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Probability distributions of random variables are necessary in engineering practices. However, 

the distributions of the random variables are usually unknown. It is in this regard that efficient 

approximation of the distributions is important to accurately quantify practical engineering 

problems. Generally, probability distributions are determined based on the mean and standard 

deviation of statistical data, which are not flexible enough to represent the skewness and kurtosis 

of statistical data. In this paper, we investigate various distribution types of the cubic normal 

distribution based on the first four moments of the random variables. The explicit expressions of 

the probability density function and cumulative distribution function of each distribution type 

are formulated, and the boundaries among different distribution types are presented. Practical 

examples are applied to demonstrate the efficiency and accuracy of the proposed distribution 

types in fitting probability distributions of statistical data and structural reliability assessment.  

We anticipate our assay to be a starting point for precise simulation of the distributions of 

random variables and thus fulfill more precise evaluation of practical problems. 

Keywords: Probability distribution, cubic transformation, the first four moments, statistical data 

analysis, structural reliability 

 

1 Introduction 

Probability distributions of random variables are necessary for engineering practices. Two-

parameter (2P) distributions based on the mean and standard deviation of statistical data are 

often applied to fit these distributions, which may not be appropriate when the skewness and 

kurtosis of the data are important. Since the bulk of information is often embedded in the first 

four moments, the distribution of a random variable should be fitted from all first four moments. 

Approximating the distribution of a random variable using its moments of finite order is a 

well-known problem in statistics. The distribution families, such as the Pearson system (1895), 

the Johnson system and the Burr system (2003) can be used to estimate the distributions of the 

random variables. Although these systems are flexible, they are practically difficult to 

implement, especially at the interfaces between different distribution types. Some four-

parameter (4P) distributions have been proposed to incorporate the four moments of statistical 

data, which include the generalized lambda distribution (Ramberg and Schmeiser 1974; Zhao et 
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al. 2006), and S-distribution (Voit 1992).  However, their flexibility is attained at a certain price, 

and the definitions for these distributions are not in a conventional form. Low (2013) proposed a 

shifted generalized lognormal distribution to overcome these limitations, which needs iterative 

computation for determining the distribution parameters. 

Another method to address this problem is based on the normal transformation, such as the 

Fisher-Cornish (Fisher and Cornish 1960), Gram-Charlier and Edgeworth series (Wallace 1958).  

However, these methods specifically generate relatively large error.  As alternatives, the Hermite 

moment model (Winterstein 1988) and cubic normal transformation (Fleishman 1978) are 

widely applied for data fitting, normal transformation and reliability index in structural 

reliability. However, some important characteristics of these distributions are still left in the 

dark, such as the changes in the distribution type with varying combinations of skewness and 

kurtosis and the boundaries among distinguished types. Without this knowledge, this method 

cannot be directly applied in practical reliability engineering.   

Since all the above-mentioned normal transformation models are cubic polynomials with 

different definitions of the coefficients, the distribution based on the cubic normal 

transformation is focused on in this study. The various distribution types in the cubic normal 

distribution are investigated based on the complete expressions of the cubic normal 

transformation and its inverse.  The boundaries among different types are then graphically 

presented.  The proposed distribution is applied to fit statistical data based on their moments and 

is found to provide better fitting than existing two- and three-parameter distributions. 

 

2 Various distribution types in the cubic normal distribution 

2.1    Definition of the CDF/PDF of different distribution types 

If the first four moments of a random variable x, i.e., mean (mx), standard deviation (sx), 

skewness (a3x), and kurtosis (a4x), are known, the cubic normal transformation can be used to 

express the standardized random variable xs = (x − mx)/sx as follows (Fleishman 1978): 
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where Su(u) is a third-order polynomial of u; and a1, a2, a3, a4 are polynomial coefficients 

determined by setting the first four moments of the left side of Eq. (1) equal to those of the right 

side (see Appendix A).  Based on Eq. (1), the CDF and PDF of x are expressed as: 

)()( uxF F=                                                           (2a) 

