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Abstract: To properly characterize the spatial variation, this paper proposes an analytical 

approach for sampling conditional random field of soil undrained shear strength. With the 

proposed approach, the posterior statistics of spatially varying undrained shear strength 

conditioned on the known values at measurement locations can be solved analytically. The 

conditional random field model of undrained shear strength is constructed using the field vane 

shear test data at a site of the west side highway in New York. The probability of slope failure is 

estimated by subset simulation. A clay slope excavated at this site is investigated as an example 

to illustrate the proposed approach. 
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1 Introduction 

The inherent spatial variability of soil properties has been well accounted for by random field 

theory in the slope stability analyses (e.g., El-Ramly et al., 2002; Griffiths and Fenton, 2004). 

The statistical information [e.g., means, coefficients of variation (COVs), distributions and 

scales of fluctuation] of the soil properties are usually inferred from geotechnical testing data 

(e.g., Fenton, 1999), however, the random fields do not necessarily incorporate the specific 

“known” properties (and thus considered “certain”), albeit limited, as measured from the project 

site. To make best use of available data to characterize the spatial variability of soil properties, it 

is of significance to construct the random fields conditioned on the site-specific data.  

The conditional random fields can take account of the statistical information of soil 

properties as well as the soil properties known at measurement locations to model the spatial 

variability. Various numerical approaches have been developed to sample the conditional 

random fields (e.g., Lloret-cabot et al., 2012; Li et al., 2016; Liu et al., 2017; Gong et al., 2018), 

however, the computational efficiency is low for high-dimensional problems. This study 

proposes an analytical approach for sampling conditional random fields of spatially varying soil 

properties in slope reliability analysis. A saturated clay slope that is excavated at the site A of 
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the west side highway in New York is investigated as an example to demonstrate the proposed 

approach. The short-term shear strength of the undrained clay is characterized by the undrained 

shear strength (su). The spatial variation of su is depicted by a conditional random field 

incorporating site-specfiic data that are outcomes of field vane shear tests (VST) at this site 

(Asaoka and A-Grivas, 1982).  

 

2   Sampling approach of conditional random field 

The prior statistical information of the random fields of the soil properties is commonly assumed 

based upon the local experience, engineering judgment and knowledge revealed in geotechnical 

literature due to limited test data availability. It is well-known that lognormal distribution is 

particularly suitable for the soil parameters that cannot take on negative values since it ranges 

between zero and infinity, skewed to the low range. In this study, the undrained shear strength in 

the clay layer is assumed to follow lognormal distribution with parameters of 

2ln 2
u u us s sl m x= -  and ( )2ln 1 COV

u us sx = + , in which 
usm  and COV

us
 are the mean and 

COV of su. Besides, the statistics of su such as 
usm  also exhibit uncertainties as reported in the 

literature (e.g., Cao et al., 2016; Huang et al., 2016; Papaioannou and Straub, 2017). The prior 

distribution of 
usm  is also modeled by a lognormal distribution with parameters of 

su
ml ¢  and 

su
mx ¢ . The statistical information about 

usm  or varying ranges of 
usm  for different types of soils 

(e.g., cohesive soil, fine grained soil) can be obtained from the published literature (e.g., 

Rackwitz, 2000; Cao et al., 2016). Following Papaioannou and Straub (2017), the lower and 

upper bounds 
u

lower

sm  
and 

u

upper

sm  are taken as the p1 and p2 quantiles of 
usm , respectively. In this 

way, the 
su

ml ¢  and 
su

mx ¢  can be obtained. The prior mean and standard deviation of 
usm  are 

calculated by ( )2exp 2
s s su u u
m m mm l x¢ ¢ ¢= +  and ( )2exp 1

s s su u u
m m ms m x¢ ¢ ¢= - . It can be derived that 

the
usl  follows a normal distribution with mean of 2 2

s s uu u
sl mm l x¢ ¢= -  and standard deviation of 

s su u
l ms x¢ ¢= . 

As highlighted in Huang et al. (2016) and Papaioannou and Straub (2017), the posterior 

marginal distribution of su at each spatial location, ( )u is q , is the predictive distribution of su. 

