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Abstract Global reliability analysis (GRA) of structures based on system-level global limit 

state functions (GLSF) is an efficiently approximate method to overcome the difficulties in 

traditional failure mode approach of structural system reliability theory. To run the global 

reliability analysis of complex structures in practice, the crude Monte Carlo simulation as well 

as its different variants require substantial sample points and cost enormous computing 

resources for accurate estimations. In this paper, the global reliability analysis of reinforced 

concrete (RC) frame structures under seismic actions are calculated using the Subset Simulation 

(SS) method. With adaptive sampling schemes, the required number of sample points are 

reduced greatly, so that the global reliability index can be easily derived by the SS method. Two 

global limit state functions for RC frame structures are considered: global load-carrying capacity 

limit state and global deformation limit state. The two GLSFs of the RC frame structures are 

obtained through pushover analysis and capacity spectrum method, respectively. Then, the 

global reliability indices for the two system-level global limit states of RC structures under 

seismic actions are calculated by SS method. The accuracy and efficiency of the proposed 

method are verified and compared by the crude Monte Carlo simulation. 

Keywords: global reliability, subset simulation, reinforced concrete frame, global limit state 

functions . 

 

1  Introduction 
Global reliability analysis (GRA) is an effective alternative to solving system reliability 

problems of real and complex structures in practice. Since the traditional failure mode approach 

to system reliability analysis of structures has two difficulties: search of significant failure 

modes, and calculation of joint failure probability. In the GRA methodology, the global limit 

state function is directly constructed through nonlinear structural analysis, instead of generation 

of safety margin corresponding to each failure mode. Obviously, the GRA approach provides 

another clear route to solve the system reliability problem of real and complex structures. In this 

method, Monte Carlo simulation (MCS) is usually employed to obtain the statistical moments of 

the global capacity of structures, and the accurate nonlinear structural analysis methods which 

consider more real material behaviors, such as nonlinear static analysis, or nonlinear dynamic 

analysis, are used to determine the global limit state function (GLSF) and the corresponding 

statistical moments of the global demands of structures. However, the MCS method requires 
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quite intense computing resources. Considering the very small failure probability of engineering 

structures under rare earthquakes, an unaffordable computational effort involving 105~107 

nonlinear simulations are required to obtain the statistical results of the global seismic capacity 

and demand of structures. 

 

In order to solve this problem, subset simulation (SS) method is applied in this paper to seismic 

global reliability analysis of reinforced concrete (RC) frame structures. This efficient simulation 

method was first proposed by Au and Beck. At the beginning, Metropolis algorithm was used to 

generate sample points, but the correlation of sample points is higher. Then, Au and Beck used 

the improved Metropolis-Hastings algorithm which is a reasonable solution to the correlation of 

sample points. After that, Liu [8] used SS to analyze the multi-grid composite wall structure. 

Song [9] used SS for structural reliability sensitivity analysis. Recently, SS has been widely 

utilized in many fields. In this paper, SS is combined with stochastic pushover analysis as well 

as random capacity spectrum method to construct the global limit state functions (GLSF) of RC 

frame structures under seismic actions. The GLSFs of the RC frame structures for global 

load-carrying capacity limit state and global deformation limit state are obtained through 

stochastic pushover analysis and random capacity spectrum method, respectively, using the SS 

sampling schemes. Then the global seismic reliability indices of structures could be easily 

calculated based on the global limit state functions. The results are finally compared using the 

MCS method to validate the accuracy and efficiency of the proposed method. 

 

2   Subset Simulation 

2.1  The Basic Theory of Subset Simulation 

SS has high efficiency to estimate high-dimension and small failure probabilities structures[7]. 

From the reliability problem, F was considered as the failure event in the uncertain X-space and 

g(x) is a response function or the performance function. So the failure event F is defined by 

{ }: g( ) 0F x x= £                           (1) 

where x is the random vector which expresses the uncertain parameters in the system. Then the 

probability of the target failure event F can be indicated as FP . Sometimes the failure 

probabilities in real structures is much small. The main idea in subset simulation is transfer the 

small probability into the product of a series of large conditional probabilities in sequence. 