)23(

)(
)(

23
2

4 auaua

u
xf

x ++
=

s

f
                                             (2b) 

in which F(·) and f(·) are the CDF and PDF of x, respectively; F(·) and f(·) are the CDF and 

PDF of u, respectively. The expression of u, which is the solution to Eq. Error! Reference 

source not found.) and varies considerably with the order and shape of Su(u), are listed in Table 

1 (Zhao et al. 2018), where the coefficients are formulated as 
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Table 1. Expressions of u 

Parameters u Range of x Type 

p ≥ 0   3/)2()2( 3/13/1 aqqp -D++D+-
-

 (–¥, +¥) I 

p < 0 
a4 > 0 

a3x ≥ 0 
3/)3/cos(||2 3/1 ap -q  J1

* < x < J2
* 

II 
3/)2()2( 3/13/1 aqqp -D++D+-

-
 x ≥ J2

* 

a3x < 0 
3/)2()2( 3/13/1 aqqp -D++D+-

-
 x £ J1

* 
III 

3/]3/)cos[(||2 3/1 ap --- pq  J1
* < x < J2

* 

a4 < 0  3/]3/)cos[(||2 3/1 ap -+- pq  J2
* £ x £ J1

* IV 

Not exist a4 = 0 

a3x > 0 2/1]/)/(4/1[ 2/1
23

2
23 -++ axaaa s  x ≥ J0 

V 
a3x < 0 2/1]/)/(4/1[ 2/1

23
2

23 -++ axaaa s  x ≤ J0 

a3x = 0 xs (–¥, +¥) VI 

 

According to Table 1, there are six types in the cubic normal distribution, which includes 

unbounded distributions (Types I and VI), unilaterally bounded distributions (Type II, III and 

V), and bilaterally bounded distribution (Type IV). 

 

2.2    Boundaries among different distribution types 

In order to directly obtain the suitable type of the cubic normal distribution using a3x and a4x, the 

boundaries of each type in the cubic normal distribution are plotted in the a3x-a4x plane, as 

shown in Fig. 1 (a).  The area where 1.5 ≤ a3x ≤ 1.5 and 1.0 ≤ a4x ≤ 6 in Fig. 1(a) is zoomed up.  

The zoomed area along with some representative PDFs of different types in the cubic normal 

distribution are plotted in Fig. 1 (b).  Figs. 1 (a) and (b) demonstrate that:  
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Fig. 1. Boundaries of the cubic normal distribution. 

 

(a) Type I in the cubic normal distribution covers the largest part in the entire applicable range 

of the cubic normal distribution.  

(b) The applicable areas of Types II and III are symmetric.  The applicable area of Type IV is 

the lowest part in the entire applicable range of the cubic normal distribution. Although the 

partitions taken by Types II-IV are much smaller than that of Type I, these types cannot be 

neglected when considering practical engineering problems. 

(c) Types V and VI are reduced forms of the cubic normal distribution for a4 = 0, with 

applicable ranges represented by a bolded curve (a3x ≠ 0) and a point (a3x = 0), respectively. 
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(d) For a fixed value of a3x, with an increase in a4x, the shape of PDF changes from bilaterally 

bounded form to uniformly bounded form and finally unbounded form. The changing 

pattern is similar to that of the Pearson system, which indicates that the cubic normal 

distribution is theoretically reliable.  For a fixed value of a4x, the shape of PDF changes 

from the mn-type to J-type with an increase in |a3x|, while the PDF has longer left and right 

tails for negative and positive a3x, respectively.  The cubic normal distribution reflects the 

characteristics of the skewness and kurtosis well. 

