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Cities depend on public transit systems.  However, the complexity and numerous uncertainties 

faced by these systems can make it seemingly intractable to cope with unforeseen disruptions.  

This work presents the analysis of the inherent variability and prediction uncertainty of passenger 

in- and outflows at stations in an urban rail system.  We study data gathered from New York 

City’s subway system over seven years and develop probabilistic models of the expected 

passenger flows.  We determine the operating envelope over the course of a week, find critical 

flow levels during specific times of day, and establish fragility curves of the system using a 

Bayesian approach to estimate the probability of exceeding a critical flow level over the duration 

of a disruption.  In addition, we present a prediction model based on Gaussian Process regression 

to determine future expected counts of passengers.  This approach can be useful for planners and 

operators in improving the system based on expected platform capacities, assessing the risks 

associated with everyday operations, reliably forecasting whether the station in- and outflows are 

expected to remain within the operating envelope, and guiding the deployment of mitigation 

measures. 
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1! Introduction 

Public transit systems are indispensable to the functioning of cities.  To keep pace with the 

development of urban spaces, their system architectures as well as operations need to be 

persistently adapted and expanded.  However, given the rising complexity of these systems and 

despite many improvements, disruptions will be inevitable and potentially more catastrophic in 

the face of ever-growing urban population.  In fact, uncertainties such as the variability of 

passenger demand, reliability of technical equipment, or limited knowledge about the effects of 

operational control actions render the prediction of the effects of disruptions a challenging 

problem.  Therefore, planning future transit systems as well as embedding resilient management 

of disruption and recovery cycles inescapably demands assessing and quantifying the associated 

uncertainties.   

Planning and controlling a system under uncertainty requires that necessary methods and 
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models capture the system conditions and performance probabilistically.  Most studies that assess 

transport systems and their susceptibility to disruptions within a stochastic perspective use 

frameworks associated with vulnerability analysis (Mattson 2015).  Recent examples of such 

works are Rodríguez-Núñez 2014, Sun 2016, Sun 2016(2), Xing 2017, or LaniM’cleod 2017.  

Other works focus on optimizing system operations as well as understanding and augmenting the 

disruption response cycle to increase resilience (Cadarso 2013, Cacchiani 2014, Jin 2014, Cats 

2015, van der Hurk 2015, Yin 2016, Adjetey-Bahun 2016, Altazin 2017, Gao 2017).  However, 

inherent system uncertainties (e.g., demand fluctuations, operator control latency) and prediction 

inaccuracies (i.e., model prediction uncertainties) are often neglected.  Particularly for system 

planners, discerning between inherent variabilities and prediction uncertainties is essential to 

assess the expected performance of a system and incorporate flexible design strategies.  Only few 

have developed probabilistic approaches for transit systems that take into account demand 

variabilities (Soltani-Sobh 2016, Yin 2016, Nogal 2017) and even fewer have considered 

modelling errors validated against real-world data.  For instance, Silva et al.  (2015) demonstrate 

a statistical model that captures the effects of disruptions on passenger flows in the London 

underground.  However, the model relies on detailed smart-card data and passenger surveys. 

Here, we exemplify the proposed stochastic framework with reference to the daily and weekly 

passenger fluctuations of New York City’s subway system.  The results demonstrate our initial 

work to express both system variability and prediction uncertainty.  This paradigm is the basis of 

our future work to develop simulation models that can propagate uncertainties into quantifiable 

probabilistic results and inform flexible engineering design strategies to create resilient public 

transport systems. 

 

2! Approach 

The condition of the transit system is assessed in two parts.  First, we analyze the historical 

observations of passenger counts at subway stations.  Next, we aim to predict future passenger 

flow-counts in a probabilistic way.  All analyses are implemented in Python 3.5, unless explicitly 

specified. 