The posterior PDF of ( )u is q  can be evaluated by integrating out the distribution parameter 
usl  

from the joint PDF of su and 
usl : 

          [ ]( ) ( | ) ( )
u u u s u uu

s u i s u s s sf s q f s f dll l l
+¥

-¥
¢¢ ¢= ò                  (1) 

A detailed derivation of Eq. (1) is given in Huang et al. (2016). It can be found that the posterior 

marginal distribution of ( )u is q  is also a lognormal distribution with parameters of 
su
lm ¢  and 

2 2+
s uu

sls x¢ . Therefore, ln ( )us q  follows a joint Gaussian distribution with mean vector of 

ln ( )
us

m¢ q  and covariance matrix of ln ( , )
us

C¢ q q , in which q =
T

1 2( , , , )
enq q q T, , )
enq, ,, , , iq = ( , )i ix z  are the 

coordinates of the i-th spatial location and ne is the number of random field elements. The i-th 

element of ln ( )
us

m¢ q  and the (i, j)-th entry of ln ( , )
us

C¢ q q  are calculated by 
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where ( ),U i jq qr ¢  is the autocorrelation coefficient between two standard normal variables at 

locations points 
iq  and 

jq , which is approximately equal to ( ),
us i jq qr ¢ .  

The measurement errors resulting from imperfect measurement techniques, instruments or 

procedural controls in field tests are generally unavoidable (e.g., El-Ramly et al., 2002). To 

properly characterize the spatial variation of su, the measurement errors shall be considered 

when estimating the posterior statistics of the condition random field. The measurement result of 

su at a given location m

iq = ( , )m m

i ix z , ,

m

u is , can be related to a multiplicative measurement error ie  

as follows (e.g., Straub and Papaioannou, 2015): 

          , ( )m m

u i u i is s q e=                                (3) 

where ( )m

u is q  is the simulated realization of su at m

iq ; The ie , 1,2, , mi n= 2, , mi n2, , , are typically 

independent among tests and are assumed to follow the lognormal distributions with medians 

equal to one and constant standard deviations (e.g., DeGroot and Baecher, 1993; El-Ramly et al., 

2002). nm is the number of measurements. With this assumption in mind, the likelihood function 

can be constructed as 

          [ ] ,

1 ln
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where f(.) is the PDF of the standard Gaussian variable; ln ie
s  is the standard deviation of ln ie , 

which can be estimated by ( )2

ln ln 1 COV
i ie es = + , in which COV

ie
 is COV of the i-th 

measurement error. The posterior mean vector of ln ( )
us

m¢¢ q  and covariance matrix of ln ( , )
us

C¢¢ q q  

incorporating the measurement uncertainties can be derived as (e.g., Stein, 1999) 
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where m

u
s = ( )T

,1 ,2 ,, , ,
m
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, m
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u u u n,,s , 
m
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nq q q T, , )
m
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nq, ,, , . Based on the ln ( )
us

m¢¢ q  and ln ( , )
us

C¢¢ q q , 

the posterior mean and standard deviation of su at the given location qi, ( )
us iqm¢¢  and ( )

us iqs ¢¢ , can 

be obtained. Then, the midpoint method is adopted for sampling the conditional random field of 

su (e.g., Liu et al., 2017).  

 

3 Illustrative example: application to a saturated clay slope 
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A saturated clay slope under undrained conditions is investigated as an example in this section to 

illustrate the proposed approach. As shown in Figure 1, the slope has a height of H = 9 m and a 

slope angle of 18.4°. The undrained clay is underlain by a firm stratum at 27 m below the top of 

slope and has a saturated unit weight of satg = 20 kN/m3. 
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Figure 1. Random field mesh and slope stability analysis results. 

 

3.1    Prior knowledge 

The prior statistical information of su and measurement errors ie  is determined based on the 

literature and physical considerations (e.g. physical bounds) due to the limited test data. 

According to Rackwitz (2000), the value of 
usm  is reported to be in the ranges of [10, 20 kPa], 

[20, 50 kPa] and [50, 100 kPa] for soft, stiff and very stiff inorganic plastic cohesive soils, 

respectively. The stiff inorganic plastic cohesive soil is taken as an example, the corresponding 

bounds of 20 and 50 kPa are treated as 10% and 90% quantiles of 
usm , and a lognormal 

distribution is fitted. The resulting prior mean and standard deviation of 
usm  are 

su
mm ¢ = 33.71 

kPa and 
su

ms ¢ = 12.45 kPa, respectively. As reported in Phoon and Kulhawy (1999a), the range of 

