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NOMENCLATURE 
AI = Artificial Intelligent 
IoT = Internet of Things 
DT = Digital Twin 
DRL = Deep Reinforcement Learning 
ROS = Robot Operating System 
FOV = Field of View 
DOPE = Deep Object Pose Estimation 
CNN = Convolution Neural Network 
PPO = Proximal Policy Optimization 

 
1. Introduction 
 

With recent advancement of Industry 4.0, new technologies are 
being applied across various industries. Especially, Smart Factory that 

incorporate numerous technologies such as AI, big data, and IoT are 
being developed and evaluated within the fields of manufacturing [1]. 

DT is also being applied to robots, which are major equipment in 
Smart Factory [2]. DT is a technology that implements a virtual 
system in which it is similar to the actual system into a virtual world. 
The performance and the efficiency of the actual system can be 
improved by feeding back the optimized results. DT-based robot 
automation can improve overall productivity by preventing future 
errors in advance and maximize operational efficiency [3, 4]. In 
particular, the reliability of vision-based perception must be secured 
in a smart factory where production conditions and target change 
frequently. 

However, there is no proper high-fidelity DT platform that can 
simulate the integrated robot automation system. Especially, 
evaluation of the perception system under various conditions is 
limited, and then it is hard to flexibly respond to unexpected 
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With the advancement of Industry 4.0, Digital Twin has been applied to robots used in various industries and is being used 
in research such as navigation, task automation, and collision prediction. The robot arm used in the traditional 
manufacturing industry is optimized to perform repetitive tasks in a pre-determined and fixed environment. In most cases, 
the robot arm moves to a fixed path or approaches and handles the target object using a vision system that estimates the 
location based on augmented reality marker. To detect a target object outside a specific range, recently, vision-based object 
detection and various related algorithms are being developed. However, there is no proper high-fidelity Digital Twin 
platform which can simulate the integrated robot automation system including a perception function. In addition, various 
evaluation of different locations of a target and obstacle is limited, and thus it is not possible to flexibly respond to changes 
in the environment. These limitations result in the decrease of reliability and simulation-to-reality transferability. This study 
proposes a robot arm object detection system using photo-realistic Digital Twin and deep reinforcement learning algorithm. 
A high-fidelity Digital Twin was reproduced on NVIDIA Omniverse platform, a state-of-the-art physics engine-based 
simulator. 3D models of the actual robot arm, camera, target object, and obstacle were reconstructed in Digital Twin. 
Virtual target images were created with NVIDIA Scene Imaging Interface, and it is learned with Deep Object Pose 
Estimation algorithm. Camera-mounted robot arm was also controlled by using reliable robot control package, ROS 
Moveit!. The target and obstacle were randomly generated on the working region by using domain randomization for each 
episode. The learned policy using deep reinforcement learning in Digital Twin were seamlessly deployed and evaluated in 
the actual robot system through ROS-based framework. This integrated system could robustly detect the target object which 
has various positions and obstacle. In the future, we plan to extend the system developed in this study to a mobile robot arm 
to explore and handle objects in more diverse environments. We hope that this study can increase the reliability of robot 
automation system and decrease the time of programming and developing robots. 
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conditions. These result in a decrease of simulation-to-reality 
transferability and reliability. Furthermore, the pause of the operating 
robots for the deployment of the new program into the robots cause 
downtime and reduces productivity [5]. 

This study proposes a DT-based seamless framework for flexible 
and reliable perception of camera-mounted robot arm using DRL. 
Photo-realistic DT capable of finding a target outside the camera FOV 
is developed by training with DRL. Finally, DRL-based target 
detection system is seamlessly deployed to the actual robot system 
based on the ROS-based control framework. 
 
2. System configuration 

A powerful RTX-based GPU is required for perception-based 
DRL in a photo-realistic environment. Therefore, in this study, Nvidia 
Omniverse platform and Isaac Sim robot development tool which is 
optimized based on Nvidia RTX GPU were used for DT construction 
[6]. In addition, the object detection algorithm and robot control 
algorithm were configured as ROS nodes to build a stable and reliable 
system. 

 
2.1 Framework 

A framework was built by using ROS, which is currently used for 
most robot development and provides a stable and reliable system 
control package (Fig. 1). The virtual robot, camera, and work 
environment were virtualized in DT, and the object detection 
algorithm and robot control algorithm (Moveit!) were implemented in 
the external ROS environment [7]. The policy can be learned based 
on the data processed through ROS by linking DRL and DT. The 
learned policy can be seamlessly deployed to the actual hardware 
system through ROS-based control software. 

 

 
Fig. 1 Framework of the software modules for a camera-mounted 
robot arm and DRL-based object detection 
 
2.2 Target Detection Pipeline 

NVISII and DOPE algorithms were used to build the target 
detection pipeline. (Fig. 2). The DOPE algorithm trains the target 
object's belief map and vector field CNN and estimates the target's 6d 
pose [8]. Several domain-randomized images were generated using 
NVISII, a virtual image generation library, and these were used as 
DOPE training data [9]. This pipeline can train robust object detection 
algorithms in various environments with only a 3D modeling file. 

