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A graphical model for risk assessment of slope stability is presented in this paper. A Bayesian 
Network is combined with methods for structural reliability assessment in order to achieve near-
real-time analyses. This approach allows for a simultaneous consideration of continuous and 
discrete variables of slope parameters, and it utilizes the causal graph of slope stability for easy 
understanding among decision makers. The development is demonstrated for shallow, 
translational landslides, assumed as infinite slopes, and yields realistic results, with the 
advantage of simplicity. Its implementation allows to update expected results, based on 
additional information regarding the geotechnical properties. This update is realized through 
Bayesian Networks and is performed in real time. The developed enhanced Bayesian Network 
shows a large application potential for reliability analysis of slopes. 
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1 Introduction  

Shallow landslides might be analysed as infinite slopes, whose failure is induced by various 
geotechnical factors, external environment, and anthropogenic influence. To identify the main 
induced factors for the instability of slopes is of importance for geotechnical design, disaster 
prevention, and decision-makers. Bayesian Networks are causal graphical models for 
quantifying the uncertainty and have been applied for the analysis of slope stability with a 
limited explored field (Liang et al. 2012, Liu et al. 2013, Peng et al. 2013). The objective of this 
paper is to illustrate the feasibility of risk assessment of the slope by means of advanced 
Bayesian networks. Furthermore, it explains how to build the model of the slope to estimate the 
failure probabilities, and then new observations were inserted to update the model in order to 
identify its effect on the slope stability. 
 
2 Methodology 

2.1    Bayesian Networks  
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Traditional Bayesian networks (BNs) are precise probabilistic models by means of directed 
acyclic graphs, with no cycles. Each node represents an event with random variables, which is 
given by conditional probabilities tables (CPTs). The edges connecting the nodes reveal the 
conditional dependencies between adjacent nodes. Figure 1 presents a simple example of a 
Bayesian Network (BN) with 3 nodes, where the node  is the child of  and , and all of 
them are discrete variables. 

                                                             
 
 
 

 
 

Figure 1.  Example of a simple Bayesian network 
 

According to the chain rule of BNs (Pearl 1988), the joint probability distribution is, 

(1)

Exact inference algorithms (Pearl 1988) as a kind of precise methods are used to calculate 
marginal or joint probabilities of the variables of interest in a BN. Furthermore, BNs provide 
efficient algorithms for probability updating, allowing to take evidence as input. For instance, a 
case with given the observed node =e, then this information will update through the prior 
probabilities to the posterior probabilities as follows, 

(2) 

and  should be computed by marginalisation calculation when it fails to be obtained directly. 
 
2.2    Enhanced Bayesian Networks  

In the case continuous variables are involved, it is impractical to give discrete probabilities to all 
the nodes. Besides, exact inference is only available for discrete or Gaussian nodes in a very 
limited manner. These restrictions, hence, impede the application of BNs to study fields 
involving both continuous and discrete nodes. Enhanced BNs (eBNs), integrating Bayesian 
networks and structural reliability methods into a model, enable effective computation of 
continuous nodes with stochastic distributions (Straub and Kiureghian 2010). 

The main concept of eBNs is to simplify the eBNs through removing all the continuous 
nodes from the original model, by means of structural reliability methods. Precisely, structural 
reliability methods erase the links between continuous nodes and their discrete children (the so-
called deterministic nodes). Thus, they become barren nodes (a barren node has neither evidence 
nor children), enabling them to be removed without altering the CPTs of their offspring. 

The process of node elimination is shown in Figure 2a, and then in light of Eq. (1), the joint 
probability for this network can be written as   

(3) 

in which and are discrete nodes while  and  are probability density 
functions of the continuous nodes  and , respectively. In view of marginalization 
calculations, the joint probability of the discrete nodes can be achieved: 
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                       (4) 

If the outcome space of node  is determined by the parent nodes  and , then Eq. (4) 
can be rearranged as: 

(5)

Here,  is the domain that defines the event  in the outcome space of variables 
 and . Apparently, the form of Eq. (5) coincides with the definition of a structural reliability 

problem, and hence can be computed with simulation approaches. 
                                                 
                                                            

 
 
 
 
 
 
 

Figure 2.  An example of an eBN into BN 
 

2.3    Information Updating on Continuous Variables 

The most feasible technique for observing continuous nodes in hybrid BNs is discretization 
(Langseth et al. 2009). Continuous nodes should be discretized according to the following 
properties: 

n given evidence on continuous nodes. 

n continuous nodes are taken as query variables. 

For the problem studied in this paper, a credible discretization approach especially for eBNs, 
which is proposed by Straub and Kiureghian (2010), is adopted. If the continuous node  in 
Figure 2a is given a new observation, then a discrete variable  and a continuous 
variable  are introduced in order to substitute node  (see Figure 2b).  

The outcome space of  consists of some sub-domains from the divided initial 
continuous domain. The default number of sub-domains in this example is five with equivalent 
length. The node  , as child of , inherits the properties of node  as well 
as descendants. Eventually only the discrete  node  is retained to facilitate new 
observations for updating the model.  