 
3 Application in fitting statistical data  

The flexibility of the cubic normal distribution in fitting statistical data is investigated in this 

section with four sets of data: Sets A is experimental data on the ultimate stress of H-shaped 

steel (Ono et al 1986); Set B is daily extreme wind speed in Portland at a special station named 

as ME from 1965 to 1979 (see www.nist.gov/wind); Set C is experimental data on the wind 

pressure coefficient of a wall-mounted finite-length square cylinder (Wang et al 2015); Set D is 

measured values of chloride diffusion coefficients gathered in natural structures (Zhang et al 

2015).  The histograms of the statistical data are presented in Fig. 2, along with the fitted PDFs 

by using the cubic normal distribution and some commonly used distributions, i.e., Weibull, 

normal, lognormal, 3P gamma distributions.  The sample size, sample moments, and the cubic 

normal distribution parameters are reported in Table 2.  Fig. 2 and Table 2 reveal the following: 

 
Table 2. First four moments of the data and the parameters of the cubic normal distribution 
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     (c) Set C: Experimental wind pressure coefficient               (d) Set D: Chloride diffusion coefficients 

Fig. 2. Comparison among popular distributions and the cubic normal distribution in fitting actual data. 

Set Size 
First four moments 

 
Parameters of the cubic normal distribution 

mx sx a3x a4x a1 a2 a3 a4 (×10-3) p J1
* J2

* Type 

A  1932 4.549 0.317 0.153 6.037  -0.017 0.782 0.017 68.05 11.46 --- --- I 

B 5478 4.687 1.719 0.922 4.153  -0.156 0.974 0.156 0.462 -35720.9 8927523 -6289.22 II 

C  19000 -1.609 0.497 -0.750 3.755  0.126 0.984 -0.126 0.04 -2705734 23012.22 -1.7 109 III 

D 50 4.328 2.114 0.467 2.854  -0.90 1.058 0.90 -22.66 -51.95 177.095 -432.236 IV 
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(a) Among the five distributions, the PDFs of the 2P distributions, i.e., Weibull, normal and 

inverse normal distributions, have the greatest differences from the histogram of the 

statistical data, except for set D, where the Weibull distribution performs as well as the 

cubic normal distribution.  In particular, when the value of the statistical data is negative, 

e.g., set C, Weibull and lognormal distributions cannot be directly applied due to their 

limitations, and the corresponding PDFs are obtained by adopting the absolute value of the 

statistical data. 

(b) The 3P gamma distribution fits the histogram of the statistical data much better than the 2P 

distributions when the kurtosis is around 3, as shown in Fig. 2(c).  However, when the 

kurtosis is large, the PDF of the 3P gamma distribution is considerably different from those 

of the histograms in Fig. 2(a). 

(c) The cubic normal distribution fits the histogram much better than the 2P distributions and 

the 3P gamma distribution, and the results of the cubic normal distribution are in close 

agreement with the histograms of the statistical data for all four cases considered in this 

study.  

 

4 Application in structural reliability assesment 

In engineering practices, the cubic normal distribution can be used to simulate the CDFs/PDFs 

of random variables with the aid of Eqs. (2a) and (2b) and Table 1. Reliability analysis can then 

be further conducted using general analysis methods such as the first-order reliability method 

(FORM) and second-order reliability method (SORM).  

The second example considers a composite beam with 19 independent variables, as shown in 

Fig. 3. To keep the composite beam in the safe domain, the allowable strength should be larger 

than the maximum stress, and thus the performance function is determined as (Xiao et al. 2014) 
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 (6) 

where Sa is the allowable strength; L1, L2,…, L6 and L are the measured corresponding length 

from the left node; Ea and Ew are the Young’s moduli; P1, P2,…, P6 are the applied loads at six 

different locations along the beam; A0, C0, and B0, D0 are the width and height of the beam, 

respectively; A0 is a design variable with the lower and upper bounds of 100 mm and 120 mm, 

respectively. Detailed information of the random variables is given in Table 3. 

   Because all the random variables in Eq. (6) have known CDFs/PDFs, the reliability index 

can be readily obtained using FORM/SORM/MCS. To investigate the efficiency of the proposed 

reliability method, the CDFs/PDFs of all the random variables are assumed to be unknown, and 

only their first four moments are assumed to be known. With the first four moments, the 

parameters of the cubic normal distribution can be readily obtained, as also listed in Table 3. 

