
Proc. of the 6th Intl. Symposium on Reliability Engineering and Risk Management (6ISRERM)
31 May – 1 June 2018, Singapore
Editor(s) Xudong Qian, Sze Dai Pang, Ghim Ping Raymond Ong, Kok-Kwang Phoon

Copyright c© 2018 Author(s). All rights reserved.

BAYESIAN DATA MINING FOR A GENERIC 

GEOTECHNICAL DATABASE 

JIANYE CHING
1
 and KOK-KWANG PHOON

2 

1
Department of Civil Engineering, National Taiwan University, Taipei, Taiwan. 

E-mail: jyching@gmail.com  
2
Department of Civil & Environmental Eng., National University of Singapore, Singapore. 

E-mail: kkphoon@nus.edu.sg
 

This paper proposes a Bayesian data mining approach that searches a generic database for data 

points with soil characteristics similar to a set of site-specific data.  A similarity index between 

the generic and site-specific data points is proposed based on the Bayesian analysis.  The 

effectiveness of the proposed approach is illustrated by considering a generic clay database and 

a specific site in Sweden.  The generic data points identified as “similar” can be combined with 

the limited site-specific data to construct a transformation model more relevant to a specific site. 
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1 Introduction 

Geotechnical design is site-specific, because every site has its unique geological characteristics.  

This site-specific aspect of geotechnical design can be found in transformation models (Phoon 

and Kulhawy 1999).  The transformation model suitable for one site may not be suitable for 

another site.  It is obviously desirable to adopt a site-specific transformation model constructed 

by site-specific site investigation data in a design project.  However, for small projects where the 

budget does not justify extensive site investigation, it is typically not possible to construct the 

site-specific transformation model with sufficient confidence.  Under this circumstance, the 

engineer is forced to adopt a generic transformation model constructed by data from other sites 

under the assumption that the geology is broadly similar.  Useful compilations of generic 

transformation models are available in the literature (e.g., Djoenaidi 1985; Kulhawy and Mayne 

1990; Mayne et al.  2001).  When applied to a specific site, the transformation uncertainty of a 

generic transformation model can be excessively large, because it is intended to accommodate a 

wide range of soil types and site conditions.  However, if we narrow down to a single site, the 

site investigation data can be too sparse to construct the site-specific transformation model with 

any acceptable degree of statistical significance. 

Although the site investigation data in a small project may be insufficient to construct a 

reliable site-specific transformation model, the data may be sufficient to reveal certain soil 

property characteristics for the site of interest.  For instance, a limited sample of data at a Taipei 

site may reveal that the Taipei clay is primarily lightly over consolidated (LOC) and medium 

plastic (MP).  In this case, it is reasonable to argue that the data points in the generic database 

that are also LOC and MP may be more relevant to this site than other generic data points.  

Transformation models constructed by these LOC and MP generic data points, albeit not site-

specific, may be more suitable for Taipei than those constructed by generic data points with 

wide ranges of OCR and plasticity. 
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The approach of extracting relevant data points from a generic database can be broadly 

categorized as a data mining approach.  The basic idea is to search for generic data that have 

similar soil characteristics as the site-specific data.  However, this is not straightforward because 

geotechnical data are usually incomplete.  For instance, if the properties of concern include (PI, 

s¢v, s¢p, su, SPT-N) (PI = plasticity index; s¢v = vertical effective stress; s¢p = preconsolidation 

stress; su = undrained shear strength; SPT-N = N value for standard penetration test), in principle 

we need complete multivariate data with simultaneous knowledge of (PI, s¢v, s¢p, su, SPT-N) for 

both generic and site-specific data to define “similarity” in a quantitative way.  However, it is 

common that a small project is lacking in such complete multivariate data points.  It is more 

common to measure incomplete multivariate data points at different depths and locations, for 

instance, some data points have (PI, s¢v, SPT-N) information or some have (s¢v, SPT-N) 

information.  One simple method to circumvent this incompleteness difficulty is to look for the 

most commonly occurring pairwise information, e.g., (PI, SPT-N), and perform data mining 

using pairwise information only.  However, it is possible that data points classified as “similar” 

based on (PI, SPT-N) may not be applicable to another transformation model involving other 

parameters, e.g., (PI, su). 