 

Fig. 2 DOPE-based object detection pipeline 
2.3 DRL algorithm 

DRL is a machine learning method that informs an agent of an 
action that can be taken and can learn by itself based on a current state 
and a reward from the action. DRL creates data through interaction 
between environment and agent, and uses it for neural network 
learning. 
In this study, the PPO algorithm, which provides a clipping parameter 
( ), enables more stable and reliable learning for agents that take 
continuous actions [10]. The end-effector of the camera-mounted 
robot arm was set as an agent, and the movement per frame was set as 
action  Observation was set as the 
absolute coordinates of the agent , and reward equation 
(Eq. 1) according to the distance between the agent and the target and 
the success of target detection was defined. Hyper-parameters were 
also set (Table 1). 

 
Table 1 Hyperparameters for PPO 

Hyperparameter Value 
Graphic card Nvidia RTX 2080 Ti 

Learning model Proximal Policy Optimization 
Total time-step 180K 
Episode length 3000 

Batch size 3000 
Clipping parameter  3000 

Discount factor  0.9995 
Learning rate 0.00025 

 
3. Evaluations 

We implemented the actual robot system in DT. The same model 
was virtualized in DT by reflecting the specification (Table 2) of a 
camera-mounted robot arm (Fig.3) equipped with a camera 
(Realsense D415) on the robot arm (Doosan M1013). 

 
Fig. 3 Realization of the actual camera-mounted robot system into DT; 
(a) real robot (Doosan M1013+Realsense D415), (b) DT robot 
 
Table 2 Main specifications of the robot arm and camera 

Hardware Main spec Value 

Robot arm 
(Doosan M1013) 

Axis 6 
Max. range 1300 mm 
TCP Speed 1m/s 

Repeatability  0.1mm 
Camera 

(Realsense D415) 
Frame resolution 1920 x 1080 

Frame rate 30 fps 
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FOV 69° x 42° 

Resolution 2 MP 
3.1 Configuration of experimental environment 

An environment to automate target detection of the 
camera-mounted robot arm was implemented (Fig. 4). 

 

 
Fig. 4 Experimental setup for DLR-based object detection in DT 
 
The target is randomly only generated to the left (type1) and right 
(type2) side of the initial FOV of the initial camera, and an obstacle is 
created around it to cover the target (Fig. 5). 
 

 
Fig. 5 Random generation of the target and obstacle in DT for the 
following scenarios, (a), (b) target and obstacle are generated on the 
right side (type1), and (c), (d) generated on the left side (type2). 
 
3.2 Evaluation of DOPE-based target detection 

DOPE-based target detection performance was evaluated for 
reliable perception system. The 6D pose of the randomly generated 
target was estimated with the DOPE, and the errors of the x, y, and z 
axes were visualized (Fig. 6). DOPE stably estimated the poses with 
an average error (n=300) of less than 5 mm in all axes (Table 3). 
Although the maximum error was 38.74 mm, it was judged that the 
system was sufficiently stable to determine the success of target 
detection. 
 

 
Fig. 6 Error distributions of DOPE, (a) Radial graph of errors 
between x, y, z actual positions and DOPE results 
 
Table 3 Validation results of DOPE 

Error X-axis Y-axis Z-axis 
Average 4.24 mm 1.98 mm 3.72 mm 

Maximum 18.62 mm 11.75 mm 38.74 mm 
 
4. Results and Discussion 

Target detection policy was trained based on DRL with our 
framework. In the early stage of learning, the agent (=end effector) 
searched the surroundings non-directionally (Fig. 7). 
 

 
Fig. 7 Random and non-directional robot arm movement at the 
beginning of the learning 
 
During the learning procedure, the agent made various attempts and 
learned the policy in the direction of increasing reward (Fig. 8). 
 

 
Fig. 8 Accumulated reward trend according to time step  
 
After learning, DRL-based target detection system was validated in 
DT (Fig. 9). As a result, the agent searched point1 and point2 in order. 
 
DRL-based object detection system was also validated in the actual 
system (Fig. 10). Learned policy by DRL is deployed from DT to 
actual system seamlessly using our framework. In the actual system, 
the same as DT, point1 and point2 were always searched in order. 
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Fig. 9 DRL-based robot arm trajectory for target detection in DT for 
the type 2, (a) End effector located at initial point, (b) searching near 
the point 1 (c) searching near the point 2 (d) target detection 
successful 
 

 
Fig. 10 Evaluation of actual robot system in case of type 2, (a) End 
effector located at initial point, (b) searching near the point 1 (c) 
searching near the point 2 (d) target detection successful 
 
As a result of repeated experiments, stable target detection was 
possible in both DT and actual systems through relatively short 
reinforcement learning (Table 4). 
 
Table 4 DLR-based target detection results in DT and the actual 
system  

 DT Actual system 
Time for teaching 1 hours - 

Success rate  
(Type 1,2) 

100 % (n=50) 100 % (n=10) 

Time for detection 
(Average) 

1.9 s (Type 1) 
16.1 s (Type 2) 

2.3 s (Type 1) 
18.2 s (Type 2) 

 
We predicted that a target under the type 1 condition was 
continuously and repeatedly generated during DRL, and the agent 
received a high reward in that episode and converged to this result. 
5. Conclusions 

In this study, we implemented DT to automate the target detection 
of a camera-mounted robot arm and the robot were able to 

successfully detect randomly generated targets using DRL. This DT 
was able to train the target detecting policy and performed in the 
actual system with seamless deployment. This DT works fully offline, 
so the learned policy can be deployed immediately without 
interruption of the actual robot in operation. In addition, it is possible 
to learn and evaluate a reliable vision-based perception system 
through photo-realistic rendering. In the future, we plan to evaluate 
more diverse and complex tasks by adding obstacle avoidance and 
target handling function. 
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