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This paper presents a method to assess the reliability of excavations in spatially variable soil by 

using sensitivity index known as the Sobol’ index, which is extended to consider spatially 

correlated random variables.  The Sobol’ index can be interpreted as the variance reduction of 

model responses, and can be used to identify the most influential zones in subsurface soil to the 

response variability.  The spatially variable subsurface domain is simulated by random field 

models with cross-correlated soil shear strength and stiffness parameters.  Latin hypercube 

sampling (LHS) is adopted to generate the random fields, and coupled with sparse polynomial 

chaos expansion (SPCE) to obtain the probability density function of model responses, such as 

the maximum wall deflection and bending moments.  The Sobol’ index across the soil domain 

can then be evaluated with the most influential zone defined by the one with the largest index 

value.  The approach also allows efficient evaluation of the mean and variance of system 

responses conditioned to the sample values at any location of the domain, and can aid the 

decision-making process for geotechnical investigation and risk assessment of excavation 

projects. 
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1    Introduction 

Geotechnical variability is a main source of uncertainty in many civil engineering projects, and 

its influence to the reliability and risk management should be carefully assessed.  The 

uncertainty in the geotechnical process may be classified into three categories: inherent 

uncertainty such as spatial variability of soil properties, statistical uncertainty and transformation 

uncertainty.  The random field theory is often adopted to investigate the influence of spatial 

variability, where the variance of soil properties at different locations is described by spatial 

correlation functions.  For example, Jiang et al. (2015) investigated the influence of five 

different types of autocorrelation functions on the reliability index of slopes with spatially 

variable soils.  On the basis of random field theory, random finite element method or random 

finite difference method can be applied to explore the effects of spatial variability of soil 

properties on the response of geotechnical structure (e.g. Fenton and Griffiths 2009; Cho and 

Park 2010; Sert et al. 2015). 
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Considering the variability of soil properties, the Monte Carlo simulation technique may be 

applied with random finite element/finite difference methods in probabilistic analysis, in order to 

obtain the probability density function of geotechnical responses.  However, the process can be 

time-consuming as it requires the geotechnical analysis of many realizations, using finite 

element analysis or finite difference analysis methods, and the robustness of raw Monte Carlo 

simulations is not guaranteed (Lo and Leung 2017).  To circumvent this problem, Blatman and 

Sudret (2010) proposed the sparse polynomial chaos expansion (SPCE), which is an extension of 

polynomial chaos expansion (PCE), to serve as a surrogate model to represent the system 

responses through an analytical equation.  This helps to reduce the number of finite 

element/finite difference simulations, thereby reducing the computational demands of the 

probabilistic analyses. 

The SPCE technique may be applied to conditional random field modeling, in order to 

evaluate the influence of sample information to the overall uncertainty of the system response.  

Alternatively, Lo and Leung (2018) incorporated SPCE into global sensitivity analysis by the 

Sobol’ index (Sobol’ 2001), in order to quantify the influence of sample values at various 

potential sampling locations.  This was shown to be efficient in determining the optimal 

sampling points for different types of geotechnical problems, as there is no need to repeat 

multiple scenarios of conditional random field analyses. 

To further demonstrate the capabilities of this methodology, this paper presents the 

probabilistic analysis of the response of a cantilever retaining wall during excavation.  The 

internal friction angle and Young’s modulus of the soil are simulated as random fields with 

cross-correlated spatial structure.  The probability density function of the system response, 

including the maximum deflection and bending moment, is obtained from the SPCE metamodel.  

The Sobol’ index analysis also quantifies the importance of sampling at various locations in the 

subsurface domain, and the influence to the response of the retaining wall. 

