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NOMENCLATURE 
 
Pobs = homogenous coordinates of a point in the object point 
cloud as observed by the robot camera 
PCAD = homogenous coordinates of a point in the complete 
object point cloud as projected from its CAD model  
T = 4x4 transformation matrix from library to scene 

 
 
 
1. Introduction  
 

Table clearing at food and beverage establishments is a research 

problem that has gathered some attention in recent years. It is a 
natural extension of smart delivery robots, which navigate their way 
through a crowded restaurant to deliver food to diners [10], but rely 
on diners to manually place the empty trays and used dishes back 
onto the robot for the returning journey. Adding table clearing 
capabilities will allow the robot to collect these dishes from the table 
autonomously, with the use of one or more manipulator arms 
mounted on the mobile platform. 

 The robotic capabilities can be broken down into several main 
tasks [12, 18]. In order to collect the empty dishes and cutlery, the 
robot will first need to identify and localize them within the table. 
Next, one of the identified objects will be selected for grasp planning, 
which includes determining suitable grasping points on the object 
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Abstract -- Autonomous clearing of food trays and crockery at hawker centres involve robotic tasks such as item recognition, 
grasp point estimation and grasp execution. Assuming there are no dynamic obstacles in the manipulator workspace, we 
focus on the machine intelligence required for the first two tasks above. Our problem statement is as follows: Given a RGBD 
view of a cluttered scene consisting of one or more known objects at rest on a flat surface, we seek a way to determine a 
feasible grasp pose for each of these objects.  
 
Recent approaches treat the whole pipeline as one black box and try to predict grasp poses directly from the RBGD input. 
However, the pipeline is intricate and contain many sub-tasks that could be explored with greater complexity. The related 
work that are successful in the end-to-end training, on the other hand, will merely output highest ranked grasp poses of any 
reachable object, without any semantic concept of the item being picked up. This lack of scene understanding would 
eventually inhibit the optimization of the grasping algorithms as there is no way to willfully select a particular object for 
manipulation. 
 
In our work, we break down the grasp pose determination into several components and focus on solving them individually. 
First, we parse the input scene by passing it through a convolutional neural network trained for instance segmentation. The 
network outputs an image and depth mask for each object that has been detected in the scene, as well as the object class. We 
assume that we have a database of known objects. Next, we use the object masks to project a partial point cloud, which is 
registered to a complete point cloud of the corresponding object in our library. A transformation is needed to align the two 
point clouds. Finally, we apply the same transformation to the grasp pose from the library to produce a grasp pose for the 
object as seen in the initial scene. Our approach allows the user to select the object to be grasped, and also lays the 
groundwork for an automated object selection strategy in the future. 
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surface and planning a trajectory for the arm to move into position. 
Finally, the fingers of the gripper will be closed and the object should 
be secured with no relative motion to the fingers when the 
manipulator arm is raised from the table. We assume the robot has a 
head mounted RGBD sensor and executes this grasp without moving 
its base.   
 
 
2. Our method 
 
The overview of our approach is as follows: given the aligned RGBD 
images of the scene, we perform image segmentation to crop out an 
object that we are interested in grasping, then register its pose in the 
scene to a stored CAD model of that object, and finally apply the 
computed 6DOF transformation to a known grasp pose to obtain a 
feasible grasp pose in the scene. This pipeline will be repeated for 
subsequent objects if the scene is cluttered. 
 
2.1 Segmentation  

Related work on 6DOF grasping [1-4, 13-16] directly generated 
grasp proposals with a deep neural network from a raw depth image 
or point cloud input. Most of the recent work filter feasible contact 
points from the RGBD image or point cloud and infer the most 
confident grasp pose from the filtered set. [3] separates the modalities 
by using RGB to find approach angles and using depth to obtain the 
gripper width. In these approaches, the cluttered scene is not 
interpreted semantically and grasp points are proposed whereever 
visible to the sensor and feasible for approach. We aim to segment the 
image before determining the grasp pose, to aid in future pipelines 
that may employ object selection strategies to optimize the table 
clearing. Secondly, knowing the object that we are targeting also 
gives us better information on the object geometry and hence propose 
stable grasp points.  

In our work we assume a known CAD model of each object and 
only consider objects that are in our library. As there is no specialized 
dining dataset, we use the Graspnet-1Billion dataset [5] as it contains 
daily use objects in a cluttered scene as well as the 6DOF pose 
required to grasp these objects. 

For segmentation, we apply a Mask R-CNN [5] network with a 
ResNet-50 backbone to classify and segment the objects in the given 
scene. A model pre-trained on the MS COCO dataset [17] is used for 
the segmentation without further training on our dataset. We filter the 
object classes to only keep those classes in our interest, such as bowls, 
cups, plates, etc, and project a point cloud from the masked depth and 
RGB images. The result is seen in Figure 1. 

 
2.2 Pose Estimation  

The projected point cloud of the object is incomplete and suffers 
from occlusion due to itself as well as any surrounding object which 
may be overlapping or blocking the camera view. Hence, the object 
class predicted by Mask R-CNN is vital for accurate identification of 
the object, so that the complete point cloud can be retrieved from an 
offline database. With a partial point cloud (scene) and the complete 
point cloud (target), we then apply pose registration to align them. 

 

 

  
Fig. 1 The original RGB image (above) and the result of the Mask 
R-CNN segmentation (below) with bounding boxes, object masks, 
and object class. We are only interested in cups, bottles, fork, spoon, 
and trays, so other object classes such as birds are filtered afterwards. 
A partial point cloud (inset, bottom left) is then re-projected from the 
image and depth mask. 

 
 

 

 
Fig. 2 One grasp pose of the cup as predicted by our pipeline (above) 
and some ground truth grasp poses visualized from our grasping 
library (below). 
 

We apply RANSAC for global registration [6, 8], using fast point 
feature histograms for correspondence matching [9], followed by ICP 
for fine registration [7] to obtain a 4x4 transformation matrix T, such 
that Pobs = TPCAD . Thus,  , where  and  represent the 
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coordinate frame attached to the robot gripper in the camera frame 
and library frame respectively. In our experiments, we used the 
Open3D implementation [19] of RANSAC and ICP and a setting of 
100000 iterations. A sample of the results is seen in Figure 2, where 
the blue gripper is visualized after applying transformation results. 
 
 
3. Conclusion 

 
In our work, we demonstrate a new pipeline for computing grasps by 
piecing together image segmentation algorithms with pose 
registration algorithms. We test the method on selected scenes in the 
Graspnet-1Billion dataset without further modification of the network 
in [5] or ICP registration in [7], although we note that classification 
accuracy can be further improved with extended training on the 
dataset. Our approach differs from the literature in that objects in a 
cluttered scene are first isolated before the grasp pose is determined. 
Although less direct than training an end-to-end neural network, our 
method generates semantic information about the objects present in 
the scene. We plan to exploit this data in future works by 
incorporating an object selection strategy in the pipeline, so that we 
may carry out table clearing or bin picking in a more optimal manner 
rather than simply picking objects from the “top of the pile”. 
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