 
3 Risk assessment of slope stability 

3.1    Formulation of an infinite slope failure 

Driving forces and resisting forces determine the stability of a slope and, as a result, the factor of 
safety (FOS) of a slope is the ratio of resisting and driving stresses along a potential slip surface.  
It is frequently computed to identify whether a slope is safe, which occurs in the case FOS≥1, or 

                a. Reduction procedure                             b.  Discretization procedure 
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unsafe, which occurs if FOS<1. For an infinite slope, as the one shown in Figure 3, the equation 
for calculating the factor of safety in terms of effective stress analysis is given by, 

 (6)

Here, the drained parameters of the soil are used, where cohesion ( ) and friction angle ( ) 
are its strength parameters.  ,  are the unsaturated and saturated soil thickness, 
respectively, and ,  are, respectively, the dry and saturated unit weight of the soil.  is the 
total thickness of the unstable soil mass while the Greek symbol  stands for slope inclination. 
The unit weight of water  is 9.81kN/m3. 

                                                                                                          

 
 

Figure 3.  An infinite slope 
 

In light of this, the failure model of slopes can be denoted by a limit state function ,  

(7) 

Similarly, ≥0 represents the safe state of the slope, otherwise, shows the unsafe state.  
 
3.2    The BN model of Slope Stability 

The BN structure of an infinite slope shown in Figure 4 is considered based on the slope failure 
model, and the relevant factors are linked by the causal reason. 

 
 
 
 
 
 
 

 

Figure 4.  An enhanced Bayesian network  
 
The occurrence of the infinite slope failure results from some potential unsafe factors. First 

and foremost, in view of the main properties of soil, Cohesion and Friction Angle ‘resists’ 
movement down the slope, playing a decisive role in stabilizing the slope, which is controlled by 
geotechnical characteristics. Meanwhile, the geometrical parameters of slope: slope inclination 
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and slope’s height are two important factors for slope stability. The angle of a slope defines what 
percentage of the driving force is distributed in the parallel direction along the slope surface. 
Small angle means small pulling force on the downslope movement, while large angle provides 
the large pulling force. In this work, for the sake of the simplicity,  substituted the height of the 
slope, which can be obtained as  / . For the infinite slope studied,  and  are constant, 
and therefore, there is no need to involve these two parameters into the BN. 

Water position can play a decisive role in the slope stability problems. The original source 
of water in the soil is from external rainfall and the percolation within the slope. Many 
researchers choose the change of pore water pressure to observe the stability of the slope 
influenced by rainfall, or the water table position. Some studies demonstrated that rainfall 
influences groundwater pressure associated with transient infiltration, causing variations in the 
water table and subsequent slope failure (Yubonchit et al. 2016).  

In light of this, according to the effective stress principle, variable pore water pressure for a 
soil slope can be estimated by the product of unit weight of soil and saturated soil thickness. In 
most studies, the position of groundwater table is expressed by the depth of saturated soil, and 
hence, the node Saturated Thickness proposed is governed by the drainage condition. 
Specifically, if drainage takes place, water table is taken away from the critical slip surface, and 
therefore,  is equal to 0. It is rational to regard the event of Drainage as a parent node of 
Saturated Thickness. 

In general, the model includes 6 factors and one failure event, where the event of slope 
failure is introduced as a target node.  

 
3.3    Example implementation  

A translational slip (Figure 3) is analysed in this work. It is assumed that the total thickness of 
the slope is 4 m at the inclination angle  . The key parameters of the soil slope in the BN 
(Figure 4) are set as random variables with known probability distributions in reference to the 
changeable properties. The thickness of unsaturated soil can be expressed by . The 
specific definition of variables can be seen in Table 1.  
 

Table 1.  Input parameters of the infinite slope in the BN  
 

Parameters  (kPa)  (°)  (kN/m3) 
 

(kN/m3) 
(m) 

Drainage 
(D) 

Slope 
Failure 

(SF) 
Variable 

type 
Continuous  Continuous  Continuous  Continuous  Continuous  Discrete Discrete 

CPD N(35,3) N(17, 0.4) N(19, 0.5) [0.5, 0.5] [ ] 
* N, logN, and U represent Normal, lognormal and uniform distribution with mean and standard deviation, respectively. 

 
In light of the above-mentioned method, the CPT of the querying node can be computed by 

Eq. (3) to (5), which is expressed as follows, 

(8)   

the outcome space  can be described by the limited state function 
defined            
by Eq. (7), and hence: 
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(9) 

where  denotes the failure probability of the node Slope Failure while the safe probability is . 
For inserting evidence into the continuous variables, Monte Carlo simulation is used to 

update the slope parameters. 
3.4    Results  

A real scenario problem can be solved by posing queries with respect to the BN. In this example, 
after removing continuous variables, only two discrete nodes: Drainage and Slope Failure are 
left. Then the reasoning in BN can be inferred with this reduced model, and the results are 
exhibited in Table 2. The failure probability of the node SlopeFailure,  is 2.74%. 
Compared with no evidence inserted,  with drainage state, is much lower than with no 
drainage, whose result is 5.13%, proving the importance of the water when analysing slope 
stability problems. 
 

Table 2.  The effect of Drainage on slope safety 
 

Evidence - Drainage No Drainage 
 0.0274 0 0.0513 

 
Table 3 the Failure probabilities given new observations on continuous nodes separately. 

varies from 2.55% to 2.67%, which is close to the original result. Although just a small 
variation is observed, the clarification, in any case, is reduced because the range given for the 
observations is quite large. If the observations are narrower, the outcome will be evident. 
 

Table 3.  Slope failure probability updated with new information 
 

Factors     

Evidence [0, 100] [25, 45] [16, 19] [18, 21] 
 0.0255 0.0267 0.0259 0.0256 

 
4 Discussion 

An attempt was made to analyse the risk of a slope with the eBNs approach. A discretization 
process is conducted to update the model with new evidence in continuous nodes. The example, 
although very simple, demonstrated that eBNs have present a useful capability to assess the risk 
for slope stability problems.  
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