If the data points are visualized as a spreadsheet table of size (m ´ 4), where m is the 

number of data points, incomplete multivariate data means there are missing entries in the 

spreadsheet table.  The purpose of the current paper is to propose a data mining approach that 

can handle incomplete multivariate geotechnical data for the purpose of constructing a 

transformation model.  A Bayesian data mining approach that can characterize the statistical 

uncertainty associated with sparse site-specific data will be proposed in the current paper.  It will 

be shown that a data mining approach based on incomplete multivariate data is more robust than 

one based on bivariate information. 

 

2 Generic Database versus Site-specific Data 

2.1 Generic database 

The proposed method requires a generic database.  The word “generic” is in the sense that the 

database covers a wider range of conditions than those encountered at a single site.  In the 

current paper, a global clay database named CLAY/10/7490 (Ching and Phoon 2014a) is 

adopted.  The CLAY/10/7490 database consists of 7490 data points for ten dimensionless clay 

parameters from 251 studies in the literature that cover 30 countries/regions worldwide.  The ten 

clay parameters are denoted by (Y1, Y2, …, Y10): 
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where LL = liquid limit; PI = plasticity index; LI = liquidity index; s
’
v = vertical effective stress; 

s
’
p = preconsolidation stress; Pa = atmospheric pressure = 101.3 kPa; su = undrained shear 

strength; St = sensitivity; qt = (corrected) cone tip resistance; u2 = pore pressure behind cone; Bq 

= pore pressure ratio = (u2-u0)/(qt-σv); u0 = hydrostatic pore pressure; qt1 = (qt-sv)/s¢v; qtu = (qt-

u2)/s¢v.  The su values are all converted to the “mobilized” su values, which is the in-situ 

undrained shear strength mobilized in embankment and slope failures (Mesri and Huvaj 2007).  

Note that CLAY/10/7490 is not a complete multivariate database.  If the data points are 

visualized as a spreadsheet table of size (mg ´ n), where mg = 7490 is the total number of data 

points in the generic database and n = 10 is the dimension of each data point, there are lots of 

missing entries in the spreadsheet table.  It is worth mentioning that each multivariate data 
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“point” is a row of numbers containing results from different tests conducted in close proximity 

at the same depth.  A missing number in this row means that a particular test has not been 

carried at this location and depth.  The key capability of this proposed Bayesian data mining 

approach is that it can identify generic data points that are “similar” to the site of interest under 

this incomplete multivariate context. 

 

2.2 Site-specific data 

Table 1 shows the site investigation results for a clay site in Stora an (Sweden) (D'Ignazio et al.  

2016).  The site-specific data will be denoted by Y from here on.  Y can be visualized as a 

spreadsheet table of size (ms ´ n), where ms = 7 is the total number of data points (rows) in 

Table 1 and n = 10 to match information available in CLAY/10/7490 even though the columns 

Y7 to Y10 are empty for all depths (see grey boxes).  Moreover, some (Y5, Y6) data are 

deliberately removed (they are available in D'Ignazio et al.  2016) to demonstrate the ability of 

the proposed Bayesian data mining approach in handling incomplete data.  They are shown as 

crossed-out numbers in grey boxes in Table 1.  Let the observed data in Table 1 be denoted by 

Yo (normal entries) and the unobserved data be denoted by Yu (grey entries).  The original su 

data in D'Ignazio et al.  (2016) are based on field vane.  They are converted to mobilized su using 

the empirical equation proposed by Bjerrum (1972). 

 
Table 1.  Site investigation results for a clay site in Stora an (Sweden) (Source: D'Ignazio et al.  2016). 

 

Depth 

(m) 

Site-specific data Y 

LL 

(Y1) 

PI 

(Y2) 

LI 

(Y3) 
s¢v/Pa 

(Y4) 

s¢p/Pa 

(Y5) 

su/s¢v 

(Y6) 

St 

(Y7) 

Bq 

(Y8) 

qt1 

(Y9) 

qtu 

(Y10) 

1.5 113.8 73.8 0.92 0.103 0.433 0.657     

2.0 115.3 74.6 0.92 0.111 0.256* 0.532
* 

    

2.3 125.0 70.8 0.97 0.118 0.237 0.475     

3.1 118.3 76.1 0.99 0.139 0.185 0.342     

3.8 123.5 85.8 0.89 0.162 0.200 0.276     

4.6 104.1 58.2 1.05 0.193 0.286* 0.340
* 

    

5.3 104.9 63.4 0.98 0.225 0.313 0.355     

* Entries are known in D'Ignazio et al.  (2016) but are made empty in this study to demonstrate the ability of the 

proposed Bayesian data mining approach in handling incomplete data. 

