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NOMENCLATURE 
= relative angle between ith and i+1th link 

R = reaction force 
T = tension of the cable 
h = height of the router 
l = length of the link 

= angle between cable and router 
a, b, c, d = router’s foot position relative to parent link’s 
origin 
c = damping coefficient of joint

 
 
1. Introduction 
 

Power transmission mechanisms such as gear, linkage, belt, ball 
screw, etc. are important considerations in robotics [1]. Among them, 

cable-driven mechanisms have the advantage of having a high 
payload-to-weight ratio and large workspace [2, 3, 4]. Also, they have 
been actively studied in various fields especially because of its high 
dexterity being secured from low moving mass [2]. 

In addition, interest in hyper-redundant manipulators has also 
been increasing in recent years. Hyper-redundant manipulators are 
systems with significantly higher degree-of-freedoms (DOFs) than 
DOFs that are mathematically required to move in a given 
environment. Since these systems are suitable for constrained 
environment and have high robustness, these systems are actively 
being studied in applications facing various environments such as 
industrial environments and rehabilitation robots [5-7]. 

However, designing the cable-driven mechanism to be a 
hyper-redundant is not simple. In order to control the manipulator for 
its intended purpose, an inverse dynamics problem should be solved. 
However, traditional solutions for solving the inverse dynamics, such 
as Lagrange-Euler equation, Newton-Euler formation, generalized 
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Cable-driven mechanism has been consistently attracted attention by its high payload-weight ratio, effective space 
utilization, and precise controllability. However, cable routing designs for precise control often sacrifice dexterity with 
precision, in order to fit theoretical models, which makes it difficult to take full advantage of cable driven robots. This study 
attempts to approach from the new perspective. This study targets serial linkages where each cable is complexly connected. 
A 2D hyper-redundant cable-driven linkage system was defined as an environment, and the reinforcement learning agent 
controlled its endpoint without having full information of the environment.  

Linkage system includes 3 links (ground link, link1, link2), 2 joints (fixed joint, movable joint), 14 cables, and 8 routers. 
Each link is defined by length, mass, center of gravity, and thickness. Joints are modeled as damper, and have a limited 
range of motion. Cables are attached on links and control links by exerting force in the direction of its tension. Cables have 
limited range of tension, and the cable breaks when the tension exceeding the limit is exerted. Routers are intermediate 
points through which cables are directed. Cables can be directed through multiple links through routers, which makes a 
cable to affect dynamics of multiple links. 

This study aims to solve the endpoint control of the extremely redundant mass spring damper system without information 
about the internal structure. The defined system is hyper-redundant and complexly routed to mimic human tendon system. In 
addition, compared to conventional mass spring damper system control, this approach is able to cope with systems with 
large number of inputs and stochastic outputs. This study is also expected to be applicable to optimizing number and routing 
of cable-driven robots. 
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d’Alembert equation, have too high computational cost to be a 
real-time control solution for hyper-redundant system [8]. Even 
though many researches are being conducted to effectively solve 
these equations, they have to be recalculated depending on the 
internal structure of the designed manipulator [9]. 

In this research, in order to preserve the strength of cable-driven 
mechanism, a reinforce learning (RL) method is introduced to solve 
its inverse dynamics. In the designed hyper-redundant environment 
simulation, even the RL model is trained without information of 
internal structures of the manipulator, the model successfully controls 
the system in real-time. With this result, we can demonstrate the 
suitability of RL for solving inverse dynamics of the hyper-redundant 
system. 

 
 

2. Methods 
 

This study constructs the hyper-redundant cable-driven linkage 
system, and ultimately attempts to control the system by 
reinforcement learning. To this end, each system components was 
defined, and a learning environment was constructed through system 
dynamics. 
 
2.1 System Components 

The cable-driven system consists of three main components: links, 
cables, and routers. Link is defined as a rectangular rigid object with 
length, mass and uniform thickness. Joint, a sub-element of the link, 
connects the link with the link, and is modeled with range of motion 
and damping coefficient. 

A concept of router is introduced, which is attached vertically on 
a link and has the ability to route cables. Routers are attached on the 
front and back of the link, which allows the tension of the cable to be 
transmitted not only to one link, but also to be transmitted through 
several links. 

Cable controls link through each router. The 0th router being the 
force source of the cable, it transmits tension as an input to routers 
attached on the link. Each cable has a different routing shape, and 
even if some cables affects the same link, their routing shape and 
position may be different. 

 
2.2 System Dynamics 

This study designs cable-driven linkage system with 3 links 

(including a ground link), 8 routers, and 14 cables, as shown in Figure 
1. The force sources are cables, which aims to move the endpoint of 
the end link with mass to the desired position by controlling its 
tension. 

