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NOMENCLATURE 
 
g = 6-DoF grasp pose with 6 parameters, (x, y, z, rx, ry, rz) 
x, y, z = 3D position of grasp pose 
rx, ry, rz = 3D rotation of grasp pose 
w = opening width of the two-finger gripper 
V = number of approaching vectors (views) 
A = number of in-plane rotations (angles) 
  

 
1. Introduction 

Grasping objects has always been an instinctive behaviour for 
humans but is a relatively difficult task for robots. The robot’s 
grasping ability is not as good as that of a human, especially when it 
comes to novel objects. Hence, object grasping is a challenge in the 
field of robotics. With more solutions for this, applications of robotic 
grasping can be implemented in various areas such as agriculture, 
manufacturing and assembly.  

Robotic grasping requires visual perception, motion planning and 
control [1-3]. The first step would be for a robot to recognise and 
locate the object. Furthermore, pose estimation is also an important 
step in robotic grasping. Subsequently, the detection of all grasp 
candidates facilitates the planning of robot movement paths and 

orientation. However, the reliability of object grasping is still a 
concern for objects in unstructured environments and unseen objects 
[4]. 

Traditionally, physics analysis methods [5, 6] are used to 
determine appropriate grasp poses. However, the object models 
required may not always be available, and applying them to unseen 
objects can be difficult. Furthermore, these procedures are typically 
time-consuming and computationally costly. 

In order to achieve autonomous robotic manipulation, the trend 
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Random object grasping in unstructured environment is a crucial problem in robotics which is yet to be solved but highly 
demanded. In this paper, we focus on the prediction of 6-DoF grasp poses using end-to-end deep learning approach 
based on RGB-D images. Most of the current approaches for 6-DoF grasp are generated from point clouds or unstable 
depth images, which may lead to undesirable results in some cases. The proposed method divides the 6-DoF grasp 
detection into three sub-stages. The first stage is the LocNet, a convolutional-based encoder-decoder neural network to 
predict the location of the objects in the image. Besides, ViewAngleNet is also a convolutional-based encoder-decoder 
neural network that predicts the 3D rotation groups of the gripper at the image location of the objects, similar to LocNet 
but with a different output head. Afterwards, a feasible grasp search algorithm will determine the gripper's opening 
width and the gripper’s distance from the grasp point. Real-world experiments are conducted with a UR10 robot arm, an 
Intel Realsense camera and a Robotiq two-finger gripper on single-object scenes and cluttered scenes, which show 
satisfactory success rates. 

 
 

Fig. 1 Overview of Grasp Pose Detection 
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has shifted towards the use of deep learning [7, 8]. The prediction of 
grasp detection with deep learning is based on computer vision and 
artificial intelligence. The detection of 2D rectangular grasps for 
objects with RGB-D input data is the initial approach investigated, 
and it is also the most common. Some datasets [9, 10] have been 
published, and numerous techniques [9, 11, 12] have been developed 
to produce 2D planar grasps on those dataset. However, the 2D 
rectangular-based grasp has some limitations in terms of the grasp 
pose. The gripper can only approach the object from the vertical 
direction and it would not be optimal for objects that are lying 
horizontally on the surface.  

Recently, more studies have been published on the detection of 
6-DoF grasp poses. The estimation of 6D poses [13, 14] allows the 
prediction of 6-DoF poses for seen objects but this cannot be 
generalised to unseen objects. Another sampling and evaluation 
approach is used by GPD and PointNetGPD in a two-step process. 
However, the unsatisfied sampling findings result in the examination 
of a large number of samples to find the accurate grasp poses. This 
procedure is not time-efficient. Besides, grasp poses can also be 
transferred [15, 16] from existing objects to others. However, if the 
objects are unseen and the geometries are different from the existing 
ones, this approach will fail. Furthermore, 6-DoF grasp poses can be 
generated by passing the partial view point cloud, obtained from 
RGB-D images, through the networks [17, 18]. But, due to the 
possibility of sensor failure, depth image data is less reliable than 
RGB image data.  

Therefore, this paper aims to explore the inference of the 6-DoF 
grasping pose for random objects using RGB-D image data. A novel 
deep network framework is proposed for grasp pose detection as 
shown in Figure 1. The input for the proposed framework is a RGB-D 
image and 6-DoF grasp poses are produced from the framework as 
the output. The problem is divided into three subtasks. Both the RGB 
image and the depth image are used to generate a heatmap indicating 
feasible object grasp locations. This is achieved by passing the RGB 
and depth images through an encoder-decoder like network, LocNet. 
Similarly, the rotation matrix of the gripper for each grasp location is 
produced by the same RGB-D input and an encoder-decoder like 
network, ViewAngleNet, together with the feasible grasp locations. 
Afterwards, a feasible grasp search is carried out to obtain the 
opening width of the gripper and the distance to the grasp position. 
The search is made up of sampling and filtering. The grasp pose 
samples are calculated from the grasp locations and rotation matrices. 
The filtering consists of collision detection and empty-grasp detection 
between the gripper and the scene. Given the deep neural network and 
the big data from the GraspNet-1Billion dataset [19], the approach 
may not just apply to seen objects but also generalise to unseen 
objects. The performance of the developed framework will be 
simulated on a UR10 collaborative robot arm. 
 
