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NOMENCLATURE 
 
H – Hadamard gate 
Rx – x-axis rotation 
Ry – y-axis rotation 
Rz – z-axis rotation 

 – trainable parameter 

 
 
1. Introduction  

Model-free techniques like RL has been widely employed as a 

machine learning model that has the potential to efficiently solve 
control and decision-making problems. RL emerged recently as the 
world shown interest in machine learning and has achieved notable 
results in several applications. These include self-playing chess and 
shogi (Silver et al., 2017), playing StarCraft 2 game (Vinyals et al., 
2019) and learning to configure a nuclear fusion problem (Degrave et 
al., 2022). RL was also used to produce controllers for multilegged 
robot that can perform complicated task (Peng et al., 2020). The 
general application for RL can be narrowed down to decision making 
problem where a learning agent interact with the environment and 
choose an action that contributes to completing the task. The 
challenge is to define and optimise the policy and reward function so 
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In recent years, reinforcement learning (RL) has been proven to effectively provide solution to complex problems in various engineering 
problems such as self-driving cars, industry automation in production lines. These applications also extend to other fields including providing 
a platform for financial trading and healthcare. Reinforcement learning comes with the trade-offs between exploitation and exploration 
regardless of applied techniques and algorithms. In more complex engineering system, which often consists of large action and state-space. 
This space can increase exponentially, and most RL techniques fail to efficiently compute optimal policies to these problems. The inefficiency 
in RL models leads to the extensive requirement of computational process, which does not often come cheap and affordable. To tackle this 
challenge, quantum computational models were studied and achieved different levels of success. Since its first theory in the 1940s, quantum 
algorithm has been improved and advanced to provide exponential speed up compared to classical solutions. Quantum computation offers 
great potential improvements to traditional RL models due to its ability to create superpositions and entanglement. In past research, quantum 
variational circuits (QVC) were created as alternatives to neural networks commonly used in RL and experimented on several RL benchmarks 
in OpenAI Gym environments: CartPole, Acrobat and Lunar Landing. One of such QVCs were designed and tested to achieve greater 
efficiency in learning speed while offer reduced number of trainable parameter than classical RL. Our research aims to investigate the QVC to 
balance the CartPole problem running on both local PC simulator and quantum computer. The research signifies the first time a quantum RL 
could learn to obtain the optimal policy to acquire the maximum expected reward to a control problem and effectively apply the trainable 
parameter to balance the pole. The system is first tailored into a RL environment with state space and action space. For each time step, the input 
data from the environment (state space) is encoded into quantum states. Through the QVC, the algorithm learns to optimize the RL policy to 
calculate the probability of future action to obtain the optimal reward for each state-action pair. The trainable parameters from the QVC are 
again optimized using gradient descent. The QVC design is vital to the success of the RL model; therefore, we vary the QVC gates and 
investigate the model performance. It is expected that the Quantum RL model would outperform the classical RL in learning the optimal policy 
in term of speed and computational resources. The successful control of the pole on a quantum simulation would be proof that quantum models 
could offer real solution to future computation-intensive problems where classical solutions are unaffordable. 
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that the agent can effectively learn to support the wearer. The actions 
and reward can be viewed as trials and errors as the agent learns to 
choose the best action to get the highest expected reward (Hsiao et al., 
2022). Even though RL has been applied and achieved significant 
results, the difficulty when designing a RL model is that the 
state-action space of the tasks could be exponentially large (Du et al., 
2020). It is challenging for RL techniques to balance between 
exploitation and exploration the larger the space. Exploration is the 
act where the RL agent searches and understand the environment 
through the state-action space, whereas exploitation is where it saves 
the information. The balance between the exploration and exploitation 
optimises the RL model policy leading to best cumulated rewards. 
Nevertheless, when the state-action space is too large and requires 
immense and expensive computational power, the optimal policy 
cannot be explored efficiently (Hsiao et al., 2022). This inefficiency 
affects the ability of RL models in solving larger-scale problems 
which present in many real-world tasks. Choosing a RL model that 
has improved efficiency (speed of convergence) is the key to many 
applications.

