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Abstract: A physically based model of stochastic earthquake ground motion is first introduced,
which takes into account the randomness inherent in the earthquake ground motion. In order to
quantify the effect of the randomness achieving the optimal control of seismic structures, a
probabilistic criterion involving function of structural reliability is employed. In conjunction
with the bounded Hrovat algorithm, a reliability based control gain design is applied in the semi-
active control of seismic structures with MR dampers, of which just the viscous damping
coefficient and the maximum Coulomb force need to be defined. By tracing the optimal active
control force and the relevant system state, the viscous damping coefficient and maximum
Coulomb force are then defined. For illustrative purposes, a single-degree-of-freedom system of
structure with MR damper subjected to random seismic ground motions is investigated.
Numerical example shows that the safety of controlled structure gains a significant enhancement
using the reliability based control gain design of MR damper.

Keywords: Stochastic seismic model, Reliability criteria, MR damper, bounded Hrovat
algorithm.

1 Introduction

Magnetorheological (MR) damping control is regarded as the most promising manner for
implementing semi-active and intelligent control modalities owing to the perfect dynamic
damping behaviors of the MR damper (Casciati et al. 2006; Peng et al. 2016). The challenging
issue, however, of the MR damping control is the design and optimization of control gain, which
relies upon the structural state relevant to the external excitation and the demanded structural
performance that the control policy is expected to achieve.

There is a common knowledge in earthquake engineering community that the earthquake
ground motion arises to be a random process. However, this is not received sufficient attention
in the design of structural control of seismic structures. Only a few of seismic acceleration
records are utilized that ignores the randomness inherent in the seismic ground motion. In this
study, a physically based model of stochastic earthquake ground motion is first introduced. In
order to quantify the effect of randomness on the control gain of seismic structures with MR
dampers, a probabilistic criterion involving function of structural reliability is employed. Since
the bounded Hrovat algorithm, a well-recognized control gain format of semi-active control,
includes the correlated parameters to be defined, such as viscous damping coefficient, maximum
Coulomb force and optimal active control force, the reliability based probabilistic criterion is
just posed on the stochastic optimization of active control force. By tracing the optimal control
force and the relevant system state, the viscous damping coefficient and maximum Coulomb
force are then defined. For illustrative purposes, a single-degree-of-freedom system of structure
with MR damper subjected to random seismic ground motions is investigated.
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2 Modeling of Stochastic Seismic Ground Motion

Considering the randomness inherent in the seismic sources, propagation paths, and site soil, the
physically motivated stochastic ground motion model is re-visited in the present paper. For the
sake of clarity, the local engineering site is modeled as a single-degree-of freedom (SDOF)
system. The stochastic ground motion model in the frequency domain is thus given by (Li and
Ai12006)
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where X, (®,w) andU, (®,,®) denotes the frequency domain expressions of ground motions at

the engineering site and bedrock, respectively. @ = {®Eo’ ®E’ a)} denotes the random vector

characterizing the randomness involved in the ground motion at the surface of the engineering
site; O O, denote the parameters indicate the randomness of the predominant frequency of

the engineering site;(, and the equivalent damping ratioE , respectively. @, = {@b ; }Sb ] denotes
s

the random vector characterizing the randomness involved in the ground motion at the bedrock
from the properties of the sources and the propagation path, with s, being the number of the

random variables involved at this stage. H (®7

&g @

B ®Z’ a)) denotes a frequency transfer

function, in which @ denotes the circular frequency. And i denotes the unit of the imaginary

number \/_71 .

The time history of the ground motions could then be obtained by the following inverse

Fourier transformation:
B 1 o . iw
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where the probability distribution and statistical parameters of the two critical variables, ;0 and
E, are identified according to the seismic acceleration records collected from a certain type of
engineering site. In the present paper, ;Oand Eare assumed as being mutually independent

random variables and both admit a log-normal distribution. The mean of 50 and ¢ are 12 rad/s

and 0.1 with the coefficients 0.42 and 0.35, respectively. Meanwhile, the initial phase angle of
the inverse Fourier transformation of the ground motion is treated to admit normal distribution
with 7 and 1.2 of mean and coefficient values, respectively.

Using the tangent spheres method (Chen and Li 2008), a collection of 221 representative
points with corresponding assigned probabilities are selected. The sampling frequency is 50 Hz,
and the time-domain duration of the ground motions is 20.48 s. To establish a non-stationary
variation of the intensity of the seismic acceleration, a uniform modulation function is employed
(Li and Chen 2009). The peak accelerations of the samples are 0.11g.

