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To address technical challenges in stochastic seismic analysis of nonlinear systems, a Gaussian 

mixture based equivalent linearization method (GM-ELM) was recently developed. Unlike 

conventional equivalent linearization methods which identify a single equivalent linear system 

that meets certain equivalence response criteria, GM-ELM aims to capture the response 

probability distribution by stochastically decomposing a nonlinear system into multiple equivalent 

linear systems. Various response statistics of the nonlinear system, e.g. mean crossing rate, first 

passage probability and mean peak response, are estimated by recombining the response statistics 

of the equivalent linear systems computed based on linear random vibration theories. Retaining 

the original ideas of stochastic decomposition in GM-ELM, this paper proposes to use bivariate 

Gaussian mixture models instead of univariate ones. This is to improve accuracy by introducing 

additional dimension i.e. derivative of response, to the response probability density domain. Based 

on the use of bivariate model, the system decomposition and response combination of GM-ELM 

are reformulated. Moreover, to promote applications to performance based earthquake 

engineering (PBEE) practices, GM-ELM is extended for efficient fragility analysis by introducing 

auxiliary dimension related to the excitation intensity and multivariate Gaussian mixture model. 

The proposed methods are demonstrated by numerical examples. 
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1 Introduction 

In efforts to evaluate seismic demand of structure, it is important to incorporate the uncertainty of 

ground motions into the analysis. To this end, many stochastic seismic analysis methods have 

been proposed, such as response spectrum or power spectrum based methods. However, these 

methods are not directly applicable to nonlinear systems, for which the superposition rule does 

not hold. To overcome challenges in such a nonlinear seismic analysis, various stochastic seismic 

analysis methods have been proposed, such as conventional equivalent linearization method 

(ELM), which finds an equivalent linear system that minimizes mean square error of response 

(Clough and Penzien 1975), and tail equivalent linearization method (TELM), which obtains 

equivalent linear system in terms of numerical impulse-response function by identifying “design 

point” from the first-order reliability method (FORM) (Fujimura and Der Kiureghian 2007).  
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More recently, a Gaussian mixture based equivalent linearization method (GM-ELM) was 

developed based on the approximation of the non-Gaussian distribution of the system response of 

interest by a group of Gaussian distributions (Wang and Song 2017). The basic presumption 

behind GM-ELM is that each Gaussian component in the identified mixture model can be 

interpreted as an imaginary linear single-degree-of-freedom (SDOF) oscillator. The point is that 

the response of original system is restored in terms of these equivalent linear systems, to which 

standard linear seismic analysis methods can be applied. 

However, the original GM-ELM (Wang and Song 2017) may suffer from the fact that the 

number of unknown parameters is larger than the given pieces of information, and therefore, 

heuristic assumptions regarding the equivalent linear system are needed. In this research, we 

propose to import additional information from the probability density of time derivative of 

response to avoid the heuristic assumption on the structural damping. Also, the combination rules 

of equivalent linear systems are reformulated accordingly, which improves the accuracy. Another 

development introduced in this paper is a new efficient fragility analysis approach based on GM-

ELM. This approach can identify global equivalent linear systems while not being influenced by 

the scale of the excitation. 

The next section reviews the concepts of stochastic decomposition and extends the univariate 

GM-ELM into the bivariate version. Section 3 re-establishes mathematical equations to combine 

response statistics of equivalent linear systems for the bivariate GM-ELM, and Section 4 

introduces a novel approach for efficient fragility analysis using GM-ELM. Numerical examples 

are provided in Section 5, followed by conclusions in Section 6. 

  

2 Gaussian Mixture based Equivalent Linearization method (GM-ELM) 

2.1    Basic concepts of GM-ELM 

The GM-ELM identifies multiple equivalent linear systems that can capture the shape of the 

response probability density function (PDF) of a generic nonlinear system. From the practical and 

theoretical rationales that (a) random seismic excitation is often featured as a filtered Gaussian 

process (Fan and Ahmadi 1990, Fujimura and Der Kiureghian 2007), and (b) the corresponding 

response of a linear system is also a Gaussian process, GM-ELM identifies a group of imaginary 

SDOF oscillators which are randomly activated, constantly switching from one to another. This is 

done by introducing a Gaussian mixture model to approximate generic PDF of response of interest 

while each Gaussian model in the mixture is used to identify equivalent SDOF oscillators. 

