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Abstract   

Forecasting network flows accurately is of great importance to transportation management. To overcome the 

shortcoming of a single data source that cannot consider the accuracy and breadth simultaneously, multi-source 

transportation data, including the mobile phone data, license plate recognition (LPR) data, etc., are used to forecast the 

traffic flows with big data analytics. Mobile phone data are associated with wide coverage as well as low acquisition costs 

and are usually used in OD estimation between large zones, commuting travel characteristics analysis and highway flow 

prediction. However, due to the low precision of the data, its utilization in analyzing the traffic flows in urban roads with 

high density is difficult. In contrast, LPR data are high precision data, but with relatively low coverage. In this paper, we 

incorporate these two data sources and utilize their advantages comprehensively based on machine learning approaches to 

forecast traffic flows in urban roads. More specifically, the LPR data are taken as supervision label while the input features 

are extracted from mobile phone data with full consideration of spatial-temporal characteristics. Random forests algorithm 

is developed to forecast network flows with a 90% accuracy.   
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1. Introduction   

The development and deployment of Intelligent Transportation System (ITS) have significantly revolutionized the 

various aspects of traffic management through its primary functional areas like Advanced Traffic Management System 

(ATMS), Advanced Traveler Information System (ATIS), etc., thus enabling travelers to make informed travel decisions 

while alleviating the externalities of the transportation sector. However, the success and effectiveness of these strategies 

depend on the availability of real-time information regarding network-wide operation and the constantly evolving traffic 

conditions, which is directly reflected by traffic flows. The past research mainly concentrated on responsive schemes 

responding to previous traffic conditions, neglecting the importance and need for real-time adjustment of management 

strategies (Habtemichael et al., 2016). Short-term traffic flow forecasting methods are proposed to help the decision makers 

develop an intuitive understanding of future traffic status and make timely adjustments accordingly.   

The advances in sensor technology and its wide applications in ITS have generated a large amount of transportation 

data, which can be directly utilized in forecasting short-term traffic flow (Li et al., 2015). The sensing units can be divided

into the following two types namely; fixed sensing units and mobile sensing units.  The former is more prevalent due to 

the instantaneity and accuracy in information acquisition but requires the occupation of road facilities and expensive to 

install and maintain, thus limiting its large-scale application in the urban networks (Gao et al., 2013). Among them, License 

Plate Recognition (LPR) data provide high definition information of vehicles and avoid low penetration rate that generally 

occurs in other sensing units. The latter type can be subdivided into Global Positioning System (GPS) based sensing units 

and mobile phone based sensing units, which have successfully compensated the limitations of fixed sensing units. GPS 

based sensing units have significantly small positioning error and relatively stable positioning time interval, however, the 

lack of sufficient number of GPS equipped vehicles results in potentially biased actual traffic conditions. The advancement 
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in mobile technology has made the information of personal mobility patterns easier to access while the data collected from 

the mobile phone are associated with greater scale and coverage (Lane et al., 2010). Unfortunately, the deviation of mobile 

phone position varies from 150m to 500m, making it difficult for network flow analysis in urban roads with high density.  
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With the objective of compensating defects of individual data source, multi-sensor data fusion (DF) techniques are 

proposed for combining multi-sensors to regenerate a dataset (Kessler, 1992), enhancing the confidence, robustness and 

spatial coverage of the datasets. Therefore, the same result derived from multi-source data can authenticate mutually to 

reduce the uncertainty (El Faouzi et al., 2011). Additionally, the expansion of spatial and temporal range can be achieved 

through DF process with different coverage rate (Zhu et al., 2016). Present DF methods applied in the transportation 

system can be divided into three main categories namely; statistics, probability and artificial intelligence (El Faouzi et al.,

2011; Han et al., 2000; Dubois et al., 1988). Ensemble learning algorithm, as one of the artificial intelligence, has been 

proved to have better generalization ability in both classification and regression problems.   