3 Control Gain of Stochastic Optimal Control

Stochastic optimal control involves the maximization or minimization of the specified cost
function. The generalized form of the cost function is typically the quadratic combination of
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displacement, velocity, acceleration and control force. A standard quadratic cost function can be

expressed as follows:
J(2,U,.,0)= %ZT (tf)P(l‘f)Z(tf)-f—%J.:f (2" (1)QZ(t)+ U, RU, |dt (4)

where Z=[X X]" denotes the state vector of the structure system; U, = {Ua’,. ()}”i1 denotes the

optimal control force; Q = {Qa,i ()} denotes a positive definite matrix; £, and, denotes

2n,x2ny
the starting and terminal time, respectively. The minimization of the random variable J, in Eq.
(4) is the system state globally optimized in the case of given control parameters Q and R, of
which the solution can be expressed as follows:

U,(0©,/)=-R"'B"PZ(0,1)=—-GZ(0O,1) (5)
where B = [B,-,- ]2 denotes the control influence matrix; G denotes the control gain matrix;
and P = [Pyl denotes the Riccati matrix, which can be solved from the following Riccati

equation(Li et al. 2010):
PA+A’P-PBR'B'P+Q=0 (6)
As indicated previously, the control parameters Q and R need to be determined so as to

implement the Riccati control. Utilizing the exceedance probability criterion with the constraint
of acceleration, a better system performance through structural control can be achieved, which is
expressed as follows (Li et al. 2011):

Jy = %[Pr; (Z=Zuwa > 0)Q,Pr, (Z=Zws > 0)+ Pr] (U ~Una > 0) Ry Pr (U =Unna > 0) [+ H (A = i ) (7)

where Z and U denote the equivalent extreme-value of Z and U , respectively (Li et al. 2007).
Zua and U e denote the thresholds of Z and U , respectively.

4 Semi-Active Control of Seismic Structures with MR Dampers

For the randomly base-excited structures controlled semi-actively with MR dampers, the
equation of motion can be expressed as follows:

MX(0,t)+CX(0,1)+KX(0,/)=B U, (0,/)+D F(0,¢) ®)
where X denotes the inter-story drift vector which equals to the displacement of MR
damper; M, C,K denote the mass, damping and stiffness matrix, respectively; B, and D denote
the location matrix of the dampers and the excitation, respectively; U, denotes the damping

force vector; F denotes the random excitation vector. For shear-valve MR damper, the damper
force U_ in Eq. (8) can be expressed as:

U (0,t)=-C,X(0,)-U, (0,7) )
where C, and U, denote the viscous damping coefficient and the Coulomb force of MR damper,

respectively. The damper force is determined mainly by the strength of the magnetic field and
can be adjusted according to a control strategy. For the sake of fully usage of the MR damper’s
dynamic behaviors, a bounded Hrovat algorithm is applied as follows (Peng and Li 2010):

Cy X (O,1) + Uy sg0(X(O,1)), Case A: U, X <0and |U,|>U,,.,
U, |sgn(X(©,1)), Case B: U, X <0and |U,|<U,,.. (10)
C,X(©,)+U, . sgn(X(®,r), CaseC: U X>0

U.(0O,t)=

c,min
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where U, (©,7) denotes the damping force of MR damper; U, (©,7) denotes the reference
(0,1)=C,|X(0,1)|+U

de,max

optimal control force; U, denotes the maximum damping force

andU

dc,min

max

of MR damper at a certain time; X (@, t) denotes the damper velocity; U denote

dc,max
the maximum and minimum Coulomb force of MR damper, respectively.
With the assumption that the semi-active control force required in the Eq. (10) could be
fully obtained by the MR damper, the maximum control force in the semi-active control equals
to the maximum control force in the active optimal control, U, =U so as to make the

former achieves the similar effectiveness with the latter. Meanwhile, with the condition that the
inter-story velocity in case of the maximum semi-active control force reaches to that in case of
the maximum active optical control, the following equations could be derived:

U (©) = Cy | Xy _ o[+ Umn| = Cu X | Vs =U

S‘Uv,max (0)‘ a‘Uamlx ((-))‘ a,max (

dc,max /c,max ®) (1 1)

Since the Coulomb force of the MR damper can be continuously adjusted by the current, there is:

Ux,max (G) = Cd XS"U,\.‘,MX(O)‘ +|Udc,max = S(Cd XY‘U‘\,,M,( (@)‘ +|Udc,min ) (12)

In this paper, the minimum Coulomb force of the MR damper is assumed to be U, .., =0.
Associating Eq. (11) with Eq. (12), we have

