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A new computational method is proposed for solving the eigenpair of the structure with random 

parameters based on the basic idea of the homotopy analysis method. For this new method, the 

eigenvalues and eigenvectors of the random structure are expressed as the homotopy-series. 

Because each term in the homotopy expressions includes an approaching function with auxiliary 

parameter h, the convergence domain of the homotopy-series is greatly improved, which makes 

this new method available for the large fluctuation of random parameters and different from the 

traditional Taylor series. Actually, the Taylor series is just a special case of the homotopy series 

where the value of h equals to -1. In practice, a dimension-reduction strategy is applied to the 

series to reduce the computational effort: the single-variable and double-variable homotopy-

series are recommended for calculation. Numerical example, a fixed rectangular plate with 

random elastic moduli, indicates that the new method provides excellent approximations of the 

eigenpairs of a closely spaced eigenvalues system. 

Keywords: Random eigenvalue problem, homotopy analysis method, Taylor series, stochastic 

finite element method. 

 

1 Introduction 

Algebraic eigenvalue problems are a class of basic and significant problems in various fields, 

such as structural dynamics and structural stability.  Currently, the computation of eigenvalues 

and eigenvectors is well comprehended for deterministic problems (Ang and Amin 1968, Liu, 

Belyschko and Mani 1986).  In many practical cases, however, the physical properties of the 

structural systems are not deterministic.  Therefore, it is extremely necessary to use random 

variables to more realistically describe the uncertain characteristics that exist in eigenvalue 

problems in engineering (Huang and Li 2007). 

Due to the randomness of the input parameters, such as the modulus of elasticity, of a 

physical problem, the desired output or eigenvalues will also be random.  The methods for 

computing these random outputs are generally composed of two categories.  The first category 

includes simulation-based methods.  Direct Monte-Carlo simulation (DMC) is the most 

important and fundamental simulation-based method (Székely and Schuëller 2001, Shinozuka 

and Astill 1972), but it requires considerable computational effort, especially for large systems.  

The second category for random analysis, stochastic finite element methods (SFEM) (Schuëller 

1997), primarily involves expansion-based methods.  In this category, the main focus is 

perturbation methods (Kleiber and Hien 1992, Kamiński 2015) and spectral methods (Ghanem 

and Spanos 1991).  Collins and Thompson (1969) presented a first-order perturbation method for 
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dynamic analysis of structures with parameter uncertainties.  The popularity of this method can 

be primarily attributed to its ease of implementation and computational efficiency.  However, 

the low-order perturbation method only gives reasonable results for statistical moments when the 

coefficients of variation of the random system parameters are small.  Second-order or even high-

order perturbation methods are instead chosen, and they improve this situation to allow a wider 

fluctuation range of random parameter (Kamiński 2015).  In the case of the spectral method, the 

random eigenvalues and eigenvectors are approximated by projecting them on an orthogonal 

polynomial basis.  For instance, the method proposed by Ghosh and Ghanem (2004) rewrites the 

eigenvalue problem as a set of non-linear equations, which is solved using the Newton–Raphson 

algorithm.  The advantage of the spectral method over the perturbation method is that the 

accuracy using a given order of basis function is considerably better.  Although the 

computational effort of the spectral method is more expensive than that of the perturbation 

method, it is, in general, considerably less expensive than the simulation-based methods.  

Moreover, one method that hybridizes perturbation and PC expansion approaches is proposed 

and aims to improve the efficiency of PC algorithms for random eigenvalue problems by using 

results from the perturbation method and a size reduction of the solved equations (Pascual and 

Adhikari 2012). 

Apart from the above two categories of stochastic methods, other methods involving 

random eigenvalue problems are provided in the literature.  One of them is the dimensional 

decomposition method, which allows lower-variate approximations of eigenvalues and lower-

dimensional numerical integration for statistical moments (Rahman 2006).  Another one among 

them is stochastic reduced basis approximation.  It suggests that formulations that use a global 

set of stochastic basis vectors to simultaneously approximate all of the desired eigenvalues and 

eigenvectors may lead to more accurate results (Nair and Keane 2003).  In summary, the current 

studies attempt to find an approach that is sufficiently efficient and accurate to address the 

eigenvalue problems of large systems with large fluctuations of random parameters with 

Gaussian and/or Non-Gaussian distributions.  Based on this starting point, a new approach is 

presented in this paper for solving the eigenvalue problem of the structure with random 

parameters on the basis of the homotopy analysis method (Liao and Sherif 2004).  In this 

approach, an infinite multivariate series of the involved random variables is proposed to express 

the random eigenvalue or even the random eigenvector.  The coefficients of the multivariate 

series are determined by means of the homotopy analysis method.  The proposed method is 

independent of random parameters with small fluctuations through a suitable choice of the 

auxiliary parameter.  However, in practice, the single-and double-variable approximations are 

employed to simplify the calculation.  A numerical example indicates that by selecting an 

optimal auxiliary parameter, the suggested approximations can produce very accurate results of 

eigenpairs even for closely spaced eigenvalues system. 

 

2 Homotopy approximate of a random eigenvalue 

2.1 Homotopy construction of random eigenvalue equations 

The eigenvalue problem of undamped or proportionally damped deterministic systems can be 

expressed by Eq. (1), which is referred to as the eigenvalue algebraic equation. 

0- =KU MUl                                                                (1) 

where l   and  U  are the eigenvalue and corresponding eigenvector of the dynamic system.   K  

and  M  are the stiffness and mass matrices, respectively. 
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If the random field of the modulus of elasticity is defined as the Karhunen-Loève expansion 

or composed of some independent random variables, the stiffness matrix of the structure with 

random parameters can be written as 

0
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where 0K   is the deterministic matrix with respect to deterministic mean parameters.  K i   is an  

´N N -dimensional matrix.   ξ = 1 2{ , , }, }nx x x   are the independent random variables.  As a 

result, the eigenvalue and eigenvector are functions of these random variables. 

