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One of routes to perform structural reliability analysis is the high-order moment methods. This 

study proposes a third-order moment reliability method for performance function involving 

correlated random variables with distributions unknown. The main procedure of the proposed 

method includes three steps. First, the correlated random variables are transformed into 

independent standard normal random variables by the third-moment transformation. Second, 

with the aid of the bivariate dimensional reduction method, the performance function is 

approximated by a summation of one-dimensional functions and two-dimensional functions. 

And then, the moments of one-dimensional functions and two-dimensional functions without 

cross terms are determined by one-dimensional point estimate method, while the moments of 

two-dimensional function with cross terms are obtained using sparse grid stochastic collocation 

method. Third, the reliability index of the performance function involving correlated random 

variables is determined by a third-moment reliability index. Several numerical examples are 

presented to illustrate the efficiency, accuracy, and applicability of the proposed method. 

Keywords: structural reliability assessment, correlated random variables, third-order reliability 

index, third-moment transformation.  

 

1 Introduction 

A fundamental problem in structural reliability analysis is the computation of the probability of 

failure, which involves multi-fold probability integral.  Difficult in computing this integral has 

led to the development of various approximation methods.  One of routes to perform structural 

reliability analysis is the high-order moment methods (Zhao and Ono 2001), in which evaluation 

of statistical moments of performance function is one of the main topics.  Recently, the point 

estimate methods (Zhao and Ono 2000) based on normal transformations, e.g., Rosenblatt 

transformation (Rackwitz and Fiessler 1978) and Nataf transformation (Der Kiureghian and Liu 

1986), and dimensional reduction methods, e.g., univariate- and bivariate-dimension reduction 

method (Zhao and Ono 2000; Xu and Rahman 2004), have been proposed to evaluate the 

statistical moments.  In these methods, the joint probability density function (PDF) or marginal 

PDFs and correlation matrix of correlated random variables are assumed to be known.  However, 

749



750 6th International Symposium on Reliability Engineering and Risk Management (6ISRERM)

 

the joint PDF and marginal PDFs of random variables encountered in engineering practice are 

often unknown.  Moreover, studies show that, from the perspective of balancing accuracy and 

efficiency, evaluating the statistical moments of performance function still remains a challenge.  

In the present paper proposes a third-order moment reliability method, in which an efficient 

algorithm method for evaluating statistical moments of performance function is developed. The 

main procedure of the proposed method includes three steps.  First, based on the third-moment 

transformation, the correlated random variables are firstly transformed into independent standard 

normal random variables, in which only the first three moments and correlation matrix are 

required.  Second, with the aid of the bivariate dimensional reduction method, the performance 

function is approximated by a summation of one-dimensional functions and two-dimensional 

functions.  And then, the moments of one-dimensional functions and two-dimensional functions 

excluding cross terms are determined by one-dimensional point estimate method, while the 

moments of two-dimensional function including cross terms are obtained using sparse grid 

stochastic collocation method (SGSCM).  Third, the reliability index of performance function 

involving correlated random variables is determined by a third-moment reliability index.  The 

results demonstrate that the proposed method achieves a good balance between accuracy and 

efficiency, and provides a useful tool for structural reliability analysis involving correlated 

random variables, especially when the distributions of basic random variables are unknown.   

 

2 The Third-Moment Transformation for Correlated Random Variables 

Without loss of generality, an arbitrary random variable Xi can be standardized as follows: 

 ( ) /
i iis i X XX X m s= -   (1) 

where Xi is the ith random variable of correlated random vector X; Xis is the standardized 

random variables of Xi; and 
iXm  and 

iXs  are the mean and standard deviation of Xi, respectively. 

According to the third-moment transformation (Lu et al. 2017), the standardized variable Xis can 

be approximated by a second-order polynomial normal function, which is formulated as: 

 2( )is z i i i i i iX S Z a b Z c Z= = + +   (2) 

where Zi is the ith random variable of correlated standard normal vector Z; Sz(Zi) is the second-

order polynomial of Zi; and ai, bi, and ci are the polynomial coefficients. 

Making the first three moments of Sz(Zi) equal to those of Xis, the polynomial coefficients ai, bi, 

and ci can be determined as (Zhao and Ono 2000):  
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where 3 iXa  is the skewness (third-order central moment) of Xi.  