Specifically, we use a nested sequence of failure regions 1 2 mF F F FÉ É É =mF FF FF Fm , so that the 

target failure event can be defined by 

1

m

m i

i

F F
=

=
1

m

m i

i

F Fm im i

=

                            (2) 

For each intermediate failure event ( 1,2, )iF i m= , ), ), ) , we denote 

{ }: ( ) b ( 1,2, ,m)i iF x g x i= £ = , ,m)                      (3) 

where ib  is a specific threshold and 1 2 0mb b b> > > = 0mbm> =mbm .
According to the multiplication 

theorem and the defined of the conditional probability in the 
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probability theory , the failure probability FP can be calculate by  
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We denote { }1 1P P F= , { }1 ( 2,3, , )i i iP P F F i m-= = , , ), , . Then, the target event probability in 

Eq.(4) can be expressed by a more concise form: 

1

m

F i

i

P P
=

=Õ                              (5) 

Consequently, the failure probability FP can be converted into a product of several conditional 

probabilities. By selecting several intermediate events, the conditional probabilities can be made 

sufficiently large which could be more efficiently to calculate.  

 

2.2  The process of Subset Simulation 

In structural reliability analysis, Subset Simulation starts with evaluating
1P by Monte Carlo 

simulation: 
1

11 1

11

1
ˆ (g( ))
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F k
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P I
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where 
1g( )kX is the performance function of the random variables

11 11 12 1{ , , , }NX X X=
112 1, , }
112 112 1N11

, ,, ,12 112 112 1X , in 

which
1N is the number of sample in the first simulation region, 

1X are independent and 

identically distribution samples generated in the first step according to the probability density 

function(PDF) ( )q x and 
1
( )FI × is the indictor function 
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From Eq.(7), the region of the event 1F  need to be determined by the value of 1b . It hard to 

know 1b directly; therefor, denoting a value 0p set to 1P , then generate the samples 

1 11 12 1 1{ , , , },kX X X k N= =12 112 112 1k12 112 112 112 1X k},12 112 112 112 112 1X k},},X k},X , calculate the performance function{ }g( )iX  and sort them in an 

increasing order 
11 2( ) ( ) ( )Ng g g£ £ £ ( )N( )( )gX X X . The value of 1b is equal to 

0 1
( )p Ng X  (if 
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0 1p N is not an integer, take the maximum of the integers less than it). 

 

The second step, calculate the subsequent conditional probabilities 1( ), 2,3, mi i iP P F F i-= = , m

which require the samples belonging to
1iF - . The conditional probability density function can be 

expressed as follow: 

1
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x                           (8) 

Then, the failure probability of 
iF  can be shown: 
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where ( 2, , ; 1, , )ik ii m k N= =, , ; 1, , )ik i, , ; 1, ,, , ; 1, ,, , ; 1, ,, , ; 1, ,, ,, , ; 1, ,, , ; 1, , ; 1; 1, , ; 1, , ; 1; 1X are identically distributed samples, 
iN is the number of 

sample in the number i simulation region, ( )
iFI × is the indictor function 

 

The samples { }iX demand condition on
1iF - , so the generation of the samples can apply the 

Markov Chain Monte Carlo (MCMC) algorithm which could obtain the samples from each 

conditional PDF 1( )i iq F -x . After generating the conditional samples i 1 2{ , , , }
ii i iNX X X= , , }
ii i iN, ,, ,
i

, ,, ,X , 

compute the system response function { }g( )iX , and sort them in an increasing order 

1 2g( ) g( ) g( )
iN£ £ £ g( NX X X . We donate a fixed value 

0p to equal to 
iP . Then value of

ib is 

equal to 
0

( )
ip Ng X  (if 

0 ip N is not an integer, take the maximum of the integers less than it). 