Then, the CDFs/PDFs of the random variables can be easily approximated using Eqs. (2a) and 

(2b) and Table 1. In this example, the distribution of Sa is Type II in the cubic normal 

distribution, the distribution of Li (i = 1 ~ 6) and L are Type VI in the cubic normal distribution, 

and those of the other random variables are Type I in the cubic normal distribution.  

The first-order reliability indices, bFORM, obtained using the assumed distribution and the 

cubic normal distribution as well as the reliability indices obtained by MCS with 1×107 samples 
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(the COVs of the MCS results vary from 0.315% to 0.502%) are depicted in Fig. 4. The first-

order reliability indices obtained from the cubic normal distribution coincide with those obtained 

by the assumed distribution. However, the first-order reliability indices differ greatly from those 

obtained by MCS due to the strong nonlinearity of the performance function in Eq. (6). 
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Fig. 3. A composite beam in Example 2 

 

Table 3. The first four moments and the parameters of the cubic normal distribution of random variables in 

Example 2 

Variables Distribution 
The first four moments 

 

 The parameters of the cubic normal distribution 

mx sx a3x a4x 
 a2 a3 a4 p J1

* J2
* Type 

Sa Gamma 25 2.5 0.200 3.06   0.9981 0.0333 0.0003 -1210.9 2.7726 25.251 II 

B0 (mm) Lognormal 200 0.2 0.003 3   1 0.0005 1.67×10-7 3×106 --- --- I 
C0 (mm) Lognormal 80 0.2 0.0075 3   1 0.0013 1.04×10-6 479998 --- --- I 

D0 (mm) Lognormal 20 0.2 0.030 3   1 0.0050 1.67×10-5 29998.5 --- --- I 

L1 (mm) Normal 200 1 0 3   1 0 0 --- --- --- VI 
L2 (mm) Normal 400 1 0 3   1 0 0 --- --- --- VI 

L3 (mm) Normal 600 1 0 3   1 0 0 --- --- --- VI 

L4 (mm) Normal 800 1 0 3   1 0 0 --- --- --- VI 
L5 (mm) Normal 1000 1 0 3   1 0 0 --- --- --- VI 

L6 (mm) Normal 1200 1 0 3   1 0 0 --- --- --- VI 

L (mm) Normal 1400 1 0 3   1 0 0 --- --- --- VI 
Pi  (kN) Gumbel 15 1.5 1.140 5.4   0.897 0.168 0.0242 20.954 --- --- I 

Ea (GPa) Lognormal 70 7 0.301 3.162   0.9925 0.0497 0.0017 298.485 --- --- I 

Ew (GPa) Lognormal 8.75 0.875 0.301 3.162   0.9925 0.0497 0.0017 298.485 --- --- I 
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Fig. 4. Reliability indices obtained using the assumed distribution and the cubic normal distribution in 

Example 2 

 
Using the point-fitting SORM (Zhao and Ono 1999), the second-order reliability indices, 

bSORM, obtained using both the assumed distribution and the cubic normal distribution are also 

depicted in Fig. 4. The second-order reliability indices obtained using the cubic normal 

distribution are nearly identical to those obtained using the assumed distribution and are in close 

agreement with the MCS results.  
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5 Conclusion 

This study investigates various distribution types of the cubic normal distribution, which 

contains unbounded, left-bounded, right-bounded and bilaterally bounded distributions.  Explicit 

expressions of different distribution types have been proposed. The boundaries among 

distinguished types and the applicable range of the random variable for each type are defined.  

Numerical examples demonstrate that: (1) The cubic normal distribution has rich flexibility in 

fitting probability functions of statistical data such as ultimate stress of H-shaped steel, average 

wind speeds, wind pressure coefficient, and chloride diffusion coefficients; (2) Structural 

reliability analysis using first- and second-order reliability method is enough accurate when the 

probability distributions of the basic random variables are approximated by the cubic normal 

distributions.  
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