In the working paper Transport Network Flow Estimation Based on the Multi-Source Big Data: A Supervised Machine 

Learning Approach, multiple algorithms, including random forests algorithm (RF) and gradient boosting decision tree 

algorithm (GBDT), are first proposed to forecast traffic flows in urban areas, and spatial-temporal features are augmented 

by sliding window (SW) method and predicting accuracy is improved with multi- grained (MG) features. This paper 

mainly discusses the data preprocessing procedure and predicting performance of random forests algorithm. More 

specifically, the LPR data are taken as supervision label while the input features are extracted from mobile phone data 

considering both spatial and temporal characteristics. Random forests models are developed for roads by applying both 

LPR data and mobile phone data. The traffic flows in the remaining roads with only mobile phone data available are then 

predicted by adopting model considering similar input features and road structure. The contributions of this paper are 

twofold. Firstly, to the best of our knowledge, no studies have been conducted analyzing urban transportation network 

flows using mobile phone data, for which this study makes up the vacancy in the application field of mobile phone data. 

Secondly, the forecasting results revealed that random forests algorithm has good performance in forecasting traffic flows 

in urban areas, with prediction precision higher than 90%.   

2. Data Preparation   

2.1  Data description   

The LPR data and the mobile phone data are the original data sources chosen to be fused in a supervised machine 

learning approach based on random forests algorithm. The dataset contains about 3 million LPR data per day and 60 

million anonymized mobile phone data per day in the area within a radius of 5 kilometers around Nanjing South Railway 

Station, which spans 6 days, from October 17, 2016 to October 22, 2016. The LPR data, provided by Jiangsu Information 

Center, China, have at least 95% recognition accuracy in the daytime and 90% in the nighttime (except motorcycle license 

plate, temporary license plate and tractor license plate) as per the national standards GA/T 497. The mobile phone data, 

provided by China Telecom, Jiangsu Branch, own about 30% market share.   

Table 1: Samples of LPR data. 

Vehicle ID Access Time Plate Color Point No Lane No Speed

1261001772 2016/10/19 11:03:17 3 1092 1 32.2 

Table 1 depicts the data structure of LPR data. Vehicles can be only tracked through Vehicle ID while the vehicle type 

is marked by Plate Color. The temporal information can be directly obtained through Access Time while the spatial 

information needs to be further inferred by Point No and Lane No. The speed is the rough estimation of the spot speed 

when vehicles approach a checkpoint.   

Table 2: Samples of mobile phone data. 

IMSI Access Time Latitude Longitude 

460110120767844 2016/10/19 17:33:25 31.96077 118.797097 

Typical mobile phone data are shown in table 2. To safeguard personal privacy, users’ detail information is uniquely 

identified with IMSI. Access time, recorded as timestamp, indicate the occurrence time of network request of originating 
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terminals. Coordinates constituted by longitude and latitude describe the location of originating terminals, which are 

estimated by telecom base station according to standard triangulation algorithm, with an accuracy of about 150-300 m.  

2.2  Data cleansing  

Noise data need to be eliminated to guarantee the cleanliness and completeness of the raw dataset.  As a relatively 

accurate data source, few noise data exist in the LPR data. Contrarily, such data are found in mobile phone data, which 

can be divided into two main parts namely; false switching data and repeated positioning data. Common false switching 

data are generated when frequently switching among several adjacent base stations occurs due to the dramatic changes in 

signal strength, which is well known as ping-pong data. Another false switching data called drift data are generated when 

the location of mobile phone occasionally jumps to a remote base station and are recorded by adjacent base stations for a 

short period. Furthermore, numerous repeated positioning data are produced for mobile phones interacting with the same 

base station for a long time, which should be reduced to an acceptable amount.   

Step 1: Trip chain for IMSI  is extracted to form a subset . For consecutive data ,

, straight-line distance and straight-line speed are as follows (Husár et al., 2017):   

(1) 

(2) 

where, , ,  is Earth radius (6371 

km).   

