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It is a challenged task to examine the spatial variation of soil with sparse measured data. In this 

study, the general regression neural network (GRNN) method was presented to predict the 3D 

geologic soil profile of a region based on the data of seven boreholes. A probability vector was 

introduced to represent the soil type at the associated location. By ensuring the difference 

between the predicted soil type and the measured one less than 1% at these measured boreholes, 

the smoothing parameter σ in the GRNN method was determined. With the selected smoothing 

parameter, the regression model was developed using the borehole data and a 3D geologic 

model was established to present the spatial distribution of soil type. It indicates that the GRNN 

method can realize a simple and intuitive geologic modeling using only the spatial coordinates. 

Keywords: general regression neural network, vector variable of probability, parameter 

optimization, 3D geologic modeling. 

 

1 Introduction 

In geotechnical engineering, the heterogeneity and spatial variability of soil properties usually 

cause geological uncertainty, which makes a great effect on the performance of geotechnical 

constructions (e.g., slope, subgrade, and foundation excavation). The spatial variation of soil has 

attracted many researchers’ attention (Tang et al. 1989; Li et al. 2004; Qi et al. 2016). One 

reason is that it is very important to determine the soil distribution of a certain zone before 

analyzing the geological uncertainty. The other one is that the understanding of the spatial 

distribution of soil variability is vital to soil management and environmental research (Kite and 

Kauwen 1992). Li et al. (2004) carried out a two-dimensional simulation of spatial distribution 

of soil types using the coupled Markov chain model. Qi et al. (2016) investigated the soil 

distribution characteristics of the cross sections of a selected area using a proposed practical 

method based on two-dimensional coupled Markov chain and pointed out that the predicted soil 

distribution is related to the sampling interval. 

In contrast to the two-dimensional modeling of soil distribution, 3D geologic modeling can 

specifically and entirely reflect the spatial distribution of soil properties. However, the sparse 

survey data at some regions make it difficult to develop a 3D geologic model. Among the 

existing prediction methods, the neural network technique is widely used to solve complex 

nonlinear problems (Hubick, 1992). Especially, as a one-pass learning algorithm with a highly 

parallel structure (Specht 1991), the general regression neural network (GRNN) method has 

been applied to deal with some issues related to regression, prediction and classification in 

geotechnical engineering due to its several advantages, such as high accuracy, no requirement of 

backpropagation, and handling noises in inputs. Additionally, GRNN method can respond much 

279



280 6th International Symposium on Reliability Engineering and Risk Management (6ISRERM)

 
better to many types of problems (Salem and Zahaby 2010). Pradeep et al. (2006) built the 

GRNN model using CPT data to predict the soil composition and determine soil type. The 

feasibility of using GRNN method was validated to estimate the soil type. 

In this study, based on the data of seven boreholes in a region, a regression model was 

developed using the GRNN method to describe the relationship between the soil type and the 

three-dimensional coordinate at the associated point. The soil types at unknown zone in this 

region were predicted using the obtained regression model. Finally, a 3D geologic model was 

developed based on the predicted results to reveal the spatial distribution of soil type in the 

selected region. 

 

2 Working Principle of GRNN 

As one type of memory-based network, GRNN is a one-pass learning algorithm with a highly 

parallel structure, and it only needs a fraction of training data. GRNN involves with Gaussian 

functions, which enables it to have high accuracy. Each training sample, Xi, is used as the mean 

of a Gaussian distribution. The estimated ˆ( )Y X  can be visualized as a weighted average of all 

of the observed values, Yi, where each observed value is weighted exponentially according to its 

Euclidean distance from X (Specht 1991): 
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where 2 ( ) ( )T

i i iD X X X X= - - . Y and ˆ( )Y X  can be vector variables or scalars. σ is the 

standard deviation or the smoothing parameter as shown in Specht (1991). 

 

3 Probability Combined with GRNN Model 

In this study, the input variable, X, represents a series of three-dimensional coordinates at the 

boreholes, i.e., [(x1, y1, z1), (x2, y2, z2), …, (xn, yn, zn)], where n is the number of these 

coordinates. Y is denoted as the soil type with respect to the corresponding coordinate at the 

boreholes. Because three types of soils (sand, silt, and clay) were observed at these boreholes, 

each component of Y is written into a 1x3 vector, Yi = [Yi1 Yi2 Yi3], to consider the possibility of 

each of these soil types, where i = 1, 2, …, n. Herein, each element of Yi is denoted as Yim (m = 1, 

2, 3). The value of Yim means the probability of a certain soil type. For example, Yi = [0.6, 0.2, 

0.2] means that the probabilities of soil type at the corresponding location for sand, silt, and clay 

are 0.6, 0.2, and 0.2, respectively. The predicted soil type, ˆ
iY , after using GRNN method can be 

written as follows: 

 [ ]1 2 3 1 2 3
ˆ ˆ ˆ ˆGRNN

i i i i i i i iY Y Y Y Y Y Y Yé ù= ¾¾¾® = ë û   (2) 

It should be noted that the summation of three components for an arbitrary Yi is equal to 1. 

