate information loss. They also used a 
combination of the L1 distance and discriminator for the training 
objective. In their work, they demonstrated realistic image predictions 
from a myriad of problem sets. 

In this paper, we present the use of cGAN in predicting the 
resultant ISF formed part given the input CAD geometry. To the best 
our knowledge, this differs from other published approaches in that 
the entire CAD geometry is taken into consideration in the modelling 
and subsequent prediction of the forming error. 

 
2. Methodology 

We introduce an ISF error prediction framework (Fig. 1) using 
cGAN which uses 16-bit depth images of the CAD to predict the ISF 
forming outcomes in the form of another depth image. 

 
Fig. 1. Prediction model 
 
2.1 Generating 2D Depth Images 

First, there was a need to convert the 3D forming geometries into 
a 2D image for use in the cGAN model. First, the CAD data is 
converted into a triangulated surface and then saved as an STL file 
format using SOLIDWORKS. A MATLAB script was then developed 
to fill a 256x256 pixels greyscale image with the depth values of the 
given STL file. The ray-triangle intersection algorithm [16] was used 
to determine intersections between these pixels and the triangles. The 
post-ISF forming images were also generated similarly, with the STL 
instead generated from PolyWorks metrology software. 
 
2.2 cGAN Model 

We utilize a well-established cGAN model developed by Isola, et 
al. [15], which was shown to be effective in performing image to 
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image conversion tasks. The cGAN model uses a generator with a 
U-Net encoder (C64-C128-C256-C512-C512-C512-C512-C512) and 
decoder (CD512-CD1024-CD1024-C1024-C1024-C512-C256-C128). 
The discriminator uses a PatchGAN structure for the discriminator. 

A limitation in this original model is the use of only 8-bit images. 
While this is acceptable in its previous application, this resolution is 
inadequate when considering its application to ISF. With 8-bit images, 
the quantization process results in a depth resolution of  
when mapping the 8-bits from a depth range of 0 to 60mm. We 
adopted 16-bit images instead, which improves this resolution to less 
than . 

 
2.3 Data curation and model training 

A series of forming experiments were conducted to generate data 
for training. The ISF setup used (Fig. 2) consisted of an ABB robot 
arm with a 15mm hemispherical ball forming tool attached to the 
end-effector. The sheet metal used was a 325x325x1mm AL6061, 
which was annealed and lubricated prior to forming. 

 
Fig. 2. ISF setup 

A wide variety of forming geometries (Fig. 3) was formed for 
training data. This consisted of geometries with varying wall angles 
( ), fillet radiuses ( ) and wall features 
(straight and stepped). To increase the data collected, these 
geometries were measured at 10mm intervals up to 50mm. Surface 
measurement was done on the forming side using a 3D laser scanner 
(Fig. 2). 

 
Fig. 3. Forming geometries.  

After converting these 3D measurements to depth images 
(Section 2.1), data augmentation was applied to further increase the 
amount of data. Specifically, more images were created by rotation 
and mirroring the images. In total, there were a total of 272 pairs of 
CAD and post-ISF images for training. 

The training was done over 1750 epochs and a linearly decaying 
learning rate was implemented in the final 1000 epochs. An Intel 
Xeon W-2113 CPU with NVIDIA Quadro P4000 graphics card 
completed the training in approximately 15 hours.  
 
3. Experimental validation 

Experimental validation was performed on two different 
geometries. Two untrained geometries were used in validation: a wall 
angle (  version of geometry type 2 (Fig. 3b) and a new 
combination of various features of type 4. 

 
Fig. 4. Validation geometry 

The results of the predictions are summarized in Fig. 5, where the 
actual root mean squared error (RMSE) of each geometry is indicated 
along with the accuracy of the prediction. In this case, accuracy was 
determined using (1). 
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 (1) 

 
4. Early work on improving ISF accuracy 

While being able to predict forming accuracy is important for 
improving the process, a means of improving the forming accuracy 
would be significantly more beneficial. In the geometries formed, we 
observed under-formed regions, especially in the angled walls. We 
theorize that inducing increased forming forces in these regions can 
have a positive impact on forming accuracy. 

Making use of the earlier prediction of geometry type 2 ( , we 
inversed the errors of under-formed regions and converted the depth 
image back into a 3D STL. The accuracy of prediction obtained for 
this specific geometry was 99.3%. A new forming toolpath was then 
generated on the morphed 3D STL, and we found a 32.4% decrease 
in wall RMSE by performing this geometrical compensation (Fig. 6). 
We hope to complete a more detailed study on this compensation 
approach in the future. 

 

5. Conclusions 
When compared to conventional stamping processes, ISF excels 

in the economical low-volume fabrication of sheet metal products. 
However, poor geometric accuracy still remains a significant problem 
in ISF. In the presented work, a CNN based network with a cGAN 
architecture was used to model post-ISF outcomes. With the error 
prediction obtained, we also demonstrated the use of selective 
geometric morphing to realize an improvement in forming accuracy. 

 
Fig. 6. Compensation results 
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