 

2.3 Multivariate normality 

The proposed approach operates in the multivariate normal space, but soil data are typically non-

normal.  It is desirable to convert the Yi data to normal variable Xi by a certain transform.  The 

transform based on the cumulative density function (CDF) of the Johnson distribution (Johnson 

1949) used by Ching and Phoon (2014b, 2018) is adopted in the current paper to maintain the 

consistency between the current paper and our past works.  This CDF transform is adopted to 

transform Yi to Xi for both generic and site-specific data.  After the transformation, the generic 

X dataset is still a spreadsheet table of size (mg ´ n), and Xo and Xu still correspond to normal 

and grey entries similar to Table 1.  Moreover, it is further assumed that site-specific property X 

= (X1, X2, …, Xn) is multivariate normal: 

( ) ( ) ( ) ( ) ( )
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1
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where n is the dimension of the multivariate PDF (n = 10 for our example); N(x|ms,Cs) denotes a 

multivariate normal PDF for x with mean vector = ms and covariance matrix = Cs; ms Î R
n´1

 is 

the mean vector for X; Cs Î R
n´n

 is the covariance matrix for X that characterizes the site-

specific correlation among (X1, X2, …, Xn).  The site-specific mean and covariance (ms, Cs) are 

treated as unknowns and will be inferred from Xo using the Bayesian approach.  The 

multivariate normality for X = (X1, X2, …, Xn) is a key assumption adopted by the current paper. 

 

3 Proposed Bayesian Data Mining Approach 

The proposed Bayesian data mining approach contains two steps.  In the first step, the Bayesian 

analysis is adopted to construct the posterior PDF of X = (X1, X2, …, Xn) conditioning on Xo, 

denoted by f(x|Xo).  In its essence, f(x|Xo) summarizes the soil characteristics at the site of 

interest as a multivariate PDF so that the random sample X ~ f(x|Xo) has a multivariate 

distribution similar to that for Xo.  In the second step, f(x|Xo) is further adopted to quantify the 

similarity between generic data and Xo.  Let xg
(k)

 be the k-th generic data point (k = 1, 2, …, mg), 

i.e., xg
(k)

 Î R
n´1

 corresponds to the k-th row in the (mg ´ n) spreadsheet, where mg = 7490 and n 

= 10 for CLAY/10/7490.  The posterior probability of xg
(k)

, denoted as P(k|Xo), which can be 

computed based on f(x|Xo), quantifies the plausibility of xg
(k)

 (k
th

 row in CLAY/10/7490) given 

Xo.  For xg
(k)

 whose characteristics are similar to those for Xo, P(k|Xo) is large, and the converse 

is also true.  The generic data points with larger P(k|Xo) may be more relevant to the site of 

interest than other generic data points. 

 

3.1 Construction of f(x|Xo) 

For the construction of f(x|Xo), it suffices to estimate (ms,Cs).  The main challenge for estimating 

(ms, Cs) is that Xo is incomplete, because most parameter estimation techniques require complete 

Xo.  For incomplete Xo, Ching and Phoon (2018) showed that it is possible to draw (ms, Cs) 

samples from f(ms,Cs|Xo) in an analytical manner by adopting the Gibbs sampler (GS) (Geman 

and Geman 1984; Gilks et al.  1996) in conjunction with the assumed conjugate prior PDFs.  

Moreover, unobserved entries, denoted by Xu, can be also sampled in an analytical manner 

(Ching and Phoon 2018).  The basic idea is to divide the random variables into three groups, (ms, 

Cs, Xu), and the GS is adopted to sequentially sample them from the following conditional PDFs: 

( ) ( ) ( )~ | , , ~ | , , ~ | , ,s u o s s u o u u s os s s s
f f fm m m mC X X C C X X X X C X     (3) 

Due to the assumed multivariate normality for X, conjugate prior PDFs for (ms, Cs) exist: the 

conjugate prior for f(ms) is multivariate normal, and that for f(Cs) is inverse-Wishart. The 

posterior PDFs f(ms|Cs,Xu,Xo) and f(Cs|ms,Xu,Xo) will be still multivariate normal and inverse-

Wishart.  Moreover, f(Xu|ms,Cs,Xo) is also multivariate normal (Ching and Phoon 2018) due to 

the assumed multivariate normality for X.  As a result, (ms, Cs, Xu) can be sampled in an 

analytical manner.  The details for this GS algorithm can be found in Ching and Phoon (2018).  