 

2    Random Field Simulation 

In general, the variations of soil properties in the subsurface domain may not follow Gaussian 

distribution.  Yet, a correlated Gaussian random field may be first generated, and then 

transformed into a non-Gaussian random field.  In this study, log-normally distributed random 

fields of soil properties are simulated, with spatial autocorrelation represented by the squared 

exponential function: 

 (1) 

where  and  are the separation distances, and  and  are the autocorrelation distances in 

 and  directions.  In the probabilistic analysis, the random fields are represented by vectors of 

random variables ( ):  

 (2) 

where , with  and  representing 

the mean and standard deviation of Gaussian random variables and log-normal random 

variables, respectively; the subscript  may represent the Young’s modulus ( ) or friction angle 

( );  is the independent standard Gaussian sample matrix; is the matrix that consists of 

columns of eigenvectors; is the diagonal matrix with eigenvalue sorted in decreasing order;  

represents the cross-correlation matrix.  The matrices of eigenvector, , and eigenvalue, , are 

obtained by spectral decomposition of the matrix , consisting of  components in Eq. (1).   
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3    Sensitivity Analysis by Sobol’ Sensitivity Index 

The Sobol’ index was proposed by Sobol’ (2001) to quantify the influence of various parameters 

to a physical model.  For example, in geotechnical engineering, Al-Bittar and Soubra (2013) 

utilized the Sobol’ index to study the most influential soil parameters for footing displacements.  

It should be noted that the original Sobol’ index was developed to assess the contributions of 

independent random variables to system responses, without consideration of correlations 

between the parameters.  

The focus of this study is on the influence of spatially correlated soil properties.  To this 

end, Lo and Leung (2018) incorporated the Sobol’ index into the implementation of SPCE, with 

consideration of spatially-correlated random variables: 

 (3) 

where  represents the residual of random variable  ,  is the system response which may be 

represented by PCE.  Therefore,  represents the expectation of system response 

conditioned on a fixed value . The detailed derivations of the extended Sobol’ index evaluation 

can be found in Lo and Leung (2018), and the computation of Sobol’ index mainly involves 

post-processing the results from unconditional random field models.  Once the Sobol’ index is 

computed at each soil location in the subsurface domain, a Sobol’ index ‘contour’ can be 

generated to graphically represent the importance of each potential sampling location.  In 

addition, if a sample is retrieved at the location, the information it provides will help reduce the 

uncertainty in system response.  This can be represented as the reduction of COV for the 

conditional system response: 

 (4) 

Moreover, the mean conditional response could be obtained based on the retrieved sample value: 

 (5) 

and the coefficients , and  can be derived from the SPCE following the procedures 

described in Lo and Leung (2018). Eqs. (4) and (5) together provide an efficient assessment on 

conditional reliability, without resorting to extra conditional random field analyses. It is also 

possible to evaluate the ‘reliability index’ using the mean and standard deviation of the response. 

 

4    Illustrative Example: Cantilever Retaining Wall  

The case of a cantilever retaining wall in spatially variable soil during excavation is presented 

here to illustrate the abovementioned methodology.  The internal friction angle and Young’s 

modulus of the soil are treated as perfectly correlated random fields in the reliability analyses.  

The mean value and COV for internal friction angle and Young’s modulus are , 60MPa 

(mean value) and 0.2, 0.15 (COV) respectively.  Only isotropic spatial correlation is considered 

in this paper, which means the autocorrelation distances ( ) are the same in all 

directions.  Two separate cases are analyzed, with  10 m and 20 m, respectively.  The cross-

correlation parameter between the friction angle and Young’s modulus is 1.   

In this study, the finite difference code, FLAC, is used to conduct the geotechnical analyses. 

Considering the symmetry in the excavation, only half of the excavation is modelled.  The 
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height of the cantilever retaining wall is 10 m, with the lower 5 m embedded in the soil to 

provide passive pressure for the wall.  The soil is modelled as linear elastic-perfectly plastic 

(Mohr-Coulomb) material, while the cantilever wall is modelled as linear-elastic material, with 

Young’s modulus of 30 GPa and thickness of 0.6 m, and the interaction of soil-wall is simulated 

by interface elements.  While the Young’s modulus and friction angle of the soil are modelled as 

random fields, the other soil parameters are assigned as constants.  These include cohesion (1 

kPa), Poisson ratio (0.2) and soil density (1900 ).  The number of elements in the 

numerical model is 1900, and further reductions on mesh size do not influence the analysis 

results.   