Force transmission of a cable and interactions between system 
components can be modeled as Figure 2. The cable applies tension in 
its direction, and the force exerted by this tension on a link can be 
categorized and calculated in 2 types: 

Type 1: Cable routed through 2 links 
 

Type 2: Cable routed through 3 links 

 
The force exerted on each link by each cable is calculated every 

0.001 timestep, and the behavior of the entire linkage system is 
simulated. 
 
2.3 Learning Configuration 
 

In this study, a simulation environment is constructed to control 
the system and used as an environment for reinforcement learning. To 
simulate the behavior of real-world cable-driven linkage as similar as 
possible, following restrictions and input conditions were applied. 

1. Range of motion is set for the joint of each link.  
2. Joint of each link is modeled as a damper to reflect friction 

effect of real linkage.  
3. Each cable’s tension input is determined through random 

extraction with a Gaussian distribution with standard 
deviation of 0.005 from the actual input value to reflect error 
of real linkage hardware. 

4. Maximum length and maximum allowable input of the cable 
is set, and the cable is designed to be broken when the length 
is longer than that or the allowable input force exceeded. 

5. Similarly, maximum allowable normal force exerted in each 
router is set. The episode is designed to terminate with 
negative reward when the normal force is larger than the 
threshold. 

This environment was implemented as a gym environment of 
OpenAI. The geometry of the system used in this study is shown in 
Table 1 and Table 2. 
Table 1. Geometrical parameter of link in the system 

Link 0 
(ground link)   
Sub-elements 2 routers 

Link 1 Length 0.9 m 

Figure 1. Cable-driven linkage system 

Figure 2. Type 1 (left) and type 2 (right) force exerted by different
cable routing 
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Weight 0.8 kg 
Sub-elements 4 routers 

Link 2 
Length 0.5 m 
Weight 0.4 kg 
Sub-elements 2 routers 

 
Table 2. Geometrical parameter of router in the system 

Router Parent link Position on 
link 

Height 

Router 0 Link 0 -0.2 m 0.01 m 
Router 1 Link 0 0.2 m 0.01 m 
Router 2 Link 1 0.01 m 0.01 m 
Router 3 Link 1 0.2 m 0.01 m 
Router 4 Link 1 0.8 m 0.01 m 
Router 5 Link 1 0.89 m 0.05 m 
Router 6 Link 2 0.01 m 0.01 m 
Router 7 Link 2 0.25 m 0.01 m 

 
The agent does not know the full dynamics of the system, 

including cable routing. The agent is allowed to observe the rendered 
image of each timestep, , and  of each link, health of each cable 
(whether the cable is destructed), and error (distance between the goal 
point and the end point). 

Action is defined as the tension applied by the first router of each 
of the 14 cables. Action space is composed of multi-discrete action 
space size of 5. That is, with the starting tension of 0, agent was to 
choose 5 increment or decrement of the tension. Each action is 
reflected by Gaussian distribution with mean of 0.1, standard 
deviation of 0.005. 

In each episode, random goal point is defined within the possible 
trajectory of the end point. Each cable starts with the force of 0. At 
each 0.001 timestep, the force is calculated, and the chosen action is 
deployed to the system in every 0.005 timestep. The episode 
terminates after 15 seconds, or if any routers or all of the cables are 

broken. 
 
 
3. Results 

 
The system was implemented with OpenAI Gym and 

Stablebaselines3 package was used to build and train agent. PPO 
model was used and trained for 500,000 episodes. The learning curve 
of the system is shown in Figure 3. 

After training, test was conducted and the model showed mean 
reward of -2430.75. The timestep and action was critical parameters 

to train the model, since the system is based on solving nonlinear 
differential equation, and precise control highly depends on the scale 
of force input. 

 
 

4. Conclusions
 
This study solved inverse dynamics of hyper-redundant 

cable-driven 2D serial linkage using reinforcement learning. We 
present a hyper redundant linkage system that controls 3 links with 14 
cable inputs, and with a concept of router, each cable is routed in 
various and complex ways.  

In addition, the strength of the hyper-redundancy of the 
cable-driven system is emphasized in this study by monitoring 
whether each cable exceeded the limit tension, and by designing the 
system to destroy the cable when it does. This was also reflected in 
shaping reward in reinforcement learning, therefore making the agent 
to solve inverse dynamics considering safety. 

The trained agent successfully controlled the endpoint of the link 
to the goal point, and its accuracy and time speed will be 
quantitatively measured in the future. As an object-oriented 
programmed backbone of this study, it is planned to be used in the 
future to optimize failure according to various routing of cable-driven 
robot.  
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