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This paper is intended to investigate the issues of finite-element (FE) model-class selection for 

the purpose of choosing suitable parameterized models to update FE model of a bolt-connected 

steel frame based on Bayesian evidence inference method together with Markov Chain Monte 

Carlo (MCMC) technique. By employing the concept of information divergence, the amount of 

information needed to be extracted from the measured data is explicitly quantified during the FE 

model updating procedure. Then, for achieving a trade-off between the complexity of a 

prescribed FE model class and that of its corresponding information-theoretic interpretation, 

such information is utilized for penalizing the complexity of FE parameterization to ensure that 

a relatively simple parameterization scheme can be obtained for keeping the similar model-data 

matching and avoiding the over-fitting problem arisen from excessive modeling parameters. 

Through numerical case studies conducted for a two-story bolt-connected steel frame structure, 

the feasibility and validity of proposed methodology is demonstrated. 
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1 Introduction 

The finite element (FE) approach has been extensively used in various engineering fields over 

the past few decades. However, due to assumption and uncertainty arisen from the theoretical 

hypothesis, boundary condition, and geometric and material properties, there is an unavoidable 

mismatching between the model-predicted and measured responses. By utilizing the measured 

lower order modes to update the initial FE model, the FE model updating technique is an 

effective means intending to improve the model accuracy in order to achieve a refined FE model 

matching well with the field measurement (Friswell and Mottershead 1995).  

In order to obtain higher accuracy for structural analysis, the FE model of the target 

structure tends to be fine enough to approximate the structural details, leading to the increase of 

the model complexity. This, however, is not beneficial for the procedure of FE model updating, 

which is typically an inverse problem of structural dynamics. Since the repeated solution of the 

large eigenvalue problem is usually required in the FE model updating, the computational cost 

of this procedure eventually resulted unaffordable when dealing with complex models. In 

addition, the measured data is incomplete due to the problems of limited number of sensors, 

measurement noise and truncation error of higher order modes, etc., which cause the inability to 

capture the full dynamics of the structure, rendering the inverse problem of FE model updating 
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uncertain and ill-posed (Datta 2002, Mthembu et al. 2011). Moreover, there usually exist 

multitudinous FE models with varying level of complexity that can be developed from the 

engineering judgment. The inverse problem may be non-uniquely solvable for FE models with 

higher parameterized complexity due to the large number of uncertain parameters to be 

identified as compared to the limited measurement information available. Thus, it is particularly 

important to choose the FE model with the suitable complexity for the model updating purpose. 

In this paper, the problem of choosing suitable class of parameterized models for the FE 

model updating is addressed following the Bayesian evidence inference method. Within the 

concept of information theory, the amount of information needed to be extracted from the 

measured data for the specified parameterized model class is explicitly quantified during the FE 

model updating procedure. Then, this information is utilized for penalizing the parameterization 

complexity of FE model for ensuring a FE parameterization scheme with suitable complexity. It 

also avoids the over-fitting problem arisen from excessive modeling parameters, guaranteeing a 

trade-off between the complexity of a prescribed class of parameterized models and that of its 

corresponding information-theoretic interpretation. The validity of the proposed methodology is 

verified by the numerical cases studies of a two-story steel frame with bolted connection. 

 

2 Theoretical background 

Let  denote the dynamic data measured from the target structural system. The goal is to use  

to select the most plausible class of models representing the system out of  given classes of 

parameterized models  , , . . . , , where  specifies not only a class of deterministic 

dynamic models but also the probability descriptions for the prediction error. By following the 

Bayes’ theorem, the probability of model class  conditional on the data  is obtained as 

  (1) 

where   is given by the law of total probability.  represents the user’s judgment on the 

initial plausibility of the model classes expressed as the prior plausibility  on the model 

class , . Gaussian prior is assumed in this paper. The prior plausibilities are 

normalized as , and it’s simply assumed that each class of models has the 

same initial plausibility in this paper. 

The factor , expressing how likely the data  are obtained with the specified 

model class , is the evidence for this class of models provided by the data. By assuming 

further that  alone specifies the probability density function (PDF) for the data, the user’s 

preference  can thus be dropped from the notation  hereinafter. It is shown in Eq. 