This study selects quantum computing as a solution to tackle the 
RL inefficiency. A potential candidate for our design is a quantum RL 
agent, which is benchmarked on an OpenAI Gym task – CartPole 
(Brockman, 2016). OpenAI Gym contains widely used RL 
benchmarking environments to compare RL models performance. 
The question here remained how a quantum RL algorithm should be 
designed and chosen to gain a performance advantage over classical 
RL techniques; this is the gap in the field of quantum reinforcement 
learning that we try to address. 
 
2. Model Design 
 
2.1 Benchmarking task 
 
    In this study, CartPole is considered as a benchmarking task for 
testing. In the CartPole task, the agent aims to balance a pole placed 
on a cart by moving the cart left and right as shown in figure 1. The 
agent is rewarded +1 for each time step the pole stay upright. The 
goal is to balance the pole until the reward reaches 500 (balance for 
500 steps). The episode fails when the pole falls above 12 degrees 
from the initial vertical point, or the cart move more than 2.4 units 
from the initial position. The benchmarking task allows us to test our 

RL model without the need to build another environment. The task is 
simple but provide a reliable way to compare each RL models and 
algorithms. The criterion for comparison is the number of episodes it 

takes to achieve the reward of 500. 
2.2 Reinforcement Learning 
 

A RL environment is designed with a set of states’ S and a set of 
actions A which the agent can perform in order to change the 
environment states. By performing an action and changing the 
environment states, the agent obtains a reward which evaluates the 
quality of that action based on the learning objective. The simple goal 
is to maximise the total reward over the learning episode and the 
strategy to achieve this goal is called policy. 

 
Mathematically, a classical RL can be described by Markov 

decision process:  Where S is the state space, A is 
the action space,  is the probability of transitioning from 
state  to state  after performing action a, R is the reward space and 

 is the discount factor . The learning process starts at an initial state s0 
and implements the policy  to pick action  at time step  
from state  to move to state . Each action rewards the agent 
with . The goal is to maximise the discount expected reward 
according to the equation: 

 

( 1 ) 

Where are the state-action pairs in an 
episode.  is the expectation value under all policies. We implement 
the proximal policy optimization (PPO) algorithms as our training 
model (Schulman et al., 2017). The proximal policy optimization 
agent is a policy gradient algorithm containing an actor and a critic. 
The actor is responsible for the policy , where  is the 
trainable parameter and chooses action during state  at time step 

follows the policy for each episode of training. The actor receives 
the state features as inputs through the QVC and computes a list of 
probabilities for each available action of the task. The probabilities 
form a distribution, and an action is chosen based on this. The critic 
represents the state value function  and computes the discount 
reward. The agent objective is to learn and improve the policy by 
updating the trainable parameter via gradient ascent: 

 
( 2 ) 

Where  is the loss function and η is the learning rate. The loss 
function is defined by the objective function PPO-clip proposed by 
(Schulman et al., 2017) in equation 3. Experiments have proved the 
robustness and efficiency of PPO-clip with good performance. 

 
( 3 ) 

Where   denotes the ratio between the new and old 
policy,  is the trainable parameter before being updated and is a 
hypermeter in the form of a small number (Schulman et al., 2017). 
 
2.3 Quantum Variational Circuit structure 
 

In quantum computation, states are represented in qubits. Two of 
the computational basic states of qubits are |0  and |1 , which 
corresponds to the state 0 and 1 in classical bits (Nielsen and Chuang, 
2002). Qubits are denoted in Dirac notation and contain a 
characteristic that make it distinctive in computational performance 

Figure 1: CartPole Task 
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called superposition. Unlike classical bits, which can only be flipped 
between 0 and 1 states, quantum qubits can form linear combinations 
of the basic states, e.g., ψ= α |0 +β |1 . α and β are complex number 
which means a qubit state is a 2-D complex vector space. Due to 
superpositions, information stored in N qubits scales by O(2^N) 
instead of O(N), which is an advantage. Superposition has a 
probabilistic nature, the probabilities of a qubit collapsing to its states 
must add up to 1, e.g., |α|^2+ |β|^2=1. When measurement is 
performed on a qubit, the superposition only collapses into one state, 
either 0 or 1 based on its probability.  