U, 1 (0) = 5C, XS‘UWX(@)‘ =sC, Xa‘U"m(@)‘ =U, . (0) (13)

Then, the damping coefficient C, and the maximum Coulomb force U,

'c,max

of the MR damper

could be obtained:

(0]
Cd _ iz,max ( )
K Xa\u () (14)
Udc,max = (S - 1) Cd Xa‘Ua,max (0)‘

Therefore, the semi-active stochastic optimal control force and the parameters of the MR damper
are determined. Then the state vector X and the control force vector U, could be obtained, which

both are the functions of @ , indicating that both X and U, are satisfied with the generalized
probability density evolution equations (Li et al 2010):

P e (%.,0,7) P e (%.,0,1)

X (0,0 L8
ot ox
%) (u 0 t) ap, (u 0 t) (13)
Puo TY +U, (8,1)—2—""2=0
ot ou

where pyq (x.0,1) and p, o (1,0,¢) are the joint PDFs of the (X (¢),0) and (U, (1).®)
respectively; X (O,t) and U, (B,t) are the velocity arguments of X (t) and U, (t) with the

condition of ® =0 . The initial conditions of Eq. (15) are as followed:

Pye (x,ﬁ,t)‘tzo = 5(x —xo)p® (9)
Pue (u,ﬂ,t)‘tzo =5 (u—u,)pe(0)

where x,,u,are the initial values of X (), U, (¢) respectively; &(-)is the Dirac's delta function.

(16)

Then the instantaneous PDFs of X (#)and U  (¢) at any time could be obtained:
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Py (x0)= [, Pro(x.0.1)d0

py ()= j% Puo(1.0,7)d0

where Q is the distribution domain of @ . Generally, it is difficult to obtain the analytical

(17)

solution of PDFs , and a numerical scheme is usually a preferable tool (Li and Chen 2009).

5 Case Study

In order to validate the effectiveness of the reliability based control gain design in semi-active
control strategy, a SDOF structural system subjected to random seismic ground motion and
controlled by a MR damper is investigated. The parameters of the structural system are as
follows: structural mass m=1x10"kg ; natural circular frequency @, =11.22rad/s ; damping
ratio & =0.05; tunable times of MR damping force s =8. Seismic accelerations are simulated
by the stochastic ground motion model. Through the parameter optimization with respect to Eq.
(7), the optimized weighting matrices are Q = diag[1073.6,505]and R =10""", and the control

gain matrix is derived as G =[4.18,21.56]x10° . Using the functional relationship shown in Eq.

(14), the damping coefficient and the maximum Coulomb force are designed to be
C, =0.269kN-s/mm,U,  =90.33kN, respectively.

The root-mean-square displacements of the structural system with active/semi-active control
and without control are shown in Fig. 1. It is seen that the structural performance gains a
significant improvement both using the stochastic optimal controls. The semi-active stochastic
optimal control can achieve almost the same effect with the active stochastic optimal control.
Only in the time domain where a larger response of uncontrolled structure locates, the semi-
active optimal control has a weaker effectiveness with the active optimal control. It is explained
that in that time domain, the expected active control force surpasses the maximum output that

the MR damper could yield in practices, i.e. |Ua| >U,

max *
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Figure 1. Root-mean-square displacement of Figure 2. MR damping force traces active
structural system with and without control optimal control force in case of a typical

sample seismic excitation

The details on the situation of MR damping force tracing active optimal control force in case
of a typical sample seismic excitation are shown in Fig. 2. One could recognize that the semi-
active control gains a good control-force tracing with the active optimal control. More accurate
probabilistic representation is the probability density function. Fig. 3 shows the probability
density functions of structural displacement at typical instants with and without control. It is
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seen that both the semi-active stochastic optimal control and the active stochastic optimal
control reduce the variation of structural displacement significantly, where the distribution range
of PDFs becomes narrower, indicating that the structural safety is enhanced remarkably, and
meanwhile, the former can achieve almost the same effect with the latter.
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Figure 3. Probability density functions of structural displacement at typical instants with and without
control: (a) without control; (b) MR damping control in semi-active modality; (c) active stochastic optimal
control.

6 Conclusion

The gain parameters of the active stochastic optimal control are optimized based on the
reliability based probabilistic criterion, and the control efficiency of the semi-active stochastic
optimal control tracing the stochastic optimal control force is investigated in the present paper.
Numerical results reveal that the semi-active control strategy utilizing MR dampers can reduce
both the amplitude and the variation of seismic response significantly, and strengthen the
structural safety.
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