 

2.1! Quantifying system fragility 

This part aims to measure the empirical distribution of passenger entry and exit counts, illustrate 

the trace of passenger counts during a daily commute cycle, and determine the fragility of 

passenger inflow levels.  To this aim, records are collected into empirical histograms and 

cumulative distributions for every recording interval, given by day and time.  The resulting 

operating envelope stretches from the minimum to the maximum of the empirical counts and 

measures the frequency of passenger count observations during a particular recording interval.   

Next, we determine kernel density estimates of the collected records for every recording 

interval and find the probability of exceeding a given entry count (i.e., station inflow).  The 

resulting curves are used to assess critical threshold values within the operating envelope, which 

are important in determining the required passenger flow capacity at stations and guide the design 

of train frequency, available train capacity, and station platform capacity. 

We define the fragility as the probability of exceeding a critical inflow threshold at a station 

for the entire duration of an event (e.g., a disruption).  Fragility curves have been developed for 

seismic risk analysis of structural components and systems, and measure the probability of 

exceeding a certain level of damage given the intensity of seismic activity (Shinozuka 2000).  This 

concept is adapted to the transit system by assuming that a disruption event occurs over a specified 

duration.  Consequently, fragility measures the conditional probability of exceeding a critical 

passenger inflow !" over the entire course of a disruption given its duration.  The conditional 
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probability is given by 

 # $ % & ' % ( %
)* ( $ % & # $ % &

)* (
 (1) 

where $ is a Boolean random variable, denoted as either &+ if the passenger inflow ! is smaller 

than the critical inflow (! , !"- or as &.  if it is larger /! 0 !"-.  The random variable ' is 

continuous and corresponds to the duration over which the critical inflow is exceeded.  The 

cumulative distribution function )* ( $ % &  is determined from the kernel density estimate 

1* ( $ % & , i.e., the probability density of the duration (, given that the critical inflow has either 

been exceeded or not.  The probability # $ % &  is determined from the empirical frequency of 

observing counts below or above the critical inflow.  Since $ is discrete (i.e., either &+ or &.), 

)*/(- is determined according to 23 4 % 23 4 5 % 6+ 7 5 % 6+ 8 23 4 5 % 6. 7 5 % 6. . 

 

2.2! Forecasting passenger counts 

Forecasting intends to provide a stochastic estimate of the expected number of passengers entering 

and exiting at a station, given recent observations.  The prediction needs to propagate and 

quantifiably express the inherent operational variability and prediction uncertainty about the 

expected passenger counts.  To this end, we implement a Gaussian Process regression model.   

Gaussian processes have been studied and used to various ends, and an exhaustive review 

would be beyond the scope of this work.  However, a comprehensive introduction about the theory 

and some applications of Gaussian processes can be found in Rasmussen 2006.  The strength of 

the Gaussian process model is that it discerns between the variability of observations and 

prediction uncertainty.  In addition, the model can be tailored to include domain knowledge such 

as the seasonality of observations or the correspondence between observations at different spatial 

distances from each other.   

Assumptions on the underlying likelihood functions (i.e., the distributions from which the 

measured data are sampled from) need to be included.  Here, we assume that the likelihood 

function is a negative binomial distribution, because the passenger flows are count data and the 

historical measurements are over-dispersed (i.e., the variance of the observations is larger than the 

mean).  We implement the Gaussian Process (GP) regression model in the GP for Machine 

Learning (GPML) toolbox in Matlab®.  Due to the assumed negative binomial likelihood, an exact 

inference method cannot be used.  We therefore choose Laplace approximation and an exponential 

link function to determine the latent variable mean and standard deviation as well as the dispersion 

parameter of the underlying likelihood (i.e., the expected value and variance of the intensity as 

well as the dispersion parameter).  The regression model assumes a summed kernel covariance 

matrix, consisting of radial basis function (squared exponential), Matern, periodic, and rational 

quadratic kernels to account for different length scales and periodicities. 