QVC provides computational advantage by using parameterized 
circuit running in quantum environment and output the parameter to 
classical optimizer (Cerezo et al., 2021). QVC also uses the vast 
Hilbert space to encode the RL environment’s states. The CartPole 
task contains four states features making up its entire state space: cart 
location, cart velocity, pole angle and pole angle velocity, which are 
denoted as  respectively. The environment sends its 
state features at time step  to be encoded into quantum state as 

, q is the state feature number, is the 
initial quantum basic states, the number of qubits N depends on the 
application. In this task, we only use 1 qubit. Operator is a 
unitary containing the set of quantum gates dependent on . The set 
contains a Hadamard gate to create superposition and three single 
rotation gates to encode states  as angles of the rotation. For 
this task we only use the cart velocity, pole angle and pole angle 
velocity as our input state features and Rx, Ry, Rz as the three gates to 
encode our features 
 The encoded state then undergoes the unitary operator 

 which contains the trainable parameter θ in the QVC.  
contain the Rx gate to encode the trainable parameter into the circuit. 
The last operator of the QVC measures the quantum state in the form 
of circuit output in equation (4). 

 

( 4 ) 
Where  is the combination of the first two unitary operator 
dependent on the state input and trainable parameter .  is the 
measurement operator.  
The output is then scaled by the following linear equation. 

 
( 5 ) 

Where  are the trainable parameter at time step  while  is 
the action index available in the environment. The scaled output 
decides whether the policy chooses action a based on the probability: 

 

( 6 ) 

Where  is the corresponding action of state  and  dictates the 
number of available actions in the RL task.  indicates a 
mathematical function that converts the scaled output into a vector of 
probabilities. The agent receives a reward after the above steps and 
the next state feature . The loss function is updated using the 
scaled output and cumulative reward. The entire model is summarized 
in figure 2. 
 
3. Preliminary Results  
 

In our preliminary investigation, we focus on the effect of QVC 
design on the efficiency of the training model. The criterion is the 
number of episodes the model takes to complete the CartPole task, i.e.,
achieving an average reward of 500 under 300 episodes. The average 
reward is calculated using the result in the previous 20 episodes of the 
run. Classical algorithms have shown to achieve an average reward of 
500 under 500 episodes (Hsiao et al., 2022). In order to investigate 
the computational advantage of using QVC over classical RL, we 
implement a threshold of 300 episode for the model to achieve 500 
average rewards in order to complete the task. In the results below, 
we vary the rotational gates used to encode the input state features 
into the QVC and obtain different levels of training performance. 

In the first instance, we use Rx, Ry and Rz to encode the three 
state features: cart velocity, pole angle and pole respectively. The 
model could learn to achieve a 500 reward in less than 50 episodes. 
However, the learning algorithm struggles to maintain the 
performance and unable to reach the average reward of 500 within 
300 episodes. This QVC fails to complete the CartPole task. Figure 3 
shows the performance of the QVC using Rx, Ry and Rz. Our second 
set of gates contains Ry, Rz and Rz encoding the state features in the 
same order. Figure 4 shows the performance of this set of gates. We 
now see the model has completed the task under 200 episodes, which 
reflects the better performance over classical models. This time the 
model takes over 100 episodes to reach the 500 rewards for the first 
time. This QVC design is more reliable than the previous set and 

Figure 2: One QVC structure example in PPO RL algorithm (Hsiao et al., 2022) 
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manage to satisfy our criterion. Our third set results in a major 
increase in performance when it completes the task under 120 
episodes, which is illustrated in figure 5. The consistency of this QVC 
is worth mentioning since it maintains the 500 rewards for the rest of 
the run. This is our best result yet on the CartPole task. 

Our early results have shown that the QVC design plays an 
important role in achieving satisfactory performance. The quantum 
enhanced RL model has better performance than classical 
counterparts and provides major speed up in the training process. 
QVC proposes a platform with potential to overcome the inefficiency 
of classical RL in solving control tasks. Further investigation is 
undergoing, and a full result and analysis will be presented on the day 
of the conference. 
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Figure 5: QVC with Rz, Ry and Rz gates 

Figure 3: QVC with Rx, Ry, Rz gates 

Figure 4: QVC with Ry, Rz and Ry gates 
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