The summation of that for ˆ
iY  after using GRNN method is shown below: 
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where ( )2exp / 2i iw D s= - . It means that GRNN method does not change the summation of the 

probabilities for the three soil types. In this study, the maximum probability in the updated ˆ
iY  

determines the soil type. For instance, Yi = [0.7, 0.1, 0.2] means that the soil type should be sand. 

For convenience in the following interpretation, this maximum probability is defined as decision 

probability. 

 

4 3D Geologic Modeling 

4.1    Borehole Data 

The borehole data adopted in the following case study comes from Australian Geomechanics 

Society and the Institution of Engineers, Australia (Qi et al. 2016). Seven boreholes are scattered 

within a 72 m × 40 m area, as shown in Figure 1(a). The boreholes from left to right (boreholes 

with original number of D15, D16, D14, D74, D73, D18, and D17) were re-labeled as borehole 

1, 2, 3, 4, 5, 6, and 7 respectively. Figure 1(b) demonstrates the stratigraphy of the boreholes by 

projecting these boreholes on the x-z plane. And three types of soils, i.e., sand, silt, and clay 

were observed at this region. In this study, the coordinates of the sampling points were 

developed by dividing a continuous borehole data into a series of discrete points. To balance the 

accuracy and the computational efficiency, the depth interval for these boreholes was selected as 

0.4 m. The coordinate values were normalized using their mean and standard deviation in each 

direction for diminishing the variance of the coordinate value among the three different 

directions. 

 

 
Figure 1. The relative location and stratigraphy of the boreholes in Perth city, Australia 

 

4.2    Determining smoothing parameter σ 

According to the GRNN method, a larger smoothing parameter results in a smoother regression 

surface while a smaller smoothing parameter produces a better fitness to the sampling points. It 

is expected that the predictions at these boreholes have no much difference from the measured 

data as well as a smoother regression surface. Hence, the smoothing parameter was examined 

starting from a relatively small value. Then, it expanded gradually until the difference between 

the predicted soil type and the measured one is less than 1%. It was determined that σ is 0.11. 

Based on the optimal value of σ, the predicted soil types at the boreholes are presented in 

Figure 2 using GRNN model. In this prediction, the soil types of the target borehole were set as 

testing data while that of the other six boreholes were set as training data. The differences 
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between the predicted soil types and the measured ones at borehole 1, 2, 3, 4, 5, 6, 7 are 15.6%, 

23.5%, 30.8%, 26.2%, 29.4%, 20.6%, and 4.4%, respectively. The average of these differences is 

21.5%. The testing reveals that the GRNN method can get an acceptable prediction based on the  

existing data. It should be noted that more boreholes need to be drilled around the borehole 3 and 

5 because of the great spational variation of soil. In the present study, only 7 borehole data are 

available. It can present the soil type distribution roughly with some degree of accuracy. The 

balance between the accuracy and the cost (borehole numbers) should be considered in real 

practice. 

 
Figure 2. Predicted soil types at different borehole locations 

 

4.3    3D Geologic Model 

Based on the determined smoothing parameter, σ, a regression model was generated using 

GRNN method associated with the data of seven boreholes. The three-dimensional coordinates 

of the whole region were obtained through meshing the domain in x direction of (0~70) m, in y 

direction of (-25~15) m, and in z direction of (-20~15) m with the meshing interval of 0.4 m. 

The soil type at the corresponding location can be obtained using the trained regression model 

based on the definition of decision probability. After that, a 3D stratification was presented 

based on the predicted soil types at different locations as shown in Figure 3. This prediction can 

reveal the spatial distribution of the three soil types based on the information of these seven 

boreholes. However, due to the uniform smoothing parameter adopted in all the three 

dimensions, the sudden transition at the boundaries between different soil types occurs as shown 

in Figure 3. 
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Figure 3. Geologic model: (a) 3D view; (b) x-z plane with y = -15 m; (c) x-z plane with y = -10 m; (d) 

x-z plane with x  = 40 m 

 

5 Conclusions 

In this study, the GRNN method was adopted to predict the 3D stratification of a region. The 

three-dimensional coordinates at different locations were designed as the inputs while the 

probability vectors with respect to the soil types were taken as the outputs. The smoothing 

parameter σ in GRNN method was determined as 0.11 based on the meshing interval of 0.4 m. 

The GRNN method was verified to be reasonable to predict the spatial distribution of soil type. 

A regression model was developed using the measured seven borehole data at the region. Then, 

the soil types at the region were predicted using the proposed regression model. Finally, a 3D 

geologic model was built to reflect the overall soil distribution of the region. The prediction can 

present the spatial variation of soil at this region. 
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