(1) that the most plausible class of models is the one that maximizes  which is 

equivalent to maximize the evidence  with respect to . The evidence for  provided 

by the data  is given by the law of total probability as 

  (2) 

where  is the parameter vector of the th class of models  in the parameter space 

. It’s noted that the parameter vector  depends on the model class  even though it is not 

explicitly reflected in the symbol for simplicity. is the prior PDF specified by the user.  

The likelihood function  is given by 
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  (3) 

where  is the measure-of-fit function defining the differences between the measured 

and model-predicted modal parameters as 

 (4) 

and  denotes the number of measured natural frequencies  and mode shapes vector 

, and  is the number of observed degrees of freedom (DOF), and  is the number of 

measured data sets.  and  represent the th predicted natural frequencies and 

mode shape vectors with model class  parameterized by .  is the ratio between the 

prediction-error variances of mode shape vectors and modal frequencies. It is assumed here that 

the measured mode shapes are normalized so that its Euclidean norm . 

By employing the Bayesian statistical identification framework (Beck and Katafygiotis 

1998), the posterior PDF of the parameter vector  can be given by 

  (5) 

In globally identifiable cases, the posterior PDF  in Eq. (5) given a large amount of 

data  may be approximated accurately by a Gaussian distribution, so the evidence  

can be approximated by using Laplace’s method for asymptotic expansion (Papadimitriou 1997). 

However, this asymptotic expansion is not valid for the general case where the posterior PDF 

may not be approximated by the Gaussian distribution. In the circumstances, by using the Bayes’ 

theorem, the logarithm of evidence can be expressed as (Ching et al. 2006): 

 

 

(6) 

The first term in Eq. (6) is a measure of the average data-fit of the model class , 

accounting for the log-goodness of fit for different combinations of the parameters weighted by 

the posterior PDF. The second term is the Kullback–Leibler information, which is a non-

negative measure of the information gain about  from the data . If the selection of a model 

class is solely determined by the data-fit term, then more complex models will usually be 

preferred over simpler ones. This often leads to over-fitting of the data and the updated model 

depending too much on the details of the specific data will be unreliable. The combination of 

these two factors in the log evidence for  provides a mathematically rigorous and robust way 

to builds in a trade-off between the data-fit of the model class and its information-theoretic 

complexity. The MCMC technique is employed to calculate the integration in Eq. (6).  

 

3 Numerical case studies 
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A two-storey plane frame with standard 10# I-steel columns and beams is employed for 

verification. The span of the frame is 1.6 m and the height is 1.15 m for each storey. The 

sectional and material properties are: Young’s modulus E = 2.01×1011 N/m2, cross-sectional area 

A = 1.57 × 10-3 m2, moment of inertia I = 2.21 × 10-6 m4, and material density ρ = 7.58 × 103 

kg/m3. The column-base and beam-column connections of the frame are treated as semi-rigid 

with rotational stiffness. The frame is discretized by plane beam elements into a FE model of 30 

elements and 30 nodes with 84 DOFs. It’s noted that these semi-rigid connections are simulated 

by beam elements of very short length with smaller flexural rigidity as compared to the regular 

beam and column components. The rotational stiffness of the semi-rigid connection is quantified 

by the flexural stiffness of the short beam element, and it is considered as uncertain modeling 

parameter to be identified. 
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Figure 1.  Different classes of FE parameterized models considered. 
 

Table 1.  Cases considered for numerical simulations. 

 

 Case description 

Case 1 ,  

Case 2 , ,  

Case 3 , ,  

 

There are six classes of models considered for this portal frame as shown in Figure 1. The 

complexity of model parameterization increases gradually from  to . For instance,  

with one parameter  to scale all six rotational stiffness has the lowest degree of complexity 

among all considered model classes.  is a little bit more complex than , and it has two 

parameters  and  to scale the rotational stiffness of all the column-base and beam-column 

connections, respectively.  is the class of models with the most complex parameterization 

among all six model classes, and there are six scalar parameters in this class of models to update 

all column-base and beam-column connections separately. 
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Table 2.  Results of model class selection for each numerical case. 