 

3! Case Study - New York City’s subway 

The developed approach is implemented on the records of the number of passengers who enter 

and exit at NYC’s subway station “34
th

 Street – Penn Station” (henceforth denoted as Penn Station) 

of the Independent Subway System (IND) Eighth Avenue Line, served by train lines A, C, and E.  

The data was gathered from the Metropolitan Transport Authority’s (MTA) online open-access 

turnstile count data repository (MTA 2017).  The collected and processed data set spans over 

approximately seven years from April 2010 to May 2017.  The raw data includes the cumulative 

counts per every turnstile of each station in approximately four-hour intervals.  In addition, the  
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      (a)        (b) 

Figure 1.  Number of passengers (a) entering and (b) exiting at 34
th

 Street – Penn Station.  The radius 

represents the counts per ten-minute interval – the scale is logarithmic.  The color scale represents the 

relative frequency of the observed counts.  The red lines in the insets represent the trace of the counts 

on Wednesday, May 7, 2015. 

data are conservatively up-sampled to ten-minute interval counts.  The resulting entry and exit 

counts are assumed to be the empirical records of passenger counts over the time and date range 

spanned by the original data set, yet given in ten-minute instead of four-hour intervals. 

 

4! Results and Discussion 

Fig.  1 shows the number of passengers entering (Fig.  1(a)) and exiting (Fig.  1(b)) per ten-minute 

interval at Penn Station over the course of a week during the months of April and May in the years 

2010 to 2017.  The plots depict how weekday counts follow the daily commute cycle of morning 

peak, midday off-peak, and evening peak times, whereas weekends only show midday-to-

afternoon increases in passenger counts. Moreover, Thursdays and Fridays observe considerably 

larger variability as compared to the remaining week.  The central insets show the entries and exits 

for a typical Wednesday, depicting how the observed counts are distributed within the boundaries 

of the operating envelope. The trace of a single day is shown as a red line. 

 

4.1!  Assessing passenger demand and required flow capacity 

One key aim is to find useful statistical estimates of the passenger flow (i.e., entry and exit counts) 

at stations.  To start, we measure the number of entries at Penn Station.  As an example, we take 

records collected during every Wednesday in the months of April and May and determine the 

operating envelope for every ten-minute interval during the course of the day.   

Fig.  2(a) plots the probability of exceeding a given entry count (i.e., inflow level) during the 

morning peak and evening peak times at Penn Station.  Capturing the expected inflow levels is 

essential in designing the flow capacity and assessing known capacity limits.  For instance, the 

probability of observing more than 1300 passengers per 10-minute interval during morning and 

evening peak hours is in the order of 5%, according to Fig.  2(a).  While it may be desirable to 

adjust train schedules to accommodate these many passengers and limit excess crowding at the 

station, available rolling stock may be limited.  Consequently, if the train schedule only allows for 

1200 passengers serviced per every 10 minutes, the probability that more passengers can be 

expected and will be crowding at the station is about 55%. 
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      (a)       (b) 

Figure 2.  The curves in (a) plot the probability of exceeding a given level of passenger entry counts 

(inflow) during morning peak and evening peak intervals. The fragility curves in (b) plot the 

conditional probability of persistently exceeding a certain inflow level within the operating envelope 

over a given duration. The inset shows the operating envelope and generic inflow level. The dots 

represent single day, consecutive observations, with the filled dots signifying that the observations 

exceeded the inflow level. The corresponding duration 9: is recorded to infer the curves in (b) using 

Eq. (1). The plots are based on the passenger inflow counts recorded for a typical Wednesday during 

April and May between 2010 and 2017 at 34
th

 Street – Penn Station.   

 

4.2! Assessing fragility 

Another key aim is to estimate the fragility of the operating conditions.  Fig.  2(b) plots the fragility 

curves for three different inflow levels within the mid-week (Wednesday) operating envelope at 

Penn Station, based on Eq. (1).  The inflow level is measured within the operating envelope as the 

margin between the minimum and maximum observed counts (i.e., the inflow level of ; [%] 

corresponds to a value of !<=> 8 ; !<?@ A !<=> , where !<=>  and !<?@  correspond to the 

minimum and maximum observed entry counts, respectively). 