Repeat the above procedure until the responses value of the threshold
0

( )
ii p Nb g= X  is no more 

than 0. 

 

The third step, calculate the conditional probability of the last failure domain 
mF . Let 0mb =

and estimate the probability of conditional failure event 
mF  as  

1

1
ˆ (g( ))
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Finally, combining equation(6),(9),(10), the target failure domain F can be expressed as 

1

m

F i

i

P P
=

=Õ                            (11) 

2.3  MCMC in Subset Simulation 

Markov Chain Monte Carlo is a useful method to generate random samples in an arbitrary PDF 

applying in the intermediate event in subset simulation. The process of MCMC states with a few 

arbitrary samples
tX in the region of

iF , then a Markov Chain can be produced by the transition 

rules which definite that the next state samples
t+1X is only relating to the current state samples

tX . The previous samples
tX and the new generated samples

t+1X getting together became a 

sequence of random variables{ }1 2, , , n}, , , nX X X  called the Markov Chain. Let the chain in a 

stationary distribution ( )P x . For each 
t+1X , choice a proposal PDF ( )Q x and the transition 
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PDF is
t t 1( )Q +X X which is time-independent, then the chain satisfy the balance condition as 

t t 1 t t 1 t t 1( ) ( ) ( ) ( )P Q P Q+ + +=X X X X X X                       (12) 

The most extensive method in MCMC is the Metropolis-Hastings algorithm which can impose 

minimal requirements on the desired distribution. Using two steps transfers
tX to

t+1X in 

Metropolis-Hastings algorithm. 

(i) Generate a sample 'X from ( ') ( ' )tQ Q=X X X , where
tX is the previous sample. Whether the 

new born sample 'X could be accept or not depends on the acceptance probability ( ' )tA X X : 

( ')Q( ')
( ' ) min 1,
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( ' )tA X X  is like a ratio of important sampling weights and ensures that the samples will come 

from the true distribution ( )P x after numerous calculations. 

(ii) Determine the candidate sample 'X to accept or reject. Draw an random uniform random 

number u from [0,1] which is defined as an acceptance threshold. The acceptation rules shown as 

1

,   

,   
t

t

u A

u A
+

<ì
= í

³î

X'
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X
                              (14) 

In Subset Simulation, the new state
t+1X should be judged that whether it lies in the failure 

domain
iF or not. If

t+1X satisfied all the conditions, it can be received in the Markov chain. 

Repeat several times to get a chain{ }1 2, , , n}, , , nX X X ,which is used in the second procedure in 

Subset Simulation. 

 

When the MCMC solves some issues in high-dimensional spaces, the acceptance probability 

( ' )tA X X decreases dramatically. Numerous samples are rejected in this situation which reduces 

the computational efficiency. Au modified the Metropolis-Hastings algorithm which used 

one-dimensional sample to replace the random vector. Therefore, the acceptance probability is a 

ratio of one-dimensional PDF which increases the chance to accept. And the transition of each 

one-dimensional sample is independent. 

 

3  Construction of Seismic Global Limit State Functions of Structures Using Subset 

Simulation 

3.1  Seismic global limit state functions of structures 

In this paper, we consider two global limit state function of structures under seismic actions: 

global load-carrying capacity limit state, and global deformation capacity limit state.  

 

For the global load-carrying capacity limit state of a structure, the maximum base shear  is 
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taken as the global load-carrying capacity of the structure, and the total horizontal earthquake  

is taken as the global seismic demand for the structure. Then, the GLSF of the global 

load-carrying capacity limit state can be established as 

S E E( , ) ( )E SZ g V F V F h X F= = - = -                  (15) 

The maximal base shear  of a structure can be obtained by pushover analysis. The base shear of 

a structure is generally influenced by limit loading ability of structural components, the 

correlation among components, material s constitutive models, and so on. These influencing 

factors are assembled into a random vector X, which is expressed as 

S 1 2( ) h( , , , )nV h X X X= = , , , )n, ), ), , , ), ), ), )X                      (16) 

where  are n random variables.  