This process could be interpreted as stochastic decomposition or stochastic linearization. By 

evaluating response statistics of equivalent linear systems individually and then combining them 

with probabilistically derived combination rules, the response statistics of nonlinear system could 

be acquired within acceptable amount of computing power. Figure 1 provides the conceptual 

diagram on the analysis procedure by GM-ELM.  

 
Figure 1. Conceptual illustration of analysis procedure by GM-ELM 
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2.2    Details of stochastic decomposition 

To illustrate the proposed concept of stochastic decomposition, a stationary and ergodic filtered 

Gaussian process excitation is considered. The resulting stationary response could be represented 

in terms of PDF. As an extension of the original GM-ELM, we propose to consider the time 

derivative of the response as well as the response of interest, i.e., . 

 (1) 

where the function  represents uncorrelated bivariate Gaussian distribution with 

mean  and diagonal covariance matrix  that have diagonal terms , 

and  is the mixture coefficient that describes the relative rate of occurrence of each mixture 

component. The parameters  could be estimated by minimizing the cross-entropy 

of two distributions or by maximizing the likelihood of samples. 

Each Gaussian mixture component represents the response of a linear system subjected to the 

Gaussian excitation. The means  and  represent the shifted amount of the base location and 

the base velocity of the corresponding imaginary single-degree-of-freedom (SDOF) oscillator, 

respectively while the variances  and  represent their stochastic response characteristics. 

From random vibration theories, the variances of response and its time derivative are related to 

the linear system parameters as follows: 

 (2a) 

 (2b) 

where  is the auto power spectral density (PSD) of the seismic excitation, and  is the 

linear frequency response function (FRF) of the -th component, i.e. 

 (3) 

in which , , , and  are respectively the equivalent stiffness, damping, mass, 

and scaling factor. The scaling factor is defined according to the response quantity of interest. 

Therefore, to specify the equivalent linear systems, it is required to handle at least three unknown 

parameters while only two constraints, Eq. (2a) and Eq. (2b), are given. To address this,  can 

be set as the value of lumped mass at a location of interest. Note that the original approach of 

univariate GM-ELM only utilizes Eq. (2a), therefore one of the parameters, stiffness or damping, 

has to be pre-defined based on engineering judgements additionally.  

 

3 Random Vibration Analysis by Bivariate GM-ELM  

Various response statistics subject to seismic vibration can be calculated from the responses of 

identified equivalent linear systems. First, the instantaneous failure probability of a structure is 

defined as complementary cumulative distribution function (CCDF), 
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 (4) 

where  is the cumulative distribution function (CDF) of standard normal distribution, and 

 indicates that the -th equivalent SDOF is activated while others are not. This could be 

extended to the threshold of velocity as well when bivariate GM-ELM is used. For the mean up-

crossing rate , the following expressions can be derived from theories of random vibration 

analysis (Lutes and Sarkani 2004) and an assumption about the “mode switch” (Wang and Song 

2017): 

 (5) 

 (6) 

where the j-th order spectral moment of k-th equivalent SDOF  and  can be respectively 

computed as 

 (7) 

 (8) 

where  and  are the PDF and CDF of the standard normal distribution, respectively, and 

. Note that when is zero for all components, Eq. (6) gives the same expression 

to the formulation of univariate GM-ELM proposed in Wang and Song (2017). Under an 

assumption that the up-crossing events follow a Poisson process with the mean rate , the 

first passage probability for a time period  can be estimated as 

 
 

(9) 

in which A denotes the probability of the initial response being in the safe domain. 

 

4    Finding Global Equivalent Linear Systems of GM-ELM for Fragility Analysis 

This section extends the concept of GM-ELM to facilitate fragility analysis of nonlinear structures. 

The apparent weakness of the GM-ELM in fragility calculations is that as the intensity of ground 

motion of interest is changed to construct a fragility “curve” or “function,” it is naturally required 

to re-evaluate the response PDF for each intensity level and also identify a new equivalent linear 

system. This makes it inefficient to construct fragility curves using a GM-ELM approach. 