Step 2: Discriminant variables  and  are proposed to distinguish whether noise data occur or not and what 

kind of abnormal type they belong with, which are defined as:   

(3) 

(4) 

where,  and  are penalty coefficients. The threshold  and  can be calculated as follows:   

(5) 

(6) 

where, , ,  and  are the maximum acceptable speed (km/h), minimum acceptable speed 

(km/h), maximum acceptable duration time (s), and minimum duration time (1s) respectively.  and  can be 

calibrated by: 

(7) 

(8) 

where,  is the weight ratio (in this paper, ).  Data either  or  are distinguished as 

noise data, more specifically, false switching data and repeated positioning data.   

2.3  Data mapping  

Data mapping is necessary for building the relationship between dataset and transportation networks. The spatial 

information of LPR data is recorded by the location of checkpoints, which is considered as error-free positioning. However, 

it is difficult to decide whether mobile phone data are correctly located at the actual position or not since the positioning 

deviation is significantly high, ranging around hundreds of meters. Fortunately, such deviation is uniformly distributed in 

all data, therefore, the aggregation results are considered to be reliable. The transportation networks should be established 

before data mapping. Given the coordinates (denote by longitude and latitude) of network key points (extremities or 

turning points), for a given road segment, the linear interpolation method is used to fill the coordinates between two key 

points.  Assume the coordinates of two key points are  and , the coordinates of the th 

interpolation point can be obtained as follows;  
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(9) 

(10) 

(11) 

where,  and  are the latitude and longitude of the th interpolation point respectively,  is the 

interpolation precision (e.g. 50m), , ,  is Earth radius (6371 km).   

Mobile phone data are then mapped into the closest point by solving the following optimization problem:  

arg min
x

(12) 

where, , ,  and  are latitude and longitude of network point and mobile phone data respectively.   

2.4  Data aggregation  

To extract features or to form the supervisory values, data are aggregated in 1-minute time interval by:   

(13) 

where,  is the aggregate number of mobile phone data in road segment  for the th time interval,  is the 

aggregate number of mobile phone data mapped into the th point of road segment  for the th time interval and  is 

the number of points in road segment .   

Data filling strategy is adopted to ensure the completeness of dataset. For single missing data, the mean value of 

adjacent two values are used while for multiple missing data, values of the previous day/hour with the same period are 

used.   

2.5  Feature selection  

The resulting aggregated data contain both spatial and temporal information, which should be taken into full 

consideration when extracting features. Table 3 shows the various features that are used in this paper.   

Table 3: Features extracted from aggregated mobile phone data. 

Feature type Features 

Temporal features 
Day of week 

Time of day (time slice) 

Spatial features Road segment 

Aggregation features Total number in a time slice 

3. Methodology 

3.1  Decision tree  

Decision tree models consider the interpretability while the if-then rules emulating human decision process generates 

set of rules that are easily grasped by non-professional users as well. A decision tree contains one root node, several internal

nodes, and leaf nodes. The leaf nodes represent decision results, while internal nodes correspond to several attribute tests. 

Samples associated with each node are divided into several sub-nodes according to the result of attribute test.   

Decision Tree Algorithm:   

Input: training data set ; attribute set ; Function .   

Algorithm:  

if samples in  belong to the same category then classify node as leaf node with label ; return   

if or samples in  have the same value on    

    then classify node as leaf node with the label of the category containing the most samples; return   

select optimal partition attribute  from ;   

for every value in do   
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    generate a branch node for each node;   

    define  to express the subset of samples values  in  on ;   

    if  is null   

then label branch node as leaf node with the label of the category containing the most samples; return  

        else  set  as branch node   

end

3.2  Random forests  

Random forests have gained huge popularity due to the good classification and regression performance, robustness, 

scalability, and ease of use. Multiple decision trees, viewed as weak learners, are ensembled to build a more robust strong 

learner, random forest, with low generalization error and less susceptible to overfitting (Breiman, 2001).   

