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This study investigates the possibility of representing the mobilized Young’s modulus (Em) for a 

footing in a spatially varying medium - the Young’s modulus actually “felt” by the footing - 

using a spatial average. The Em is simulated by a homogenization procedure that matches the 

responses between a random finite element analysis (RFEA) and a homogeneous finite element 

analysis. Emphasis is placed on whether the spatial average can well represent the numerical 

value of Em in each spatially varying realization. It is found that the conventional spatial 

averaging model that treats all soil regions equally important in general cannot satisfactorily 

represent Em. Numerical results show that the concept of “mobilization” is essential: highly 

mobilized soil regions close to the footing should be given larger weights than non-mobilized 

remote regions. A key contribution of this paper is the development of a simple method to 

estimate the non-uniform weights for the spatial averaging using a single run of a homogeneous 

finite element analysis. 
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1 Introduction 

The spatial variability of soil parameters has profound impact to the behavior of a geotechnical 

structure. For footings on soils with isotropic scales of fluctuation (SOF), an important 

observation made in Fenton and Griffiths (2002, 2005) is that the statistics (mean and variance) 

for the “mobilized” Young’s modulus (Em) are similar to those for the geometric average (Eg) 

over a prescribed domain under the footing. Note that the similarity in the statistics does not 

imply a very strong correlation. For the footing problem, there is a significant scatter between 

Em and Eg. The purpose of this study is to propose a new spatial averaging method for the 

footing problem so that not only Em and the spatial average have similar statistics but they are 

also very strongly correlated. It will be clear that the resulting spatial average is not a uniform 

mobilization but a non-uniform mobilization. The soil elements significantly influenced by the 

footing load are highly mobilized, whereas those remote to the footing have negligible 

mobilization. More importantly, it is found that the degree of mobilization can be well quantified 

by certain physical quantity that is derived from the stress/strain change due to the footing load, 

and the spatial distribution of such a physical quantity can be obtained by a single run of a 

deterministic finite element analysis (FEA). 

 

2 The Footing Problem 

Consider a footing on a two-dimensional (2D) spatially variable soil mass, modeled by finite 

elements (FE) as shown in Figure 1. The spatially variable Young’s modulus, denoted by E(x,z), 
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is modeled as a stationary lognormal random field with inherent mean = m = 20,000 kN/m2 and 

inherent coefficient of variation (COV) = V = 1.0, with auto-correlation structure defined by the 

single exponential model (Vanmarcke 1977). The scale of fluctuation (SOF) is denoted by d. 

Only isotropic random fields are considered, i.e., the horizontal and vertical scales of fluctuation 

are equal. Four SOFs are considered: d = 1m, 2m, 5m, and 10m (d/B = 0.5, 1, 2.5, and 5). For 

each d, one thousand realizations of E random fields are simulated. The Poisson’s ratio (n) is 

assumed to be constant (n = 0.3), because the impact of the spatial variability of the Poisson’s 

ratio is insignificant.  

 

 
Figure 1 Realization of the E random field for the 2D footing problem with dx = dz = 1 m. 

 

For each random field realization, a geostatic step is adopted to build up the in-situ stress 

field over the entire soil mass. Then, the footing is loaded with a vertical downward uniform 

displacement of 0.1 m in the FE simulation, not allowing any rotations. The resulting total 

contact force between the footing and the soil mass is recorded. Another FE simulation with 

homogeneous E is conducted, following the same geostatic step and the same displacement-

controlled loading. The homogeneous E value is adjusted until the total contact force matches 

that for the random field realization. The adjusted E value is called the mobilized Young’s 

modulus, Em, for the random field realization. 

The 20m´10m plane strain rectangular domain is modeled by the FE mesh shown in Figure 

1. Each FE is a 4-noded element of size = 0.2m´0.2m. Each FE follows an isotropic elasticity 

model with E = its local geometric average, n = 0.3, and unit weight g = 20 kN/m3. The 

boundary conditions for the FEA are also shown in Figure 1. The footing is assumed to be rigid 

and the soil-footing interface is assumed to be rough. The Young’s modulus of the soil mass is 

modeled as a stationary lognormal random field with inherent mean = m = 20,000 kN/m2 and 

inherent coefficient of variation V = 1.0. Cases with dx = dz = d will be first considered. Five 

SOFs are considered: d = 1m, 2m, 5m, 10m, 100m, and 1000m (d/B = 0.5, 1, 2.5, 5, 50, and 

500). For each d, one thousand realizations of E random fields are simulated. Figure 2 shows the 

pairwise plot for the simulated Em/m versus Eg/m, where the geometric average Eg is taken over 

the 1B´5B domain under the footing. This averaging domain was considered in Fenton and 

Griffiths (2002). Although the statistics (e.g., mean and COV) of Em and Eg are similar: the 
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correlation coefficient between them is not very strong, e.g., the Pearson correlation coefficient 

r = 0.68 for d/B = 0.5. 

 

 
Figure 2 Em/m versus Eg/m relationships. 

 

3 New Spatial Averaging Method 

One possible explanation for why Em cannot be well represented by Eg is that elements are not 

mobilized uniformly. The governing volume primarily lies below the footing, and the soil 

volume remote from the footing is not mobilized. The non-uniform mobilization is quantified by 

unequal weights that are to be calibrated by random finite element analysis (RFEA) results. 

