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Structural analysis involving hybrid uncertain parameters is investigated in this paper. Both 

multi-imprecise random fields, as well as the interval fields, are simultaneously incorporated. A 

new robust computational method, namely the extended unified interval stochastic sampling (X-

UISS) method, is proposed for the uncertain structural analysis, such that the PDFs and CDFs of 

the extreme structural responses can be established.  
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1 Introduction  

In this study, static analysis of engineering structures involving mixture of stochastic and non-

stochastic uncertain system inputs is investigated. Unlike the traditional hybrid uncertain 

structural analysis involving random and interval variables, the concept of multi-imprecise 

random and interval fields has been implemented to model the spatially dependent system 

uncertainties that have been rapidly emerging in general engineering applications. 

A new computational approach, namely the extended unified interval stochastic sampling 

(X-UISS) method, is specifically proposed to determine the statistical characteristics (i.e., mean 

and standard deviation) of the extremities (i.e., upper and lower bounds) of the concerned 

structural responses (i.e., displacement and stress) in the first step. Subsequently, by utilizing 

either parametric or non-parametric statistical inference techniques, the probability density 

functions (PDFs) and cumulative distribution functions (CDFs) of the extreme bounds of the 

structural outputs can be robustly established. Therefore, the upper and lower bounds of the 

structural reliability can be effectively and efficiently secured from the associated CDFs.  

The applicability and effectiveness of the proposed X-UISS approach for engineering 

structure involving multi-imprecise random and interval fields are thoroughly demonstrated 

through the presentation on one numerical investigation. 

 

2 The Concept of Imprecise Random Fields 

Regarding a probability space , introducing , which represents a generic 

sampling point in the sample space ,  represents the σ-algebra, and  represents the 

measurement of the probability. 
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For the purpose of this paper, the imprecise random field with interval mean (i.e., ) 

is considered throughout this study. By further implementing the Karhunen-Loève (K-L) 

expansion approach (Do et al 2016), the imprecise random field with bounded mean can be 

formulated as: 
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where  denotes the lower and upper bounds of the mean of the random field respectively; 

 and  denote the ith eigenvalue and eigenfunction of the covariance function 

respectively;  denotes a set of random variables. By adopting a Kth order 

truncation, the Kth order approximation of the imprecise random field with bounded mean 

can be expressed as: 
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3 The Concept of Interval Fields 

The concept of interval field was firstly introduced in (Verhaeghe et al 2013) and subsequently 

developed in (Sofi and Muscolino 2015) to model the spatially dependent uncertain parameters 

when the stochastic approach is prohibited. In order to present the concept of interval field in a 

more appropriate format, the following definitions are introduced (Wu and Gao 2017). 

Definition 1. An interval field  is a collection of interval variables indexed by a 

continuous parameter , where  is a set of . 

Definition 2. The upper bound function, denoted as , such that , 

.  

Definition 3. The lower bound function, denoted as , such that , 

. 

Definition 4. The mid-point function, denoted as , such that 
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Definition 5. The half-width function, denoted as , such that 
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Definition 6. A uniform interval field is defined such that the lower and upper bound 

functions are constants for all . That is,  and , where 

. 

According to Definition 6, the traditional interval variable can be alternative understood as a 

special circumstance of an interval field. 

Within the context of this study, the spatial average method [5] is implemented to 

discretize the interval fields. That is: 
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where  denotes the discretized interval field;  denotes the domain of the ith structural 

element. Similarly, the lower and upper bound functions can be also discretized into two 

vectors  and  such that: 
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By adopting the spatial average discretization method, all concerned interval fields are 

transformed into interval vectors with explicit upper and lower bound information.  

 

4 The Extended Unified Interval Stochastic Sampling (X-UISS) method 

By considering the abovementioned two uncertainty models simultaneously within the 

framework of linear static analysis, the governing equation for the hybrid uncertain static 

analysis of structures involving spatially dependent uncertainties can be formulated as: 

Find u  and σ  

                                           such that: 
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where  is the overall compatibility matrix, and the transpose of the compatibility 

matrix  is the global equilibrium matrix; d represents the number of degree of 

freedom;  collects the number of independent-force systems across the entire structural 

domain;  is the global stress-force matrix;  represents the corresponding 

structural displacement;  is the uncertain externally applied force vector;  

are the independent internal force and its corresponding internal displacement respectively; 

 is the structural stress response;  denote the global 

flexibility matrices that are functions of the spatially dependent uncertain Young’s modulus 

( ) and Poisson’s ratio ( ); ,  and  denote the 
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imprecise random fields for the considered uncertain parameters; , , and  

represent the associated interval fields for the considered uncertain parameters; ‘ ’ is the 

logical ‘or’. 

However, direct solving Eq.(7) for  and  is computationally intractable. For the 

purpose of valid uncertainty analysis, the following algorithm is proposed for estimating the 

PDFs and CDFs of the extreme structural responses. 

Algorithm: The X-UISS method for structural uncertainty propagation analysis with 

multiple imprecise random and interval fields 

Step 1. All considered imprecise random fields with interval mean are discretized to the Kth 

order through the implementation of K-L expansion: 

Step 2. All considered interval fields are discretized by implementing the spatial average 

method. 

