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It is found that the randomness degree (the number of random variables) of multivariate 

stochastic processes could be greatly reduced by introducing appropriate constraints correlating 

with the orthogonal random variables in the original spectral representation scheme. Based on 

this situation, a framework of spectral representation-based dimension reduction is developed 

for simulating multivariate non-stationary stochastic ground motions through introducing 

random function serving as a constraint. Furthermore, one random function form combining the 

trigonometric format and orthogonal polynomial format, is accordingly constructed for 

simulation purpose. As a result, the accurate representation of the original stochastic processes 

can be realized by introducing merely three elementary random variables, overcoming the 

principal challenge of the high-dimensional randomness degree faced by the classical Monte 

Carlo simulation method. Finally, numerical investigations involving the comparisons with the 

Monte Carlo simulation method are presented in order to demonstrate the superiority and 

effectiveness of the proposed methodologies in practical engineering applications. 

Keywords: earthquake ground motions, multivariate non-stationary stochastic processes, spectral 
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1 Introduction 

Different from “point” structures, for structures with large size in horizontal direction, e.g., 

large-scale structures, bridges, dams and tunnels, adequate attention should be paid to the effects 

of spatial variability of earthquake ground motions.  Since the supports of large-scale structures 

would undergo differential movements during a severe earthquake event (Saxena et al. 2000, 

Zerva and Zervas 2002), completely representing the spatially variable ground motions, 

generally described as spatio-temporal stochastic fields through time and spatial variables, 

would become significantly important (Wang and Li 2012).  Consequently, the Monte Carlo 

simulation method (MC scheme), applied to generate spatio-temporal stochastic fields as seismic 

inputs, has been developed rapidly in recent years.  In the families of the MC scheme, the 

spectral representation appears to be the most versatile and also the most widely used one 

(Cacciola and Deodatis 2011).  In enforcement, the multi-dimensional univariate ( D 1Vm - ) 

spatio-temporal stochastic fields (commonly known as the continuous form) are usually 

transformed into the one-dimensional multivariate ( 1D Vn- ) stochastic vector processes 

(commonly known as the discrete form) when simulating the spatially variable ground motions.  
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By now, a large number of outstanding contributions have been made by Yang (1972), 

Shinozuka and Deodatis (1991, 1996), Deodatis (1996a, 1996b), Grigoriu (2004), and Liang et 

al (2007) in the latest forty years when the spectral representation develops fast.Though the 

simulation efficiency of the spectral representation has been improved dramatically, the 

extremely high-dimensional randomness degree involved in the MC scheme still remains a 

principal challenge for it to be applied in the probability density evolution analysis and 

reliability assessment of large-scale structures (Li and Chen 2009).  Thus, the way to efficiently 

reducing the randomness degree in the spectral representation has become a research hotspot 

recently.  Chen et al (2013, 2017) developed the stochastic harmonic function representation of 

both stationary and non-stationary stochastic processes, which could obtain the accurate target 

PSD through a small number of random harmonic components.  Meanwhile, Chen and Li (2013) 

suggested the optimal determination of frequencies in the spectral representation of stochastic 

processes.  Furthermore, Liu et al. (2016, 2017, 2018a, 2018b) proposed a dimension reduction 

approach by adopting random function for simulating 1D 1V- stationary and non-stationary 

stochastic processes and 1D Vn- (multivariate) stationary stochastic processes with only several 

elementary random variables.  Moreover, another highlighted advantage of Liu's approach is that 

each sample generated by the proposed approach has definite probability information that 

enables it to be naturally combined with the probability density evolution method (PDEM) (Li 

and Chen 2009, Li 2016) to implement the dynamic response analysis and dynamic reliability 

assessment of complex structures. 

This paper aims to extend the spectral representation-based dimension reduction to simulate 

the multivariate non-stationary stochastic ground motions. The random function form which 

combines the trigonometric format and orthogonal polynomial format is constructed in order to 

achieve the simulation purpose.  Benefiting from this proposed scheme, the high-dimensional 

randomness degree is efficiently reduced to merely three.  

 

2 Spectral Representation of Multivariate Non-stationary Stochastic Processes 

Assume { }T

1 2( ) ( ), ( ), , ( )nt X t X t X t= }, ( )n, (, (, (, (, (, (X is a real-valued, zero-mean, 1D Vn- non-stationary 

stochastic process, given by (Priestley 1965): 
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where { }1 2( , ) diag ( , ), ( , ), , ( , )nt A t A t A tw w w w= , , ( ,n ( ,( ,( ,, , ( ,( ,, , ( ,, , ( ,A .  ( )wZ  is a n-variate zero-mean complex 

vector process with its orthogonal increment satisfying the following basic conditions: 
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The coherence function matrix ( )wg can be decomposed adopting Cholesky's 

methodology into the following product: 
T( ) ( ) ( )w w w*= B Bg                                                    (4) 

Thus the EPSD matrix ( , )t w
X
S  can be decomposed as follows: 

T TT( , ) ( , ) ( ) ( ) ( ) ( , )t t tw w w w w w w*= ( )
X
S A D Β B AD                           (5) 
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Then ( )tX  can be approximated through the following complex finite series: 

i
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Let ( ) ( ) i ( )k k kw w w= +B r h  and ik k k= +P R I , the ith component can be written as follows (Di 