There are one thousand realizations of RFEA for each SOF, producing numerous calibration 

cases. For the k-th calibration case, there is a realization of Em,k and a realization of (E1,k, E2,k, 

…, En,k), where Ei,k is the Young’s modulus assigned to the i-th finite element for the k-th 

calibration case, and n is the total number of calibration cases. The following linear regression in 

the form of weighted geometric average is adopted: 

( ) ( ) ( )m,k i i,k wg,k

i

ln E w ln E ln E» ´å (k wg,k(E ln E(k wgk wg(                  (1.
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where Ewg denotes the weighted geometric average; wi is the weight for the i-th element that 

quantifies the degree of mobilization for the i-th element. To suppress the over-fit, the 

regularized least square (RLS) method (e.g., Tikhonov regularization; see Tikhonov and Arsenin 

1977) is adopted to determine the unknown weights w by introducing a penalty term to 

encourage a “regularized” w solution. The RLS method is to minimize the following objective 

function: 
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                     (2.
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where ek = ln(Em,k) – Si[wi´ln(Ei,k)] is the error for the k-th calibration case; the penalty term 

l´Siwi
2 discourages large weights; the parameter l is called the Tikhonov factor. Golub et al. 

(1979) showed that the optimal l that minimizes the leave-one-out cross-validation error. For 

our case, the optimal l (l*) is 3845. The solution w* has analytical solution because the 

objective function is a quadratic function of w. Figure 3 shows the grey scale plot for the 

resulting w*. The sum of all optimal weights is 0.9952, very close to unity. It is interesting to 

note that elements remote to the footing have negligible weights. It is found that w* not only 
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provides excellent fit to the calibration cases but also provides satisfactory prediction to the 

independent validation cases. Figure 4 shows the pairwise plot for Em/m versus Ewg/m for extra 

validation cases. 

 

 
Figure 3 Grey scale plot for w*. 

 

 
Figure 4 Em/m versus Ewg/m relationships for extra validation cases. 

 

3.1    Correlation to stress/strain factors 

It is expected that w* should be correlated to factors such as stress/strain increments due to the 

footing load. A deterministic FEA is conducted to obtain the factors for all elements, and the 

correlations between the factors and w* are evaluated. Let (Dsx,i, Dsy,i, Dsz,i, Dtxz,i) and (Dex,i, 

Dez,i, Dexz,i) (y is the out-of-plane direction) be the stress and strain increments of the i-th 

element, respectively, due to the footing load. For instance, the increment in sx is denoted by 

Dsx = (sx after the footing load) – (sx before the footing load), and similar for other stress/strain 

increments. It is found that the following factor is strongly correlated to w*: 

i x,i x,i z,i z,i xz,i xz,iU 2D = Ds De +Ds De + Dt De                (3.

) 

We termed DU as “pseudo incremental energy”. It can be considered as the “mobilization 

factor” that quantifies the degree of mobilization. The pseudo incremental energies for all 

elements are further normalized such that they sum up to unity. The normalized pseudo 

incremental energy is denoted by DUn. Figure 5 shows the correlation plot between DUn and w*. 
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Figure 5 Correlation plot between DUn and w*. 

 

3.2    Simplified procedure of simulating Ewg 

The following simplified procedure, called the pseudo incremental energy model, is proposed to 

simulate the samples of the weighted geometric average, Ewg. It will be shown that the resulting 

Ewg is very strongly correlated to the mobilized Young’s modulus, Em. 

(i) Perform one deterministic FEA for the footing problem. Compute DU for all elements using 

Eq. (3), then compute the normalized form DUn so that all DUn sum up to unity. 

(ii) Simulate the Young’s moduli for all elements using random field (no need to run RFEA). 

(iii) Compute the following weighted geometric average Ewg: 

( ) ( )wg n,i i

i

ln E U ln E= D ´å                       (4.

) 

where Ei is the Young’s modulus assigned to the i-th element; DUn,i is the normalized 

weight for the i-th element. 

Steps (ii) and (iii) can be repeated to obtain a different sample of Ewg corresponding to a 

different random field realization. The set of weights in Eq. (4) (DUn,i) computed from a single 

deterministic FEA is independent of the random field realization. The practical benefit for the 

pseudo incremental energy model is obvious: it will be possible to simplify a RFEA problem to 

a weighted spatial averaging problem which is less costly and perhaps more importantly, make 

probabilistic design more accessible to engineers. 

The weighted geometric average Ewg simulated by the pseudo incremental energy model can 

satisfactorily represent Em for the footing problem. Consider the same footing problem in Figure 

1. Figure 6 shows the pairwise plot for Em/m versus Ewg/m, where Ewg is now simulated by the 

pseudo incremental energy model. Figure 6 can be compared with Figure 4: the former is based 

on the pseudo incremental energy model, whereas the latter is based on w*. The performance for 

the pseudo incremental energy model (Figure 6) is significantly better than that for the Eg model 

(Figure 2), although the calculation of Eg is slightly cheaper than Ewg. 
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Figure 6 Em/m versus Ewg/m relationships (Ewg simulated by the pseudo incremental energy model). 

 

4 Conclusion 

This study investigates the possibility of representing the mobilized Young’s modulus (Em) for a 

footing supported on a spatially variable medium using a suitable spatial average that is strongly 

correlated to Em. It is found that the conventional spatial averaging that treats all soil regions 

equally important cannot satisfactorily represent Em. Numerical evidences show that the concept 

of “non-uniform mobilization” is essential: highly mobilized soil regions are more important 

than non-mobilized regions. A key contribution in this study is to propose a simple model that 

can simulate the weighted spatial average that is very highly correlated to Em. It is remarkable 

that the set of weights computed from the above homogeneous FEA is independent of the 

random field realization. 
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