In order to overcome this issue, it is desirable to obtain universal equivalent linear systems 

which are independent of the intensity of the ground motions. For this, an axillary dimension 

which represents the excitation intensity is introduced in addition to the domain of the response(s). 

Considerer a variable  that represents the scale of seismic excitation. Drawing an analogy to the 

conventional GM-ELM approaches, one could approximate the distribution  by a set 

of uncorrelated multivariate Gaussian densities with the parameter se , where 

in this case we have 3-dimensional parameters, i.e. mean vector   and 

diagonal covariance matrix  with the diagonal components . Exploiting this 
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Gaussian mixture model expression, the conditional probability density function given a specific 

excitation intensity can be derived as 

 (10) 

which gives a bivariate Gaussian mixture model with the mixture coefficients, 

 (11) 

Note that while the parameters used for identifying equivalent system i.e. , 

stay constant, only the occurrence frequencies of the equivalent systems, i.e. , vary 

depending on the ground motion intensities. Eq. (10) implies that once the global equivalent linear 

systems are identified, ordinary combination rules for GM-ELM approach, Eq. (4)-(9), could be 

directly applied to identify response statistics of various ground motion scales, where only  

should be modified into . This feature specially gives advantage when evaluating fragility 

curve, allowing us to avoided tedious repetition of finding equivalent linear systems for each of 

the selected ground motion intensities. 

 

4 Numerical Examples 

Consider a hysteretic oscillator under seismic loading described by the differential equation 

 (12) 

where , and  denote the displacement, velocity and acceleration, respectively, of 

the oscillator. The initial natural period is set as 0.75 seconds and the damping ratio is 0.03. The 

parameter  defines the characteristic of hysteresis. The term  follows the Bouc-Wen 

hysteresis relation, i.e. 

 (13) 

where , , and , in which  m is related to the yielding 

displacement. The ground motion  in Eq. (12) is modeled by a stationary auto-PSD 

described by modified Kanai-Tajimi model (Cloud and Penzien, 1975). 

 (14) 

where  is a scale factor, and , , , and  are the 

filter model parameters. The duration of excitation is set as 17 seconds. To prove the necessity of 

introducing bivariate Gaussian mixture model, both uni- and bivariate GM-ELM are used with 

scale factor 0.015 m2/s3. 

Figure 2 show the mean up-crossing rate and first passage probability estimated by 100 rounds 

of dynamic simulations. It is seen that the bivariate GM-ELM decreases the error by taking into 

account the damping of the hysteretic behavior accurately. On the other hand, Figure 3 provides 
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the fragility curves generated by the bivariate GM-ELM and global equivalent linear system 

approach described in the previous section. For convenience,  is set to be uniform distribution 

along the range of interest. A total of 200 excitation intensities are sampled to perform dynamic 

simulations for each sampled intensity and identify the corresponding response PDFs. Gaussian 

mixture model  is then fitted to the samples. The results in Figure 3 confirm that the 

fragility curves obtained from the GM-ELM gives similar results to those by Monte Carlo 

simulations. 

5 Conclusions 

In this paper, a recently developed stochastic dynamic analysis approach, GM-ELM, is further 

developed. First, the response time derivative is additionally considered to identify the equivalent 

linear systems of GM-ELM more accurately. This is done by introducing a bivariate Gaussian 

mixture model instead of univariate one. Second, a concept of global equivalent linear system, 

which is invariant to the excitation intensity, is proposed by introducing auxiliary dimension 

related to the scale of ground motions and by approximating the extended PDF using multivariate 

Gaussian mixture model. It is shown that, by identifying the equivalent linear systems are invariant 

of the scale of ground motions only once and estimating their occurrence coefficients for each 

intensity level, one can still obtain accurate fragility curves. Further research is underway to 

develop GM-ELM-based methods for performance based earthquake engineering (PBEE). 
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Figure 2 Mean up-crossing rates and first-passage probabilities Figure 3. Fragility curves by GM-ELM; 

Markers represent MCS results based on  

70,000 simulations 