2. Method 

The proposed grasp pose detection comprises three parts which 
work together in a pipeline as illustrated earlier. The first two parts of 
the pipeline, LocNet and ViewAngleNet, form the grasp pose 
detection network. 

Both LocNet and ViewAngleNet share the same backbone 
network which includes the encoder-decoder based convolutional 
neural network with Feature Pyramid Network (FPN) structure as 
seen in Figure 2. For the encoder-decoder structure, an encoder 
extracts features from input images through a series of convolutions, 
while the decoder semantically transfers the discriminative features 
onto the pixel space. The baseline encoder employed for image 
processing is ResNet50 due to its deep architecture and the ability to 
solve complex problems. FPN is also applied to better use the RGB-D 
image information for feature extraction through the fusion approach. 
 
2.1 LocNet: Grasp Location Heatmap 

LocNet is the first component of the grasp pose detection network 
which generates the feasible grasp location heatmap. The heatmap is 
then used to determine the optimal grasp location (x, y) at pixel level, 
where higher intensity represents a higher probability of grasping. 
LocNet consists of the backbone network with a classification output 
head as it is treated as a binary classification problem for each pixel 
(x, y) in the image. In practice, every annotated grasp location is 
considered as a small target circular area, because it is impossible to 
acquire the exact ground truth for all the possible grasp locations. The 
advantage of employing this encoder-decoder structure in the 
backbone network is that it is a generative detection method, even 
though the target map is discrete in each annotation. It can extrapolate 
from the sparse grasping location annotations and attempt to map out 
all conceivable grasp locations in a dense and continuous way. The 
grasp location samples are selected from the predicted heatmap by 
setting a threshold. After filtering the heatmap, the location samples 
that are above the threshold will be regarded as the feasible grasp 
locations. The samples can be further selected through the 
Non-maximum suppression (NMS) process to finalise the grasp 
location. 

 
2.2 ViewAngleNet: Gripper Orientation Estimation  

ViewAngleNet is the other component of the grasp pose detection 
network that predicts the pixel level-based gripper orientation. 
Directly regressing the rotation matrix is one simple approach to 
tackling this problem. However, there are multiple possible rotations 
that can achieve successful grasping at the same location. Thus, it 
would not be suitable to use regression. As a result, with reference to 
GraspNet-1Billion [19], the gripper rotation matrix is split into two 
parts: the approaching vector (view) and the in-plane rotation (angle).  

Since multiple rotations can be feasible in the same location, this 

Fig. 2 Architecture of Grasp Pose Detection Network 
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problem is treated as a multi-label classification problem. There are a 
total of V� A classes. For every possible grasp location, 
ViewAnlgeNet predicts the confidence scores for each of the V� A 
classes independently and outputs them in the 1-dimensional vector 
format with the length of V� A. Similar to LocNet, ViewAngleNet 
also contains a backbone network with a classification output head 
but the classification head in this case is for multi-label classification. 

 
2.3 Feasible Grasp Search 

After obtaining the grasp location and the gripper orientation 
from LocNet and ViewAngleNet respectively, the feasible grasp 
search is applied to determine the gripper opening width and the 
distance from the gripper to the image plane. 

The main idea is to sample the grasp candidates first, followed by 
filtering out the non-viable grasp poses. This is under the assumption 
that the gripper point should be as near to the partial-view point cloud 
rebuilt from the RGB-D image as possible. In order to estimate the 
width, different widths are sampled given the grasp location and 
gripper orientation. Similarly, with the grasp location and gripper 
orientation obtained previously, distances are sampled in a uniform 
manner from the position above the gripper point to the position 
below the gripper point. The gripper point can be computed from the 
grasp location and depth in the depth image. A group of grasp pose 
samples can be generated with the gripper point, grasp rotation matrix, 
and various widths and distances. Subsequently, the filtering involves 
collision and empty-grasp detections. For collision detection, the 
sample grasp poses will be filtered out if there are points contained in 
the gripper space. For empty-grasp detection, the sample grasp poses 
will also be filtered out if there are no points in between the grasping 
space of the parallel jaw gripper. Afterwards, grasp pose 
non-maximum suppression (GPNMS) [19] is conducted on the 
remaining grasps to eliminate the duplicates and find the optimal 
grasp poses. 

 
4. Implementation Details 
4.1 Dataset and Preprocessing 

The data required for training involves the RGB-D image with the 
corresponding ground truth for the heatmap, as well as view vector 
and angle. The generated Cornell dataset [9] and the Jacquard dataset 
[10] are first looked into. They provide the RGB-D image with 
ground truth for the 2D planar grasp. However, the grasp poses in 
these datasets are all approaching the objects in the vertical direction 
only and are not defined in various directions.  