Let us denote the samples obtained using the GS by (ms
gb

, Cs
gb

, Xu
gb

).  The GS starts with an 

initial sample of (ms,0
gb

, Cs,0
gb

, Xu,0
gb

) (time step t = 0), then it sequentially draws samples (ms,t
gb

, 

Cs,t
gb

, Xu,t
gb

) (t = 1, 2, …, T) from the conditional PDFs in Eq. (3) based on the latest parameter 

values.  The (ms,t
gb

, Cs,t
gb

, Xu,t
gb

) samples after the burn-in period are collected.  It can be shown 

that these samples are distributed as f(ms, Cs, Xu|Xo).  It is noteworthy that the scatter of the (ms,t
gb

, 

Cs,t
gb

) samples quantifies the site-specific statistical uncertainty.  It is essential to quantify this 

statistical uncertainty rigorously if Xo is sparse.  Based on the total probability theorem, the 

posterior PDF f(x|Xo) can be approximated as a mixture of multivariate normal PDFs: 
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where tb is the end of the burning-period.  It is desirable that the prior PDFs f(ms) and f(Cs) are 

non-informative.  The multivariate normal prior f(ms) can be made non-informative by adopting 

large variances.  However, it is challenging to make the inverse-Wishart prior f(Cs) non-

informative.  Ching and Phoon (2018) adopted the hierarchical inverse-Wishart model proposed 

by Huang and Wand (2013).  By adopting a set of hyperparameters, this hierarchical model 

makes f(Cs) roughly non-informative, yet the prior conjugacy required by the GS is preserved.   

 

3.2 Evaluation of P(k|Xo) 

Recall that xg
(k)

 corresponds to the k-th data point or row (k = 1, 2, …, mg) in the generic 

database.  The posterior probabilities P(k|Xo) can be computed using the Bayes’ rule: 

( ) ( ) ( ) ( ) ( )
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where P(k) is the prior probability of xg
(k)

, taken to be P(k) = 1/mg for k = 1, 2, …, mg; f(Xo|xg
(k)

) 

is the likelihood of xg
(k)

; f(xg
(k)

) is the prior PDF of xg
(k)

.  The posterior probability P(k|Xo) 

quantifies the probability of xg
(k)

 conditioning on Xo, whereas the prior P(k) quantifies the 

probability of xg
(k)

 without Xo.  For xg
(k)

 with characteristics similar to those for Xo, the posterior 

probability P(k|Xo) in Eq. (5) will be large, and the converse is also true.  Therefore, P(k|Xo) 

quantifies whether xg
(k)

 has similar soil characteristics as Xo.  Equation (5) is evaluated for all 

data points (rows) in the generic database (k = 1, 2, …, mg) to obtain mg posterior probabilities 

that measure the similarity between the generic data points and the site-specific data Xo. 

Note that xg
(k)

 is usually an incomplete (n´1) vector with empty entries.  Let us denote the 

observed entries in xg
(k)

 by xgo
(k)

 and also denote the sub-mean vector by mso corresponding to the 

observed entries and the sub-covariance matrix by Cso.  f(xg
(k)

|Xo) can be estimated as: 

( ) ( ) ( ) ( ) ( )
1 T 1( ) ( ) ( )2 2

, ,, ,
1

1 1
x | 2 exp

2

o
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T n
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g o so t go so t goso t so t
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f x x
T t

p m m
-- -
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é ùé ù» - - -ê úê ú- ë ûë û
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where no is the number of the observed entries in xg
(k)

 (no £ n).  f(xg
(k)

) can also be estimated by a 

similar equation based on the Monte Carlo samples drawn from the prior PDFs f(ms) and f(Cs). 

