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   The response surface method (RSM), which is characterized by its understandability and efficiency, 

has been widely applied to reliability with implicit performance function. Nevertheless, due to multiple 

failure modes, it is difficult to apply the RSM directly to system reliability analysis. Further, because of 

the existence of multiple design points, the design point based RSM is unfeasible for system reliability. 

On this basis, this paper apply a RSM for classical system reliability by combining the complete system 

failure process with the high order response surface method. Firstly, following the idea of complete 

system failure process, a single equivalent performance function for system reliability is derived. Hence 

the application of RSM can possibly be applied. Secondly, by introducing high order modification, the 

stochastic response surface method is used to fit the equivalent performance function. In this way, the 

introduction of design points iteration is avoided. Thirdly, Monte Carlo method is adopted to evaluate the 

failure probability of the response surface function. Finally, several examples are investigated to verify 

the accuracy and efficiency of the method. 

Keywords: System reliability analysis, Complete system failure process, High order response surface 

method, limit state function  

  

1 Introduction 

System reliability evaluation of structures has long been a challenging problem in the field of 

structural engineering although great endeavors have been devoted to it in the past over 30 years. A 

number of probabilistic analysis tools have been proposed to quantify classical system reliability   

analysis: In system reliability analysis, Ang et al. (1975) first introduced the idea of fault tree analysis 

(FTA) into structural system reliability analysis and proposed the probabilistic network evaluation 

technique (PENT) algorithm for evaluating the comprehensive failure probability of structural system. 

Then Moses (1977) combined the incremental load approach and limit state analysis method for 

identifying and expressing the main collapse modes in structural system reliability analysis. Thoft-

Christensen & Sorensen (1982) presented β-unzipping method for calculating the probability failure of 

series and parallel structural systems, which the lower-upper bound method is applied. However, the 

major difficulties encountered in all these system reliability methods are how to solve the combinatorial 

explosion problems in multiple failure modes and how to tackle the use of correlation information of 

different random events and two-dimensional joint probability density function (PDF). To avoid the 

restrictions of traditional system reliability methods, Chen and Li (2007) proposed the development 

process of nonlinearity, which is also defined as complete system failure process (Chen and Li (2007)). 

Based on this idea, the classical system reliability is effectively described by a single equivalent 
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performance function. Though the generalized density evolution equation (GDEE) provides an effective 

numerical method for the single function, the process of algorithm is complex. On the other hand, the 

chosen of moment methods and the comparison of each moment method will also be complicated.  

Response surface method (RSM) is a helpful technique in structural reliability analysis where limit 

state function is implicit and numerical methods are needed. In RSM, the limit state function is 

approximated by mathematical expression with undetermined coefficients. By fitting the response 

surface to a number of sample points on the limit state, the response surface function (RSF) is constructed 

and applied in reliability analysis, such as first-order reliability method (FORM) (Hasofer & Lind 1974) 

and second-order reliability method (SORM) (Breitung 1984). The selection of the form of RSF has great 

influence on the efficiency and accuracy of RSM, and the polynomial form of RSF is commonly used 

and studied (Faravelli 1989, Bucher & Bourgund 1990, Rajashekhar & Ellingwood 1993). However, the 

RSF based on the iteration of design points, has a problem of non-convergence. Gavin and Yau (2007) 

proposed a high order stochastic response surface method (HO-SRSM), which suggested the use of 

higher order polynomials, in order to solve strongly-nonlinear problems and avoid form iteration.

In this paper, high order response surface method with the development process of nonlinearity is 

adopted for classical system reliability analysis. It is organized as follows. In Section 2, an equivalent 

performance function for system reliability of structure is formulated based on the complete system 

failure process, and High order response surface method is presented based on the equivalent 

performance function. Then in Section 3, an example is investigated to verify the proposed method. At 

last some conclusion are drawn in Section 4. 

2 High order response stochastic surface method for system reliability analysis

2.1 Equivalent performance function based on the complete system failure process

The classical system reliability focus on collapse of the perfectly elastoplastic or elastic-brittle structures. 

the structure failure can be considered if the overall or local structure reached their yield points. And if 

the load increased in proportion, the failure load is regarded as bearing capacity. The failure mode can 

be defined as

max max× ³ × Û ³F F F Fr r  (1) 

Fig.1 Figure of proportion load of frame 

where r is distribution vector; F is the load coefficient; Fmax is bearing capacity coefficient. And equation 

(1) can be also written as 

 { }maxPr= ³fP F F  (2) 

where Pf  is failure probability of sample points; Pr represents probability.

If variable loads are random but not perfect correlation, the failure event of qth sample can be defined as

 max,× ³ × =q q q q qF Fr r r r  (3) 

in which rq represent distribution vector of qth sample, Fq and Fmax,q are the load coefficient and bearing 

capacity coefficient of qth sample respectively. The failure probability of qth sample is 
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 { } { } { }, max, max,Pr Pr Pr= × ³ × × = ³ }f q q q q q q q q q qP F F F Fr r r = r r = r r = r  (4)

 
It is easy to obtain the overall failure probability from above, namely 
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Formula (5) can be rewritten as  
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(6) 

Apparently, the corresponding function is 

 
max= -Z F F  (7) 

Hence, the multiple limit state functions in classical system reliability are translated into one equivalent 

limit state function, which can be approximated by HORSM efficiently. 

 

2.2 High order stochastic response surface method  

According to the high order stochastic response surface method (Gavin and Yau (2007)), the equivalent 

limit state function Z can be approximated by 
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where the coefficients bij correspond to terms involving only one random variable, and the coefficients 

cq correspond to mixed terms, involving the product of two or more random variables. The ki, m, piq are 

the polynomial order, the total number of mixed terms and the order of a random variable in a mixed 

term respectively. 