Hence, the dataset is obtained from GraspNet-1Billion [19], 
which is the largest known 6-DoF grasping dataset available to the 
public. It includes richly annotated grasp poses in complex scenes 
captured by two commercial RGB-D cameras (Kinect Azure and 
RealSense D435), which helps to generate the ground truth. 

Due to the enormous amount of data available, Farthest Point 
Sampling (FPS) [20] method is adopted to reduce the training data 
sample. FPS is carried out to obtain evenly distributed data points 
from the dense data sample. 5% of the total grasp locations are 
sampled which results in a total of 10 million grasp locations and 191 
million grasp pose labels. Therefore, each image contains roughly 

195 grasp locations and each location has around 19 grasp poses. 
As mentioned previously, the gripper orientation is decoupled into 

view and angle. Furthermore, from the gripper rotation matrix in the 
dataset, the nearest view and angle are computed and combined as the 
ground truth label for the gripper orientation. Only the grasp 
orientations for the corresponding grasp locations are considered. 
Besides, the radius for circular area centering at the grasp location (x, 
y) is set to 4.5 pixels. 

During feasible grasp search, the gripper opening widths are 
sampled from the range of 0.01m to 0.1m with a step size of 0.01m 
The distance to the image plane from the gripper point is selected 
from 0.02m above to 0.02m below with a step size of 0.01m. For each 
predicted grasp location, the closest neighbouring grasp poses are 
produced from the various widths and distances to form the sample 
group for filtering. 

 
4.2 Network and Training 

During training, V=100 views and A=4 angles are sampled evenly, 
which generates a product of V� A=400 classes of combined view 
and angle. The network is trained on four Nvidia GeForce RTX 2080 
Ti GPUs with a batch size of 16. With the ADAM optimiser, the 
learning rate is initialised to 0.001. The learning rate applied is the 
step learning rate which will decrease the learning rate by a factor of 
10 for every 20 epochs. ResNet pretrained weights are used to start 
the encoder section of the network. Data augmentation is employed 
during training by performing color jittering to prevent overfitting. 

 
5. Experiments 

The experiment setup includes an UR10 robot arm, an Intel 
Realsense L515 camera and a Robotiq 2F-140 gripper. 

 
5.1 Real Robot Experiment on Single Object Scenes 

Random objects are chosen and placed on the table in a random 
order. The robustness performance of the model is evaluated in this 
experiment. There are 10 attempts carried out on each individual 
object and the success rate is computed. 

 
Table 1 Performance Of Real Robot Experiment On Single Object 
Scenes 

Object 
ID 

Object Name Type Attempt Success Success 
Rate 

1 Cardboard Box Novel 10 7 70% 
2 Tripod Novel 10 6 60% 
3 Duct Tape Novel 10 8 80% 
4 Plastic 

Vegetable 1 
Novel 10 7 70% 

5 Screwdriver Novel 10 7 70% 
6 Plastic 

Vegetable 2 
Novel 10 7 70% 

 Average - 60 42 70% 
 
5.2 Real Robot Experiment on Cluttered Scenes 

Similarly, the real robot experiment is conducted in the cluttered 
scenes. Multiple unseen objects from the previous experiment are laid 

217

©2022 ASPEN 2022 Organisers. ISBN: 978-981-18-6021-8. All rights reserved.



Proc. of the 9th Intl. Conf. of Asian Society for Precision Engg. and Nanotechnology (ASPEN 2022)
15–18 November 2022, Singapore. Edited by Nai Mui Ling Sharon and A. Senthil Kumar

 
out on the table randomly to form the cluttered scene. The test 
continues until all the objects in the scene are picked and placed in a 
designated position. 
 
Table 2 Performance Of Real Robot Experiment On Cluttered Scenes 

Objects ID Attempt Success Success Rate 
1, 2, 4 3 4 75% 
2, 3, 5 3 4 75% 
1, 2, 3, 4, 5 5 7 71.43% 
1, 2, 3, 4, 5, 6 6 8 75% 
Average 17 23 73.91% 

 
3. Conclusions 

A 6-DoF grasp pose detection pipeline is proposed in this paper. It 
divides the grasp pose detection problem into three sub-problems: 
grasp location detection; gripper orientation detection; gripper 
opening width and optimal gripper point detection. To address the 
associated subproblems, the pipeline proposes using LocNet, 
ViewAngleNet, and feasible grasp search. The presented procedure 
has introduced some novelty to the methodology. This offers a fresh 
perspective on the object grasping problem, which might be 
investigated further in the future. Although the findings do not 
indicate a high level of accuracy, they do show that the proposed 
network is capable of predicting viable grasp location heatmaps and, 
to a certain extent, gripper rotation matrices. Both experiments result 
in desirable success rates, proving that the proposed grasp pose 
detection is still fairly successful. 
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