Random Forest Algorithm:   

Input: training data set  with  input variables;   

Algorithm:  

initialize: determine  trees to be generated and the number of variables  used for an individual tree ( );  

for  to do   

draw a random sample  of size  with replacement from ;   

loop until (the minimum node size is reached)   

    for the terminal node of the tree 

        randomly select  variables out of the  variables;   

        select the best pair of split variable among the  variables;   

        split the node into two branch nodes;   

output the constructed tree ;   

end

4. Case Study   

Based on the aggregated data of area within the radius of 5 kilometers around Nanjing South Railway Station, 

experiments are conducted to test the performance of the proposed model. The linear interpolation results are shown in 

figure 1.  Original data are aggregated into 8640 samples with 1-min time interval. A total of 864 samples (6 samples per 

hour * 24 hours * 6 days) are generated for 10-min time interval. However, the sample size is sharply decreased to 288 

and 144 for 30-min time interval and 60-min time interval respectively. Therefore, sliding window (SW) method has been 

adopted to generate more samples. As can be seen in figure 2, assume we need samples with 30-min time interval, the 

window size is set as 30 and the sliding step is set as 1, then a total 8611 samples (8640-30+1) are generated. For 60-min 

time interval, the sample size is 8581. The samples are randomly divided into training set and validation set with the ratio 

of 0.8:0.2.   

Figure 1: Linear interpolation results. Figure 2: Illustration of sliding window.
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To evaluate the performance of proposed method, the Mean Absolute Percentage Error (MAPE) is used which is 

given as:  

(14) 

where,  is the observed value (aggregation results of LPR data) in the th time slice, and  is the estimated value 

in the th time slice.  is the number of all estimated values.   

In the model training stage, parameters are tuned to achieve the lowest MAPE. The learning rate, the maximal number 

of iterations, maximum depth of individual regression tree and the maximal number of splits are set as 0.01, 320, 5 and 16 

respectively. The results are cross-validated in the 5-fold mode by calculating respective MAPE. Table 4 shows the 

performance of models with different time intervals. The result of 10-min time interval achieves the highest forecasting 

error. The reason is that randomness effect may occur when the traffic flow is particularly low, and a small difference 

between observed value and forecasting value will lead to a significant relative error. Different model reaches the lowest 

error with 30-min time interval simultaneously, which shows the existence of optimum time interval. The sliding window 

method is applied to generate sufficient samples, which can further improve the model performance.  

Table 4: Performance of model with different time intervals (MAPE).

Model 10-min interval 30-min interval 60-min interval 
RF 0.1037 0.0848 0.0974 
RF +SW 0.1015 0.0835 0.0859 

5. Conclusion 

Forecasting network flows is of vital importance to transportation evaluation and management. Mobile phone data, 

with wide coverage and low acquisition costs, are of great potential value. However, restricted by the low positioning 

precision, it is difficult to use mobile phone data to analyze the traffic flows in urban roads with high density. Contrarily, 

license plate recognition (LPR) data, with high positioning precision, are limited by the relatively low coverage. To 

overcome these limitations, multi-source data fusing theory has been adopted to take both accuracy and breadth into 

consideration.  In this paper, supervised machine learning approach has been developed to forecast network flows in 

urban roads by utilizing the advantages of two types of data comprehensively. Spatial-temporal characteristic of mobile 

phone data is taken into full consideration. Furthermore, a random forests model is proposed, and the aggregation result 

of mobile phone data and LPR data are considered as features and labels. Sliding window method has been adopted to 

expand the sample size. The case study of the Nanjing South Railway Station is conducted to validate the performance of 

the proposed model.  The results show that the random forests model has superior performance in forecasting network 

flows in the urban area, with the best MAPE of 10.15%, 8.35% and 8.59% for 10-min, 30-min and 60-min time interval 

respectively.   
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