Assume that the correlation coefficient between Xi and Xj is rij, and the correlation coefficient 

between Zi and Zj is r0ij. According to the definition of correlation coefficient, leads to 

 
2 2 2

0 0(1 2 )(1 2 ) 2ij i j ij i j ijc c c cr r r= - - +   (4) 

The valid solution of r0ij should be restricted by the condition, 01 1ijr- £ £  and 0 0 0ijr r× ³ , to 

satisfy the definition of the correlation coefficient.  
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From the preceding discussion, any two arbitrary correlated random variables with known first 

three moments and correlation coefficient can be approximated by two correlated standard 

normal variables.  The polynomial coefficients of each variable can be obtained by Eq. (3), and 

for any two correlated variables, the corresponding equivalent correlation coefficients of 

standard normal variables, r0ij, can be determined from solving Eq. (4).  Then, the equivalent 

correlation matrix of standard normal variables, CZ, can then be summarized.  If the correlation 

matrix CZ is a positive-definite matrix, using Cholesky decomposition, it can be rewritten as 

0 0

T=
Z

C L L , in which L0 is a lower triangular matrix and 
0

T
L  is the transpose matrix of L0.  Then 

the relationship between the correlated standard normal random vector Z and the independent 

standard normal random vector U can be expressed as: 

 
0=Z L U   (5) 

According to Eqs. (1), (2), and (5), the relation between X and U can be expressed as: 
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where lik is the ith row kth column element of L0.  

 

3 Evaluation of the First Three Moments of Performance Function Involving Correlated 

Random Variables 

Substituting Eq. (6) into performance function G(X), in which X = (X1, X2, …, Xn)T is the basic 

random variables with the correlation matrix CX, it can be formulated as: 

 1 2 1 2( ) ( , , , ) ( , , , ) ( )n nG G X X X g U U U g= = =X U1 2 1, , ) ( , , , ) ( )n n1 2 1 21 2 1 U g1 2 1 , ), )1 2 11 2 1n n1 2 1 21 2 11 2 1, , , ), ), , , )1 2 1 21 2 11 2 11 2 1) ( , ) ( )( )) ( , , , )) ( , )1 2 1 21 2 11 2 1, , , ), ), , , )1 2 1 21 2 11 2 11 2 1 2) ( , )) ( , )) ( , )   (7) 

where g(U) is a function with inclusion of independent standard normal random variables only.  

Based on the bivariate dimension-reduction method (Xu and Rahman 2004), the function g(U) 

can be approximated as: 
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According to the definition of statistical moments and Eq. (8), the kth row moments of the 

performance function G(X) can be approximated as: 
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where E denotes expectation;  

Based on the point estimate method in independent normal space (Zhao and Ono 2000), leads to: 
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where ur and Pr are the estimating points and corresponding weights, respectively.  

According to the criterion for delineating the existence of cross terms in two-dimensional 

functions (Fan et al. 2016), the two-dimensional functions g2, ij(Ui, Uj) can be decomposed as 

functions that include or exclude cross terms of Ui and Uj. In this study, for the two-dimensional 

functions without cross terms, their statistical moments are directly obtained from the moments 

of two one-dimensional functions. While for the two-dimensional functions with cross terms, 

their statistical moments are obtained by two-dimensional SGSCM. For a two-dimensional 

function g2, ij(Ui, Uj) without the cross terms of Ui and Uj, using the univariate dimension-

reduction method, it can be expressed as 
2, 1, 1, 0( , ) ( ) ( )ij i j i i j jg U U g U g U g= + - . Then, the first 

three moments of g2, ij(Ui, Uj) can be directly obtained using the first three moments of g1,i(Ui) 

and g2,j(Uj) as follow: 
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1,2 kgm - , and 
1,3 kgm -  are the first three moments of g1,k(Uk) (k = i, j).  

With the aid of the Smolyak-type algorithm (Smolyak 1963), the kth row moment of a two-

dimensional function g2,ij(Ui, Uj) with cross term of Ui and Uj can be derived as (He et al. 2014): 

 
1 2

2, 1 2 1 2

1 2

2 1 2 1
2 | |

2,

( ,2) 1 1

1
( 1) ( , )

2 | |ij

i i
k

q

k g r r ij r r

H q r r

P P g u u
q

m
- -

+ -
-

Î = =

æ ö
é ù= - ×ç ÷ ë û+ -è ø

å å åi

i i
 (13) 

where 2
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h hr rP w p=  (h = 1, 2), in which 
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w  are respectively the abscissas 

and weights of (2 1)hi -  order Gauss-Hermite integration with the weight function 
2exp( )x- ; 
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Substituting all of the first three raw moments of one- and two-dimensional functions into Eq. 