 

    
Data 

matching 

Information 

gain 

Case 1 

 72.01% 83.45 86.01 2.56 

 13.26% 81.75 85.63 3.88 

  3.02% 80.27 85.04 4.77 

  3.94% 80.54 85.16 4.62 

  3.73% 80.49 84.90 4.41 

  4.04% 80.56 84.92 4.36 

Case 2 

 0.05% 72.60  75.43  2.83  

 0.34% 74.48  78.46  3.98  

 34.63% 79.11  84.56  5.45  

 26.43% 78.84  84.37  5.53  

 15.99% 78.34  84.57  6.23  

 22.56% 78.68  84.30  5.62  

Case 3 

 2.84% 77.84  80.72  2.88  

 49.43% 80.70  85.01  4.31  

 9.26% 79.02  84.55  5.53  

 11.16% 79.21  84.66  5.45  

 13.81% 79.42  84.32  4.90  

 13.50% 79.40  84.45  5.05  

 

There are eight sensors utilized for this frame as shown in Figure 1(a). The first four sensors 

(denoted as hollow arrow) are used to measure the horizontal vibration of the left column, while 

the latter four (denoted as solid arrow) are employed to monitor the vertical motion of the two 

beams. The measurement includes the natural frequencies and partial mode shapes at the 

measured DOFs of the first four modes. The considered noise level is 1% and 10% for the 

eigenvalues and partial mode shapes, respectively. It’s assumed that there are 30 sets of repeated 

data obtained. There are three cases considered as showed in Table 1.  and  denote the 

nominal or baseline values of rotational stiffness of column-base and beam-column connections, 

and they are 0.03 and 0.06 times of the flexural rigidity of the beam and column elements, 

respectively. Case 1 is the nominal case, where all the modeling parameters are taken as their 

baseline values. In Case 2, the rotational stiffness of left beam-column connection of the first 

storey is set to be 0.7 times of original values. Based on Case 2, the semi-rigid stiffness of the 

left column-base connection is further reduced by 0.3 in Case 3. 

A total of ×104 samples are obtained by the MCMC sampling algorithm in which the 

samples within the ‘burn-in’ period are further removed before using Eq. (6). The obtained 

results are listed in Table 2, where the results corresponding to the optimal model class are 

highlighted in bold. It’s noted that the probability of models  conditional on the data , i.e., 

 is obtained by the method in Yuen (2010). As for Case 1, it’s very clear that the most 

plausible model class is , the parameterization scheme of which is the most simple one. This 

implies that in the nominal status, only one parameter is enough for updating the FE model of 

the frame with the present data. For Case 2, it is found from Table 2 that the most plausible class 
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of models is . This is not surprised since it’s well anticipated that additional parameters are 

needed to characterize the local reduction of the rotation stiffness of the left beam-column 

connection. In addition, it’s shown that, with the increase of parameterization complexity of the 

model class, there is more information needed to be extracted from the available data for 

updating these excessive parameters. It’s reflected by the relatively larger value of information 

gain, which, conversely, penalizes the complexity of model parameterization. For instance, in 

Case 2, the model complexities of  and  are relatively higher than that of , rendering 

the value of information gain to be larger. Furthermore, it should be pointed out that since there 

is no difference between the rotational stiffness of beam-column connections in the first and 

second storey in the model class , the most plausible model class  matches the data better, 

even though the degree of complexity of   is less than that of . The similar phenomenon 

can also be observed from Case 3, where the most plausible class of modes with suitable 

parameterization complexity is chosen. 

 

4 Conclusions 

This paper addresses the issues of choosing suitable parameterized models for FE model 

updating through the model-class selection procedure following the Bayesian evidence inference. 

The concept of information divergence is employed to quantify the amount of information 

needed to be extracted from the measured data for achieving a trade-off between the complexity 

of a prescribed model class and that of its corresponding information-theoretic interpretation. 

Numerical simulations of a two-story bolt-connected steel frame structure are utilized for 

demonstration. The obtained results show that the combination of data matching and 

information gain indexes provides an efficient and mathematically rigorous way to select the 

most plausible class of FE models with a relatively simple parameterization scheme being 

suitable for model updating. 
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