Step 3. Generate b (where, b>>1) realizations for the Kth order approximated imprecise 

random field . 

Step 4. Calculate the upper bound of the concerned structural response (e.g., the structural 

displacement at sth degree of freedom , where , or the pth stress component , 

where ). 

Step 5. Calculate the lower bound of the concerned structural response (e.g., the structural 

displacement at sth degree of freedom , where , or the pth stress component , 

where ). 

Step 6. Identification of the underpinned distribution for the extreme bounds of the 

concerned structural responses according to all collected samples. 

Step 7. Estimations of PDFs and CDFs for the concerned structural responses through either 

parametric or non-parametric statistical inference.  
 

5 Numerical Example 

In order to demonstrate the effectiveness and efficiency of the proposed X-UISS approach, one 

numerical example is illustrated in the following section. In particular, all NLPs involved in this 

study are solved by a NLP solver named as CONOPT. 

Here, a steel plate under uniform tension is considered. The general structural layout has 

been depicted in Figure 1(a), and the adopted finite element mesh is illustrated in Figure 1 

(b). Without loss of generality, unit thickness is assumed for this particular example. The 

Young’s modulus of the steel plate is considered as an imprecise Gaussian random field with 

an interval mean and exponential covariance function. In specific, , 

, and the correlation lengths in x- and y- directions are  and  

respectively. On the other hand, due to the insufficiency of the information on the Poisson’s 

ratio, it is modelled by the interval field with the following upper and lower bound functions 

respectively: 
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(a)                                                               (b) 

 

Figure 1. Steel plate under uniform tension (a) general structural layout (b) adopted mesh 

 

In order to demonstrate the applicability of the proposed X-UISS approach for the structural 

analysis of the concerned steel plate involving both imprecise random and interval fields, 

both the X-UISS and the Quasi-Monte-Carlo Simulation combined with Monte-Carlo 

Simulation (i.e., QMCS-MCS) approaches are implemented to establish the CDFs of the 

concerned structural responses. In this example, the concerned structural responses are the 

horizontal displacement of the point at x=0, y=1, as well as the maximum normal stress in the 

horizontal direction that have been observed from the deterministic analysis. For all 

calculations involved in the proposed X-UISS approach, a sample size of 10,000 has been 

implemented. On the other hand, a total number of 2.5 million simulations have been 

adopted for the QMCS-MCS approach. 

By utilizing the kernel density estimation, the CDFs of the bounds of the concerned 

structural responses can be efficiently established and presented in Figure 2. In addition to 

the results obtained from the proposed X-UISS approach, the estimations on the CDFs of the 

concerned structural responses by the QMCS-MCS are also being reported in Figure 2.  

As clearly indicated in Figure 2, all possible CDFs reported by the QMCS-MCS 

approach have been enclosed by the CDFs established by the proposed X-UISS approach for 

both structural responses on displacement and stress with much less computational effort. 

That is, the proposed X-UISS has spent 17.7 hours for the establishment of the CDFs of the 

bounds of the concerned structural responses, whereas the QMCS-MCS approach has 

consumed in total of 986 hours to have all the red lines as indicated in Figure 2. Within the 

identical computational environment, the proposed method only consumed about 1.80% of 

the total computational effort required by the QMCS-MCS approach. Therefore, the 

proposed X-UISS approach surpasses the performance of the dually simulative 

computational scheme with extensive simulation cycles in both aspects of computational 

accuracy and efficiency.  

In addition to the comparison on the computational results between two distinctive 

methods, one thing attracts the authors’ attention is that a wider dispersion between the 

CDFs of the bounds of the maximum normal stress has been observed. That is, regarding the 

results calculated by the proposed X-UISS approach, the dispersion between the CDFs of the 

bounds of the concerned stress is much larger than the dispersion between the CDFs of the 
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bounds of the concerned displacement. However, the trend of results reported by the QMCS-

MCS approach does not share such similarity. The reason for such phenomenon is that the 

extreme bound of the concerned stress does not necessarily correspond to the extreme bound 

of the concerned displacement at each interval analysis. Within the scheme provided by the 

X-UISS approach, the extreme bounds of the displacement and stress are solved individually. 

However in the adopted QMCS-MCS approach, all the stresses are actually calculated basing 

on the displacement which was obtained in the interval analysis on the structural 

displacement. That is, all the stresses reported in Figure 2 (b) were actually calculated basing 

on the corresponding displacements determined in Figure 2 (a). Therefore, the variational 

dispersion exposed in Figure 2 within the framework of the X-UISS approach is actually 

highlighting additional advantage of the proposed method instead of introducing result 

overestimations. 

 

            
(a)                                                                                (b) 

 

Figure 2. CDFs of the bounds of (a) the displacement (b) the maximum tensile stress 

 

6 Conclusion 

In this paper, the structural static analysis involving multiple imprecise random and interval 

fields has been investigated. Both stochastic and non-stochastic spatially dependent uncertain 

system parameters are incorporated simultaneously.  

An effective computational method, namely X-UISS approach, is proposed by combing the 

robust sampling method with the mathematical programming approach. Through a thorough 

investigation on a simple plane stress problem, the applicability, accuracy and efficiency of the 

proposed method have been evidently illustrated. 
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