 

3.3 Example: the Stora an (Sweden) site 

Consider CLAY/10/7490 as the generic database and the Stora an (Sweden) site (Table 1) as the 

site of interest.  The proposed Bayesian data mining approach is implemented to search for the 

generic data points in CLAY/10/7490 that have similar soil characteristics as the observed site-

specific data Yo in Table 1.  For demonstration, Table 2 shows the top ten generic data points 

with relatively large P(k|Xo) as well as other three data points with very small P(k|Xo).  It is 
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evidence that the data points with relatively large P(k|Xo) have soil characteristics similar to 

those in Table 1, e.g., high (LL, PI), LI around 1, NC to LOC, etc.  In fact, some are Sweden 

cases, whereas others are from Bangkok, Thailand.  The soil characteristics for the three cases 

with very small P(k|Xo) are not similar to those in Table 1. They are presented for illustration. 

 
Table 2.  P(k|Xo) values for chosen generic data points 

 

Rank P(k|Xo) 
LL 

(%) 

PI 

(%) 
LI s¢v/Pa s¢p/Pa su/s¢v St Bq qt1 qtu OCR Location 

1 0.023 129.7 82.7 0.91 0.18 0.21 0.30  1.03 8.62 0.76 1.15 Sweden (Upplands-Vasby) 

2 0.013 126.1 67.6 0.95 0.12 0.24 0.64 8.0    1.94 Sweden (Stockholm) 

3 0.008 132.7 79.1 0.98 0.14 0.19 0.44     1.43 Thailand (Bangkok) 

4 0.007 124.2 80.5 0.88 0.22 0.25 0.26  0.98 7.91 1.17 1.16 Sweden (Upplands-Vasby) 

5 0.004 129.7 82.2 1.01 0.15 0.21 0.39  0.98 10.28 1.16 1.40 Sweden (Upplands-Vasby) 

6 0.003 110.0 71.8 0.98 0.28 0.32 0.25  1.06 6.32 0.61 1.15 Sweden (Upplands-Vasby) 

7 0.003 119.3 78.3 0.90 0.24 0.28 0.26  1.04 7.08 0.71 1.16 Sweden (Upplands-Vasby) 

8 0.001 146.0 83.0 0.96 0.15 0.21 0.38     1.47 Thailand (Bangkok) 

9 0.001 146.2 87.1 0.93 0.14 0.19 0.47     1.43 Thailand (Bangkok) 

10 0.001 105.1 69.0 0.94 0.32 0.35 0.24  1.02 6.45 0.90 1.12 Sweden (Upplands-Vasby) 

2000 2.1E-16      0.47     Taiwan 

4000 1.9E-19  14.6    0.22     Taiwan (Taipei) 

6000 1.4E-61 19.5 4.5 3.93   
 

    Norway (Manglerud) 

 

Not all generic data points with large P(k|Xo) are useful for constructing a transformation 

model.  For instance, if the purpose is to construct an OCR versus su/s¢v transformation model, 

only the generic data with simultaneous information (s¢v/Pa, s¢p/Pa, su/s¢v) are eligible.  There are 

1408 eligible generic data points in CLAY/10/7490.  Note that the P(k|Xo) values for the 1408 

eligible data points no longer sum up to unity.  It is desirable to re-normalize them:  

( ) ( ) ( )
E  

| | |o o o

ligible k

P k P k P k¢ = åX X X                  (7) 

The re-normalized P¢(k|Xo) for all eligible data now sum up to unity. 

Figure 1a shows the OCR-su/s¢v plot.  In this plot, the generic data points with relatively 

large P¢(k|Xo), called the “relevant” generic data points from here on, are plotted as solid squares.  

Moreover, a darker square corresponds to a larger P¢(k|Xo).  The less “relevant” generic data, 

e.g., those with P¢(k|Xo) < 1´10
-4

, are plotted as light cross markers.  The relevant generic data 

seem to cluster around the site-specific data, indicating that their OCR-su/s¢v characteristics are 

indeed similar.  It is noteworthy that not only their OCR-su/s¢v characteristics are similar, their 

other characteristics are also similar.  For instance, some generic data points not only have 

(s¢v/Pa, s¢p/Pa, su/s¢v) information but also have (LL, PI) information, e.g., many rows in Table 2 

have it.  Figure 1b shows the LL-PI correlation plot for the relevant generic data.  Again, 

relevant generic data are plotted as solid squares, whereas less relevant ones as light crosses.  It 

is clear that the LL-PI characteristics for the relevant generic data also similar to those for the 

site-specific data.  This is because when the posterior probabilities P¢(k|Xo) are computed, all 

information (X1, X2, …, Xn) are considered.  As a result, the posterior probability measures the 

similarity in the (n´1) space, not just in the (s¢v/Pa, s¢p/Pa, su/s¢v) space.  This also explains why 

in Figure 1a there are generic data with small posterior probabilities clustering around Yo: 
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although these data have (s¢v/Pa, s¢p/Pa, su/s¢v) similar to Yo, their other properties such as LL, PI, 

LI, etc. are not.  