Paola 2000): 
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where 
rkR  and 

rkI  ( 1,2, ,r n= ,r n, ; 1,2, ,k N= , N, ) are real-valued orthogonal random variables 

satisfying the following basic conditions:  

[ ] [ ] 0rk rkE R E I= = , 0rk jmE R Ié ù =ë û , 
1

2
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, 1,2, ,r j n= n, , ; , 1,2, ,k m N= , , N, ,       (8) 

 

3 Dimension Reduction for Simulating Multivariate Non-stationary Stochastic Processes  

The orthogonal random variable sets { }rk rkR I,  in Eq. (8) can be transformed into random 

function sets with elementary random variables, say ( )rk rkR g= Q , ( )rk rkI h= Q , where ( )rkg ×  and 

( )rkh ×  indicate the deterministic orthogonal functions, respectively.  { }1 2 q= Q ,Q , ,Q }q,QQ  

indicates an elementary random vector with q-dimensional mutually independent elements, of 

which the probability distributions are assigned.  Thus, the dimension reduction with just q 

elementary random variables substituting 2 n N´ ´  random variables in the original scheme is 

realized.  

Hence, constructing appropriate random function forms holding the basic conditions 

defined in Eq. (8) is particularly important to realize the dimension reduction simulation of 

multivariate non-stationary stochastic processes.  Inspired by Liu et al. (2017), one random 

function form combining the trigonometric format and orthogonal polynomial format with just 

three elementary random variables is constructed in this study.  Then the orthogonal random 

variable sets { }jm jmR I, ( 1,2, ,j n=j n, , ; 1,2, , )m N= , ), ), )  are defined as the orthogonal random 

functions with 3-dimensonal random vector { }1 2 3= Q ,Q ,QQ , given by: 
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where a  is a deterministic parameter in the interval [0,2π) , which is valued by 4a = p  in this 

study.  
1Q , 

2Q  and 
3Q  are mutually independent elementary random variables, and 

1Q  is 

distributed uniformly over the interval (0,2π) .  ( )mT ×  indicates the first family of Chebyshev 

polynomial function with its formula given by: 

 ( ) cos( arccos )m q qT mQ = Q , 2,3q = ; 1,2, ,m N= 2, ,m N2, ,                        (10a) 

where qQ  has the PDF as follows: 
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Next, the orthogonal random function sets { }jm jmR I,  defined in Eq. (9) should be mapped 

to the orthogonal random variable sets { }rk rkR I,  in Eq. (8) through a unique transformation, i.e., 

jm rkR R® , jm rkI I® ( , 1,2, ,j r n= n, ; , 1,2, , )m k N= , , ), , ), , ) .  This procedure can be conveniently 

accomplished by means of the MATLAB tool box functions rand (‘state’, 0) and ( )randperm × . 

In this study,  the number-theoretical method (NTM (Fang and Wang 1994) and Li and Chen 

(2007)) is employed to select the representative points (the number of representative samples). 

 

4 Numerical Examples  

Suppose that the acceleration time-histories at three location points are all along the line of main 

wave propagation on the ground surface, the ground motion can thus be considered as a 1D-3V  

non-stationary stochastic process.  Figure 1 shows the configuration of these three points. 

 

 
Figure 1. Configuration of the three points on the ground surface 

 

These three points represent three typical local soil conditions, respectively.  Specifically, 

the assumption in this study is that point 1 corresponds to stiff or soft rock soil, point 2 

corresponds to medium-hard soil and point 3 corresponds to medium-soft soil.  828 

representative samples are generated using the proposed scheme.  The simulation results are 

shown in Figures 2 and  3.  Comparisons of the average relative errors (AREs) upon the mean 

and standard deviation between the proposed scheme and the MC scheme are shown in Table 1.  

As a result, the accuracy of the proposed scheme  is perfectly revealed. 
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Figure 2. Representative samples generated by the proposed scheme at the three points 
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(a) Point 1                            (b) Point 2 
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  (c) Point 3 

Figure 3. Comparisons of the PSD generated by the proposed scheme with the target values at typical 

instants for the three points 

 

Table 1.  Comparisons  between the proposed scheme and the MC scheme 

 

Error Method 

The number of 

representative 

samples 

Soil conditions 

Stiff or soft rock 

soil 

Medium-hard 

soil 

Medium-soft 

soil 

Mean 

The proposed 

scheme 828 
7.72e-17 6.99e-17 6.32e-17 

The MC scheme 2.89% 2.93% 2.88% 

Standard 

deviation 

The proposed 

scheme 828 
1.98% 2.05% 1.92% 

The MC scheme 1.99% 2.05% 2.14% 

 

5 Conclusions 

In this study, through introducing random function correlating with the orthogonal random 

variables in the original spectral representation scheme, a framework of spectral representation-

based dimension reduction is developed for simulating the multivariate non-stationary stochastic 

processes. Benefiting from the proposed scheme, the extremely high randomness degree can be 

effectively reduced to merely three. Numerical investigations adequately reveal the availability 

of the proposed scheme in engineering practices. 
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