The fragility curves measure the conditional probability of exceeding the 60%, 70%, and 80% 

inflow levels over the entire duration of an event – e.g., the duration of a disruption – given its 

expected maximum time span.  For instance, the probability of persistently exceeding the 80% 

inflow level during a disruption that lasts up to 200 minutes is roughly 0.35.  Such a disruption 

could for instance be a planned service disruption or station closure.  Similarly, given that the 

expected duration of a sudden line closure lasts up to 20 minutes, the probability that the passenger 

count persistently exceeds the 70% threshold between the smallest and largest observed counts 

during the 20-minute interval is 0.55.  In such cases, the fragility curves indicate the potential 

severity and corresponding probability of the number of passengers who would need to be diverted 

and cannot commence their journey at this station.   

 

4.3! Predicting passenger counts 

We assume that the distributions of the number of passengers entering and exiting at a station is 

described by a negative binomial likelihood. In order to reliably forecast future station in- and 

outflows, we first determine the two model parameters – the intensity and the dispersion parameter 

– of the underlying likelihood.  Given the records generated from up- sampling the four-hour 

interval passenger counts, we determine the maximum likelihood estimate of the intensity and 

dispersion parameter of the negative binomial distribution defined at each ten- minute recording 

interval within a week.  Next, in order to assess whether the proposed prediction is sufficiently 

accurate in estimating and predicting the statistics of the underlying likelihood, we generate 

samples over three consecutive weeks from the distribution determined in the previous step.  The 

resulting samples are considered the actual observations (blue dots in Fig.  3). 

The prediction based on the GP model for a one-week ahead time horizon is shown on the right-

hand side of Fig. 3.  The solid black line indicates the predicted mean intensity, whereas the shaded 
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bands illustrate the prediction uncertainty.  The lower and upper bounds of the shaded region are 

defined according to the variance of the mean intensity (i.e., one-standard deviation interval).  The 

red curve, corresponding to the true intensity of the negative binomial distribution, indicates that 

 
Figure 3.  One-week ahead prediction of the mean intensity of exit counts at 34th Street – Penn 

Station.  The shaded region represents the one-standard deviation interval of the prediction.  The 

prediction is based on a GP regression model and observations gathered over three weeks (only the 

last week’s observations are shown). 

 

the prediction performs well in approximating the true intensity.  Given the forecast of the variable 

demand together with the quantified prediction uncertainty, operators can for instance deploy 

flexible strategies and response steps that best trade-off additional cost and performance 

improvement under uncertainty. Future work will consider different models to comparatively 

assess and quantify the prediction accuracy.   

 

5! Conclusion 

This work links the fragility of the operations of an urban rail transit system and the inherent 

uncertainty of the number of passengers entering and exiting at a station during times of potential 

service disruptions.  We define the operating envelope as the range between the minimum and 

maximum observed counts during a given time interval.  We determine the empirical frequencies 

of observing count targets within the operating envelope and find kernel density estimates that 

help us to deduce the probabilities of exceeding a given station inflow or outflow level of 

passengers.  In this way, we represent the operating envelope over the course of a week, determine 

critical inflow levels during specific times of day, and assess the fragility of the system by 

assuming an estimated duration of a disruption.  Such information, which takes into account the 

variability of passenger in- and outflow, can be useful for planners and operators in improving the 

system or assessing the risks associated with everyday operations.  In addition, we present a 

prediction approach based on GP regression models to determine future expected counts of 

passengers.  The results presented will be extended to consider the full transit network.  By 

quantifying both the inherent variabilities and prediction uncertainties, the aim is to devise flexible 

engineering design strategies that can optimally accommodate these uncertainties. 
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