 

 
Figure 1.  Results for Bayesian data mining: (a) OCR-su/s¢v plot; (b) LL-PI plot; (c) median estimate and 

95% confidence interval for su/s¢v based on the WML method. 

 

4 Construction of a Transformation Model 

Because the observed site-specific data points Yo are usually sparse, they alone may be 

insufficient to construct a reliable transformation model.  Because the relevant generic data have 

similar soil characteristics as Yo, they can be combined with Yo to construct a transformation 

model.  While there are several methods of combining the two sources of data, only the 

weighted maximum likelihood (WML) method (e.g., Karampatziakis and Langford 2011) is 

demonstrated in this section.  Also, only the construction of the OCR-su/s¢v transformation 

model for the Stora an site is demonstrated.  Consider the following transformation model: 

( ) ( )ln ln OCRu vs a bs e¢ = + × +                   (8) 

where (a,b) are unknown parameters to be determined, and e is assumed to be a zero-mean 

normal variable with standard deviation = s, also unknown and to be determined.  The WML 

method determines (a,b,s) by maximizing the weighted log-likelihood: 

( ) ( ) ( ) ( ) ( )( )2
* * *

2
, , 1

1 1
, , argmax ln 2 ln ln ln

2 2

N

i u v ii
a b i

a b w s a b OCR
s

s p s s
s=

é ù¢é ù= × - - - - - ×ë ûê úë û
å  (9) 

where (a
*
,b

*
,s*

) are the WML estimates; wi is the importance weight for the i-th data point; N is 

the total number of data points. There is no strict rule for assigning the importance weights (w1, 

w2, …, wN).  For our case, the data are the combination of the observed site-specific data Yo and 

the generic data.  Let Ns be the number of the site-specific data points and Ng be the number of 

the generic data points.  There are Ns = 5 data points with (OCR, su/s¢v) information in Table 1 

and Ng = 1408 generic data points with (OCR, su/s¢v) information.  As a result, N = Ns + Ng = 

1413.  The weight of each site-specific data point is taken to be 0.5´(1//Ns) so that the total 

weight for all Ns site-specific data is 0.5.  The weight for each generic data point is taken to be 

0.5´P¢(k|Xo) so that the total weight for all Ng generic data is also 0.5.  Therefore, the total 

weight for all N data is unity.  The 0.5-0.5 rule between site-specific and generic data is adopted 

for demonstration in this section.  Other rules such as 0.3-0.7 can be adopted.  Figure 1c shows 

the resulting median estimate and 95% confidence interval for su/s¢v based on the WML 
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estimates (a
*
,b

*
,s

*
).  It is remarkable that the transformation uncertainty, quantified by the 95% 

confidence interval, is significantly less than that exhibited in the generic data. 

 

5 Conclusion 

This paper proposes a Bayesian data mining approach that searches a generic database for data 

points similar to a set of site-specific data Xo.  The similarity between the k-th generic data point 

and the site-specific data Xo is quantified by the posterior probability P(k|Xo).  Basically, a 

generic data point with soil characteristics similar to those for Xo, the posterior probability 

P(k|Xo) will be large, and the converse is also true.  For illustration, a generic clay database 

CLAY/10/7490 is adopted as the generic database and the Stora an site (Sweden) is adopted as 

the local site of interest is this paper.  The Bayesian data mining approach seems effective in the 

sense that the generic data points identified as “similar” indeed have characteristics (plasticity, 

degree of over-consolidation, water content, etc.) similar to the Stora an site.  A weighted 

maximum likelihood method is further used to construct the transformation model for the Stora 

an site using the combination between the searched generic data and the site-specific data Xo.  

The resulting transformation uncertainty is much less than that exhibited in the generic data. 
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