The maximal base shear is assumed to follow lognormal distribution: 

s

s

s

ln
( ) ( )

v

v

v

v
F v

l

z

-
= F                         (17) 

where the
svl is the logarithmic mean value of

SV , 
svz is the logarithmic standard deviation. 

The horizontal seismic action 
EF can be determined according to Chinese seismic design code 

of buildings: 

E ( , )mA
F GD T GD

g
a b x= =                     (18) 

where G is the equivalent gravity loads of the structure, D is the random factor, a is seismic 

influence coefficient, 
mA is the additional random factors, g is the gravity acceleration.  

 

For the global deformation capacity limit state of a structure, the maximum story drift 
Du of the 

structure under seismic actions is taken as the global deformation demand of the structure. 

Correspondingly, the story drift threshold of the structure
Cu can be treated as the global 

deformation capacity. Then, the GLSF for global deformation capacity limit state can be 

established as 

( ) ( )C SZ g u u= = -X X                       (19) 

3.2 Construction of GLSFs of structures using subset simulation 

In structural reliability analysis, the structures are established using OpenSees software, in which 

the corresponding statistical parameters of the random variables are considered. Then, the two 

GLSFs of the RC frame structures are obtained through pushover analysis and capacity spectrum 

method, respectively. Then, the global reliability indices for the two system-level global limit 

states of RC structures under seismic actions are calculated by SS method. In this study, the 

process need to calculate through the interaction between MATLAB and OpenSees, which is 

illustrated in Figure 1. 
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Figure1. The framework of the structural reliability calculation 
 

4 Case Study 

4.1 Design and modeling of the RC frame structures 

Model three reinforced concrete structures using OpenSees as the simulation platform with 

different storey but the same plan arrangement. These structures are three-storey, six-storey and 

nine-storey frame respectively. The design site classification of the structures are type  and 

they are designed for seismic intensity of 8-degree earthquake zone. The strength grade of the 

main steel in beams and columns in the structures are HRB335. The strength of concrete used in 
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the structures are C30 in three-storey frame and C35 in six-storey, nine-storey frame. The 

information about the load of the structures are shown in the table1. The plan and the elevation 

of the structures are illustrated in the Figure 2. These three structures are considered the structure 

uncertainty, material uncertainty and so on. The information of statistical parameters and 

distribution types of random variables can be shown in the table2. 
 

Table1. Basic Load of RC Frame Structures[11] 
Parameters Value Parameters Value

Reference Wind Pressure 0.4kN/m2 Standard Floor Live Load 2.0kN/m2 

Reference Snow Pressure 0.3kN/m2 Standard Floor Dead Load 4.5kN/m2 

Thickness of Roof Slab without people 120mm Roof Live Load 0.5kN/m2 

              a) Plan view                                    b) Elevation view 
Figure2. Plan and elevation arrangements of RC frame structures 

 
Table2. Basic Load of RC Frame Structures[11] 

Source of 

Uncertainty 

Random 

Variable 
Mean Value 

Coefficient of 

Variation 

Relative 

Coefficient 

Distribution 

Type 

Concrete C30 

X1(fc0,core) 28.99 N/mm2 

0.20 0.3 

Lognormal 

X2(fcu,core) 17.91 N/mm2 

X3(εc0,core) 0.0023 

X4(εcu,core) 0.0143 

X5(fc0,cover) 25.57N/mm2 
0.20 0.3 

X6(εcu,cover) 0.0040 

Concrete C35 

X1(fc0,core) 32.57 N/mm2 

0.20 0.3 

Lognormal 

X2(fcu,core) 20.76 N/mm2 

X3(εc0,core) 0.0022 

X4(εcu,core) 0.0124 

X5(fc0,cover) 0.0124 N/mm2 
0.20 0.3 

X6(εcu,cover) 0.0040 

Steel HRB335 

N/mm2 

X7(fy) 378 0.10 
0.4 Lognormal 

X8(E0) 200000 0.05 
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Dead Load 