COV
us

 is [0.04, 0.44] and its mean value is 0.24 for the su determined from field vane shear 

tests. On this basis, COV
us

= 0.24 is selected. Additionally, the reference values for horizontal 

and vertical scales of fluctuation of undrained shear strength of clay are taken as 
hl = 38 m and 

vl = 3.8 m. A separable exponential autocorrelation function is adopted for characterization of 

the spatial correlation of su (e.g., Li et al., 2016; Liu et al., 2017). The COV
ie
 for VST tests is in 

the range of [0.1, 0.2] as reported in Phoon and Kulhawy (1999b). For illustration, COV
ie
= 0.1 

is used. By this means, the prior knowledge of su can be modeled by an unconditional random 

field with 
usm ¢ = 33.71 kPa, COV

us
= 0.24 and 

uss ¢ = 8.09 kPa. 

 

3.2    Data and results 

The 21 VST data of su along the soil depth from Boreholes A-1 [see Table 1 in Asaoka and A-

Grivas (1982)] are utilized to generate the conditional random field of su and update the slope 

reliability. The data are collected from the site A of the west side highway in New York. The 

slope profile is then discretized into a total of 1224 4-noded quadrilateral elements with 

horizontal and vertical side lengths of 3.0 and 0.5 m, as shown in Figure 1. The short-term 

stability of the homogenous slope under undrained conditions is assessed using Bishop’s 

simplified method. As a reference, the factor of safety (FS) evaluated for the prior mean of su 

(i.e., 
usm ¢ = 33.71 kPa) is 1.095. The location of the critical slip surface is plotted in Figure 1. A 

deep failure mechanism that is independent of the depth is observed. The failure event of the 

slope is defined as FS being less than 1.0. Without measurements, the prior probability of slope 

failure based on the unconditional random field of su is 0.366, as calculated by subset simulation 
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with conditional probability p0 = 0.1 and the number of samples at each level lN = 2000 (Au and 

Beck, 2001). 

To construct conditional random field of su, an arbitrary drilling location of x = 25.5 m is 

selected for Borehole A-1 as shown in Figure 1. The 21 VST data of su obtained from Borehole 

A-1 are used. The posterior mean ( )
us iqm¢¢  and standard deviation ( )

us iqs ¢¢  of su at each spatial 

location qi can be calculated using Eq. (5). Figure 2(a), (b) and (c) show the posterior means, 

COVs and standard deviations of su along the depth (x = 25.5 m), respectively. In Figure 2(a), 

the posterior means at the measurement locations well matches the measured values and differ 

considerably from the prior mean. In Figure 2(b), the posterior COVs at the unmeasured 

locations that have same separations to the measurement locations along the depth are uniformly 

equal to 0.155, while those at the measurement locations are about 0.1, which is exactly equal to 

COV
ie

. The posterior COV oscillates regularly around 0.125. The reason lies in that the 

posterior mean and standard deviation at one location only rely on the distances between the 

concerned location and the measurement locations [see Eq. (5)]. In Figure 2(c), the elements 

adjacent to the measurement locations have somewhat reduced posterior standard deviations. It 

is also interesting to observe that both the 
usm ¢¢  and 

uss ¢¢  increase with the depth, which is in good 

agreement with the change trend of VST data with the depth. It indicates the proposed approach 

not only can make best use of the test data to reduce the uncertainties of su in the estimation, but 

also can account for the non-stationary characteristics where the mean and standard deviation of 

su increase with the depth. Based on the obtained posterior mean vector and covariance matrix of 

su, the realizations of the conditional random field of su are generated by the midpoint method 

and mapped to the random field element mesh of slope profile. The posterior probability of 

failure is 9.5×10-2, as calculated by subset simulation with p0 = 0.1 and lN = 2000, which is 

smaller than the prior probability of failure (i.e., Pf = 0.366). It implies that the slope reliability 

can be improved with the site investigation data incorporated in the generation of the conditional 

random field. 
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Figure 2. Comparison of prior and posterior statistics of undrained shear strength along the depth (x = 

25.5 m). 

 

4 Conclusions 
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This paper proposes an analytical approach for sampling conditional random field of undrained 

shear strength. A saturated clay slope has been investigated as an example to illustrate the 

proposed approach. The proposed approach not only can make best use of the limited site-

specific data to learn the distribution of spatially varying undrained shear strength and estimate 

the posterior statistics of undrained shear strength analytically, but also can capture the depth-

dependent nature of undrained shear strength. It can provide an effective means for properly 

characterizing the spatial variation of soil properties. 
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