(10), the first three raw moments of performance function involving correlated random variables 

can be determined. Then the first three central moments can be determined as following: 
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4 Third-order moment reliability index 

According to the three-parameter lognormal distribution (Tichy 1994), the third-order reliability 

index is obtained as (Zhao and Ono 2001):  
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5 Numerical Examples and Investigations 

In order to investigate the efficiency and accuracy of the proposed methods for structural 

reliability analysis involving correlated random variables, two numerical examples are 

investigated in this section.  

 

5.1    Example 1: Investigation of the influence of transformation order  

The first example considers the following performance function: 

 
1 2( ) 18 3 2G X X= - -X  (17) 

where the joint PDF of X1 and X2 is fX(x)=(x1+x2+x1x2)exp(-x1-x2-x1x2), for x1 ≥ 0, and x2 ≥ 0. 

For this example, because the joint PDF and performance function are available, the probability 

of failure, Pf, can be obtained directly by numerical integral as Pf = 2.9449×10-3, and the 

corresponding reliability index is 2.75. With the aid of the joint PDF of X1 and X2, the first three 

moments and correlation coefficient of X1 and X2 can be determined as mX1=mX2=1, sX1=sX2=1, 

a3X1 = a3X2 = 2, and r12 = -0.403653. Based on the third-moment transformation, if the 

transformation order X1 → X2 used, the performance function G(X) can be approximated as:  

 2 2

1 1 1 1 2 2 2( ) ( ) 14.83 1.26 1.53 0.72 1.10 0.30G g U U U U U U= = - - + - -X U   (18) 

Using the proposed method, the first three central moments corresponding to Eq. (18) are 

obtained as mG = 13.0, sG = 2.8559, and a3G = -1.9379. According to Eq. (16a), the third-order 

reliability index obtained as bTM = 2.668. It can be observed that the reliability index is good 

agreement with the exact result (obtained by numerical integral). Similarly, if the transformation 

order X2 → X1 used, the third-moment reliability index is also 2.668. It can be observed that the 

results of the proposed method are the same even when the transformation order is different. 

 

5.2    Example 2: A 61-bar truss structure with an implicit performance function   

The second example considers a 61-bar truss structure as shown in Fig. 1. The cross section 

areas of all members are deterministic and identical with 1.229´10-3 m2. The Young’s modulus 

E and concentrated loads Fi (i = 1, 2, …, 13) are random variables with the first three moments 

and correlation matrix known. And their first three moments are respectively mE = 210 GPa, sE = 

21GPa, a3E = 0.301, mF = 12 kN, sF = 3.0 kN, and a3F = 0.766. E is independent of all Fi and Fi 

are correlated with correlation coefficient rF = 0.1. The reliability problem in this example is to 

determine the probability of failure that the maximum value of the vertical displacement of 

nodes may exceed in magnitude specified limit, ulim, thus the performance function is defined as: 

 lim( ) max{| |}yiG u u= -X  (26) 
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where ulim = L/500 = 36mm; and uyi is the vertical displacement of ith node, which is determined 

by finite element analysis.  

Because the joint PDF and marginal PDFs of basic random variables are unknown, the reliability 

analysis based on Rosenblatt transformation and Nataf transformation cannot be applied. 

However, using the proposed method, the third-order reliability can be easily obtained as 3.567.  
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Figure 1. A 61-bar truss structure for Example 2 

 

6 Conclusions 

The present paper proposed a third-order moment method for structural reliability involving 

correlated random variables.  From the investigation of this paper, the following conclusions can 

be draw: The proposed third-order moment method, being very simple, has no shortcoming of 

varying with the transformation order of random variables and thus is convenient to be applied 

to structural reliability analysis.  Because the proposed method is based on the first three 

moments and correlation matrix of basic random variables, it can be applied for structural 

reliability assessment even when the joint PDF and marginal PDFs of the basic random variables 

are unavailable.   
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