2.2.1   Polynomial Orders ki 

The polynomial orders, ki, are determined by statistically and the mixed terms are neglected and          

numerically testing the significance of polynomial coefficients in the first stage of the method. 

Chebyshev polynomials of degree M in λ are adopted for order decision as follows: 

 ( ) cos( arccos )l l=MT M  (9) 

Where min(TM( ))=-1,and max(TM( ))=1,for all uch that -1 1.The polynomial TM( ) has 

M roots in the interval [-1,1] at 
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The discrete orthogonality relation for Chebyshev polynomials is given by: 
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where  (m = 1,…,M) are the M roots of TM( ) given by equation (10).The orders of the variables ki in 

equation (8) are estimated one-by-one along dimension Xi using one-dimensional Chebyshev 

polynomials, 
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where λi is the interpolated values of Xi from interval [µi - hord σi , µi + hord σi] to [-1,1], i.e. 

 Xi=µi + hord λσi  (13) 

Where hord is the domain of the sampling points used to determine the polynomial degree of the 

approximation. The Chebyshev polynomial coefficients, dj, are determined by the least squares method. 

 1d [ ] ( )T T

m m m i iT T T g x-
=  (14) 

where the Tjk = Tj(λk), λk is the k-th root of TK(λ), and gi(xi) is a vector of the values of true limit state 

function evaluated with discrete values of random variable Xi set to 

 xik=µi + hord λk σi  where k=1,…,K, (15) 

and with all other elements of X set to their mean values. The coefficient covariance matrix, 
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is diagonal, due to the discrete orthogonality relationship of the Chebyshev polynomials, given in 

equation (11). In fact, every diagonal term of Vd, except the first, is 

 2 2

d

1

ˆ( ( ) ( )) / ( )
2

s
=

= - -å
K

i ik i ik i

k

K
g x g x K k  (17) 

The test of statistical significance of an individual term dj in equation (12) involves the test of the null 

hypothesis, H0: the true coefficient of the term is 0. The test is performed by calculating values of the 

t-statistics [6], 

 t
s

=
j

j

d

d
 (18) 

Using a two-sided test and 90% confidence intervals, if the absolute value of tj is smaller than the value 

of t0.05 = 3.499, the null hypothesis cannot be rejected and the Tj(λi) term is determined to be statistically 

insignificant. 

2.2.2   Mixed Terms m& piq 

In general, a mixed term can be expressed as 1 2

1 2 ... nPP P

nX X X . There are two criteria for a valid mixed term: 

(1) the power of a variable in a mixed term should not be larger than he estimated order of the variable 

alone, i.e., pi ≤ ki and (2) the total order of the mixed term, ipi, should not be larger than the highest 

order term, i.e., i pi ≤ max(ki). 

2.2.3   Response Surface Approximation 

Once the response surface has been formulated, the coefficients are estimated via singular value 

decomposition using sample points from the true limit state function. “A full factorial design” has P 

sample points where  
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Where n is the number of variables. 
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In problems with n > 3, the value of P, even 3n, is much larger than the number of coefficients. Thus 

uniformly distributed random sample points are taken within the domain [µ + hreg σ; µ - hreg σ], where µ 

is a vector of the mean values of X and σ is a vector containing the standard deviation of X. The parameter 

hreg here indicates the size of the domain of the sample points used in the regression for the polynomial 

coefficients. 

2.2.4   Monte Carlo Simulation 

In the fourth stage, a full scale MCS on the approximated limit state is carried out to determine the 

reliability index, β. 

 

3 Numerical example 

In this example (Zhao and Ang (2003)), an one-story one-bay elastoplastic frame is considered as shown 

in Fig.1. The geometric dimensions of this truss are l0=6.0m, and h=4.5m; the section areas of all bars 

are 0.01m2. There are four random variables included, namely the load Fp and flexural bearing capacity 

of the bars Mi (i=1,2,3). Mi and F are independent and follows the log-normal distribution. The statistical 

information of t flexural bearing capacity Mi and the load Fp are listed in Table 1. 

 

 

Fig.2 one-story one-bay frame 

Table 1 The statistical information of yielding stresses of bars 

random variables Mean value Standard 

deviation 

distribution 

M1 2000kN·m 300kN·m log-normal 

M2 2000kN·m 300kN·m log-normal 

M3 2000kN·m 300kN·m log-normal 

F0 500kN 200kN log-normal 

 

According to the complete system failure process, the system reliability of this truss can be expressed 

equivalently by 

 ( ) ( )max 1 2 3, p pZ F M M M F F F= -  (20) 

Finally, the failure probability are calculated according to the high order response surface method and 

the parameter hreg and hord here are 3 respectively. The reliability index is 3.381. Using Monte Carlo 

simulations with 1 million samples, the reliability index is 3.274. The Number of Limit State Evaluations 
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is 154. This result agrees well with the result of the Monte Carlo method.

4 Conclusions

In this work, by introducing the complete system failure process to obtain the equivalent performance 

function, and then adopted the high order response surface method to calculate the failure probability, an 

improved method for classical system reliability analysis is adopted A numerical example is presented 

to verify the effectiveness of the proposed method.

The following conclusions can be drawn:

(1) The HORSM allows an indication of the accuracy of the estimated failure probability;

(2) The HORSM checks the accuracy of the response surface using a goodness-of-fit criteria and 

checks the failure probability by a comparison to the size of the domain of sample points.
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