To construct SPCE for autocorrelation distances of 10 m and 20 m, the corresponding 

number of principal components (to preserve 95% total variance) are 29 and 10, and the total 

number of coefficients retained in the second order SPCE expression are 465 and 66, 

respectively.  To obtain these SPCE coefficients, 1000 realizations are generated.  Thereafter, 

the probability density functions (PDFs) of the maximum bending moment and maximum 

horizontal displacement of the retaining wall are computed through the SPCE. Figure 1 shows 

the PDFs in the two scenarios of unconditional random field models with different 

autocorrelation distances.  The curves in Figure 1 represent the responses obtained from SPCE, 

which generally match well with the histograms produced by the 1000 realizations.  Comparing 

Figure 1(a) with 1(b) and Figure 1(c) with 1(d), different autocorrelation distances entail very 

similar mean system responses, but the variances of system responses increase with the 

autocorrelation distance, in the cases of unconditional random fields, with no sampling 

information.  On the basis of Figure 1, the reliability index can also be calculated easily.  

Based on the SPCE, the Sobol’ index at all locations in the subsurface domain can be 

found. Figure 2 shows the Sobol’ index map considering the maximum horizontal displacement 

as system response , for the case when autocorrelation distances  m. The optimal 

sampling location is 14 m in depth and 1 m away from cantilever retaining wall, with the 

maximum Sobol’ index equal to 0.8.  This corresponds to percentage COV reduction of around 

55%.  For  m, the pattern of Sobol’ index map is generally similar, where the maximum 

Sobol’ index is equal to 0.45, and corresponds to percentage COV reduction of around 25%.  

The reduction of variability of system response conditional on a given sample corresponding to 

the maximum Sobol’ index is more obvious for a larger . This phenomenon can be explained 

by the fact that for large autocorrelation distance, the soil parameters are more correlated with 

each other, which means the values of random variables do not change abruptly from one 

element to another.  Once a soil sample is obtained from a certain location, the uncertainty in the 

neighboring regions are greatly reduced, which facilitates the reduction of uncertainty of the 

system response. 

Conditional random fields are constructed to validate the Sobol’ index approach. 1000 

random fields were set up with internal friction angle and Young’s modulus at optimal sample 

location equal to  and 69MPa, which are  from the mean property value. The mean and 

standard deviation of maximum horizontal displacement from conditional random field analysis 

are 17.3mm and 0.9mm; while the mean and SD computed from Sobol’ index approach (Eqs. (4) 

and (5)) are 17.4mm and 1.1mm. Therefore Sobol’ index approach can estimate the conditional 

response quite accurately. Figure 3 compares the probability density obtained by conditional 

random field and Sobol’ index analyses. The two curves match well with each other.  

5    Conclusion 

An extended Sobol’ index approach, which considers the autocorrelation of soil properties, is 

presented to investigate the reliability of cantilever retaining walls in spatially variable soils.  
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The approach evaluates the relative significance of each sampling location to the variance of 

retaining wall response, based on which the corresponding COV reduction of the retaining wall 

response can be obtained.  Since the Sobol’ index is calculated using the analytical equation of 

SPCE, the sensitivity analysis for optimal sampling locations can be performed by post-

processing the unconditional random field analysis results, without additional efforts in the 

simulation of conditional random fields.  For the studied scenarios, the most influential sampling 

point is near the base of the retaining wall.  While this study focuses on perfectly-correlated 

Young’s modulus and friction angle, future studies will focus on other cross-correlation 

coefficients and how these affect the Sobol’ index and the optimal sampling locations. 

 

 

 
 

Figure 1. Maximum horizontal displacements and bending moments of retaining wall  

(left:  m; right:  m). 

 

 
Figure 2. Sobol’ index map for autocorrelation distance equal to 20 m 
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Figure 3. Probability density of maximum horizontal displacement under unconditional random field,  

conditional random field, and Sobol’ index approach 
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