(kN/m3) 
X9(γ) 26.50 0.10 -- Normal 

Live Load 

(kN/m) 
X10(q) 0.98 0.45 -- Gamma 

 

4.2 Seismic reliability analysis for global load-carrying capacity limit state 

 

Then, according to the design specification of Chinese architectural structure, the information 

about
EF  can be shown in the table 3, considering the uncertainty of the seismic action

EF . 

 

Table 3. Statistics of total horizontal seismic action 

Structure Mean Value (kN) 
Coefficient of 

Variation 
Distribution Type 

F3 548.01 

0.1~1.0 Extreme Value Type  Distribution F6 665.81 

F9 727.79 

 

 

Using subset simulation, the structure reliability based on global load-carrying capacity limit 

state can be obtained in the table 4. The results can be compared with the Monte Carlo 

Simulation (MCS). The results can be compared with the Monte Carlo Simulation (MCS). 

 

Table 4. Global reliability indices of global load-carrying capacity 

Reliability Index 
Coefficient of Variation 

0.0 0.2 0.4 0.6 0.8 1.0 

F3 
MCS 1.1957 0.5713 0.4084 0.3387 0.2903 0.2759 

SS 1.2243 0.5779 0.4125 0.3407 0.3186 0.2793 

F6 
MCS 0.5954 0.3638 0.2832 0.2492 0.2309 0.2198 

SS 0.5695 0.3580 0.2819 0.2508 0.2301 0.2240 

F9 
MCS 1.2308 0.5825 0.4155 0.3435 0.3005 0.2791 

SS 1.2081 0.5710 0.4193 0.3465 0.3121 0.2767 
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Figure3. Global reliability indices of global load-carrying capacity 

 

The number of initial samples of subset simulation method is 1000, and the number in MCS is 

10000. The results show that the reliability indices of the three structures are accurate based on 

global load-carrying capacity limit state calculated by the subset simulation method. 

 

4.3  Seismic reliability analysis for global deformation capacity limit state 

It is assumed that the threshold of the maximum story drift obeys the logarithmic normal 

distribution. The mean value of it is shown in table 5. 
 

Table 5. The thresholds of the maximum structure story drift 

Intact Slight Damage Medium Damage Serious Damage Collapse 

1/550 1/250 1/120 1/60 1/50 

 

The uncertainties of the seismic action need to be considered such as the damping ratioz , the 

maximum seismic effect coefficient
maxa and the design characteristic period of ground motion

gT . The mean values of these three random variables are 0.05, 0.90 0.35respectively. The 

coefficient of them are 0.3, 0.05, 0.1. z obeys lognormal distribution, 
maxa and gT obey normal 

distribution. Then use the capacity spectrum method to get the maximum story drift of the 

structures. The reliability indices can be calculated by SS. The results would be compared with 

the method of MCS in table 6. 

 
Table 6. Global reliability indices of global deformation capacity 

Reliability Index 
structure 

F3 F6 F9 

MCS 1.8550 1.6276 1.7444 

SS 1.8767 1.6540 1.7835 

 

The SS method takes 1000 sample points for about 5.3 hours to get the results, and MSC spends 

around 23 hours on 10000 sample points. It is clear that SS method is much more efficient than 

the MCS method.   
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5  Conclusions 

In this paper, SS method is used to calculate the global reliability indices of the structures based 

on global load-carrying capacity limit state and global deformation limit state. In this method, 

the number of the samples is reduced greatly because of the MCMC, which could improve the 

computation efficiency. The SS method costs only about 1/4 of the time to get the reliability 

index of the structure than the MCS. Moreover, after comparing the results with the MCS 

method, the accuracy of the subset simulation method is creditable. 
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