Now, by using the basic conception of HAM, the zero-order deformation equation of the 

random eigenvalue, is constructed as 
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where [0,1]Îp   and 0¹h .  0K , 0Μ , 0l  and 0U  are the mean of stiffness, mass, eigenvalues 

and eigenvectors, respectively.  Let (1) ( , , )ξW h p  and (2) ( , , )W ξ h p  denote the homotopy 

constructions of the eigenvalue and the eigenvector, respectively, which are the functions of the 

random variables ix , the auxiliary parameter h and the embedding parameter p. 

Therefore, as the embedding parameter p increases from 0 to 1,  (1) ( , , )ξW h p  varies from the 

initial approximation 0l  to the solution ( , )ξ hl  of the original Eq. (1), and correspondingly,  

(2) ( , , )W ξ h p  changes from the initial approximation 0U  to the solution ( , )U ξ h . 

Take partial derivative of the zero-order deformation of Eq. (3) m times with respect to p so 

the mth-order deformation equations of Eq. (1) can be attained.  In this way, by utilizing the 

Taylor theorem, the final expression of (1) ( , , )ξW h p  can be an infinite multivariate Maclaurin 

series, as shown in Eq. (4). 
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where 
[ ]

(1) ( , , )ξmW h p  denotes the mth-order partial derivative of (1) ( , , )ξW h p  with respect to p, 

while p equals zero.  Then, letting 1=p  will produce the infinite series solution of the 

eigenvalue ( , )ξ hl  in the original Eq. (1), and the series solution can be expressed as 
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where ·l  are the deterministic eigenvalue coefficients and , ( )Fm k h  (k=1,.., m) are presented in 

reference (Huang, Zhang and Phoon 2018). 

 

2.2 Two approximations of the infinite multivariate series 

To improve the calculation efficiency, two approximations of the infinite multivariate series are 

proposed as follows 
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which are named as HSFEM-1 and HSFEM-2, respectively. 

 

3 Example  

This example involves the calculation of closely spaced eigenvalues of a fixed rectangular plate, 

as shown in Figure 1.  For the plate, the width l1=3 m, the length l2=3.01 m, the thickness t=0.1 

m and the Poisson’s ratio v=0.3.  The plate is divided into three parts, in accordance with the 

difference of the elastic modulus.  Figure 1 shows that there are three elastic moduli, e1, e2 and 

e3.  It is assumed that the three values of elastic moduli are independent random variables with 

Beta distributions.  Their means are 10×105 kN/m4, 4×105 kN/m4 and 5×105 kN/m4, respectively, 

and their coefficients of variation are 0.25, 0.25 and 0.3, respectively.  The finite element mesh 

of the plate contains 144 4-noded thin plate elements and 169 nodes.  Each node has 3 DOF, 

including one deflection and two rotations.  The first three eigenvalues of the mean system are 

63.86 (rad/s)2, 230.03 (rad/s)2 and 231.81 (rad/s)2, respectively.  The second and third are closely 

spaced eigenvalues.  The random eigenvalues and eigenvectors of the plate are calculated by 

HSFEM-1, HSFEM-2 and the direct Monte Carlo simulation.  Considering that the eigenvectors 

are highly sensitive to the closely spaced eigenvalues, for the second eigenvalue and 

eigenvector, the zero-order coefficients of the two approximations are calculated by Haichang 

Hu’s method (Hu 1987).  Then, the higher order coefficients of the two approximations are 

determined by the proposed method.  The direct Monte Carlo simulation used 10,000 samples.  

Figures 2 are the probability density functions of the second eigenvalues.  It is observed from 

Figures 2 that compared with HSFEM-1, HSFEM-2 yields significantly improved results that 

are in close agreement with those generated by the direct Monte Carlo simulation. 
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Figure 1. A fixed rectangular plate with random elastic moduli 

 

Figures 3~4 show the means and standard variances of the modal shape of the second mode.  

The modal shape only considers the deflection of each node, and all the sample modal shapes 

calculated by the direct Monte Carlo simulation, are normalized.  Figures 3 show that for the 

means of the modal shape of the second mode, the results of HSFEM-1, HSFEM-2 and the 

direct Monte Carlo simulation agree with each other very well.  Alternately, Figures 4 indicates 

that compared with DMC, the standard variances of the modal shape of HSFEM-2 improve on 

those of HSFEM-1 and that the accuracy of their results is very good. 
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Figure 2. The PDFs of the second eigenvalue 
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(a)                                         (b) 

Figure 3. The mean of the modal shape of the second mode: (a) Curve of the mean modal shape; (b) 

Profiles at x=3, 6 and 9 
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Figure 4. The standard variance of the modal shape of the second mode: (a) Curve of the mean modal 

shape; (b) Profiles at x=3, 6 and 9 

 

4 Conclusion 

A new approach, the homotopy stochastic finite element method, is established to compute the 

eigenvalues of a structure with random parameters on the basis of the homotopy analysis 

method.  In this method, the random eigenvalues are expressed as an infinite multivariate series 

with respect to the involved random variables.  Further, two approximations are proposed to 

simplify the calculation.  Numerical studies indicated that the suggested approximations can 

produce very accurate results compared with the direct Monte Carlo simulation.  In addition, the 

proposed methods are suitable for solving the closely spaced eigenvalue problem.  Therefore, 

the proposed approach is a very good alternative method for solving random eigenvalue 

problems. 
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