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In this paper, based on stochastic perturbation technique, the deterministic isogeometric analysis 

(IGA) is extended to the stochastic framework, and the stochastic IGA method for random 

response analysis of structures is proposed. By representing random field with Karhunen- Loève 

expansion, stochastic IGA formulas are established. The first two moments of structural 

responses are formulated with stochastic perturbation method in the framework of IGA. Then, 

two numerical examples are demonstrated. The mean values and standard deviations of 

cantilever beam solved by using the stochastic IGA method are scrutinized by those by semi-

analytical method and Monte Carlo simulation (MCS). The second example, Mindlin plate, is 

considered under different loading cases, whose results by using the stochastic IGA method are 

verified by stochastic finite element method (SFEM) and MCS. All the results of stochastic IGA 

in two numerical examples are in great agreement with those of MCS, indicating that stochastic 

IGA based on perturbation theory can achieve accurately and efficiently the stochastic responses 

of structures. In addition, from the results of Mindlin plate it is seen that the coefficient of 

variation of the response is insensitive to the loading conditions. 

Keywords: Stochastic structural analysis, perturbation method, stochastic isogeometric analysis, 

random field, response moments. 

 

1 Introduction 

As is well known, there exist the various uncertainties of loads, geometric and material 

properties in realistic engineering systems. However, in traditional deterministic analysis, the 

uncertainty quantification and propagation of structures are not addressed. Therefore, the 

structures designed by traditional deterministic approaches may encounter the failure risk under 

uncertainty situation. To develop the computational methods for structural analysis and design 

considering random uncertainties, namely, the procedures of computational stochastic 

mechanics, becomes an important research topic (Oden et al. 2003). With extending the 

deterministic finite element method (FEM) to the stochastic framework, stochastic finite element 

method (SFEM) is proposed as a powerful tool to solve stochastic analysis problems of 

structures. Currently, SFEM has been extensively applied in a great variety of problems 

including solid, structural and fluid mechanics, acoustics and heat transfer (Stefanou 2009). Both 

static (Xia et al. 2014) and dynamic (Soize 2013) cases can be solved by this method. 

Classical FEM usually adopts the polynomial interpolation functions, representing the 

physical field, to simulate the geometric shape, which, undoubtedly, leads to the inaccurate 

representation of curved geometric shape. Besides, it is not easy to obtain high-order continuity 

between elements in FEM, which adds the difficulties in constructing the plate and shell 
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elements. To describe geometric and analytical models uniformly, and to seamlessly integrate 

CAD (Computer Aided Design) and CAE (Computer Aided Engineering), Hughes et al. (2005) 

proposed a novel numerical method, isogeometric analysis (IGA) based on spline theory. With 

some inherent advantages, IGA is considered as an alternative promising method for structural 

analysis. In the framework of IGA, the spline basis functions, describing the geometry exactly, 

are used as shape functions to represent the physical field simultaneously. Therefore, the 

geometry for structural analysis is exact. And the high-order continuity between elements is easy 

to be guaranteed by k-refinement. In addition, since there is no need to exchange data with the 

CAD system in the process of mesh refinement, adaptive analysis becomes easy to implement. 

IGA has been developed rapidly and employed successfully to address various physical and 

mathematical problems, for example, continuum mechanics, fluid dynamics, diffusion, and so on 

(Cottrell et al. 2009). 

Based on the theoretical and application significance of uncertainty quantification, and the 

advantages of IGA over FEM, this work attempts to extend the deterministic IGA to the 

stochastic framework, and propose the numerical method of stochastic IGA to contribute for the 

solution of stochastic problems in structural analysis. 

 

2 Representation of Random Field 

Considering the research scope of this paper, Gaussian assumption for random field is made in 

the following. Karhunen-Loève (K-L) expansion (Ghanem and Spanos 1991) used in the 

majority of literature is also adopted. By K-L expansion, the Gaussian random field ( ,  )H qx  

can be represented in the following form 

 
1

( , ) ( ) ( ) ( ) ( )i i i
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where x stands for the points in the random field domain and q  indicates the underlying random 

quantities; ( )m x  and ( )s x  denote the mean and standard deviation of the random field, 

respectively; ( ),  ( 1,  2, ..., )i i nx q =  is a set of independent standard normal variables; 
il  and 

( )ij x  signify the ith eigenvalue and eigenfunction of the autocovariance function, respectively, 

which can be obtained by solving the Fredholm integral equation of the second kind 

 Cov( , ) ( )d ( )i i iW
j lj¢ ¢ ¢ =ò x x x x x   (2) 

where Cov( , )¢x x  is the autocovariance function of points x  and ¢x  in the random field domain 

W . The autocovariance function, also referred to as kernel function, can be expressed in the 

form of Cov( , ) ( ) ( ) ( , )s s r¢ ¢ ¢=x x x x x x , in which ( , )r ¢x x  is known as the autocorrelation 

coefficient function. 

 

3 Isogeometric Analysis for Structure 

3.1     NURBS Basis Functions, NURBS Curves and Surfaces 

Underlying B-splines curves and surfaces, B-splines basis functions, for one dimension, are 

defined on knot vectors consist of a sequence of non-decreasing parameterized coordinates. For 

a knot vector { }1 2 1, ,..., n pX x x x + +=  , R,  1,2,..., 1i i n px Î = + + , is called the ith knot, and 
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[ ]1,i ix x +  is termed as a knot span. Also, p denotes the order of polynomial basis functions, while 

n signifies the number of basis functions constituting relevant B-splines curves. 

Given a knot vector, the B-splines basis functions can be obtained by the Cox-de Boor 

recursion formula 
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with i =1, …, n + p + 1. It should be pointed out that the basis functions are 
ip r-  times 

continuous differentiable at a knot 
ix  with 

ir  multiplicity. 

By adding different weights 
iw  to every B-splines basis function , ( )i pN x , NURBS 

(nonuniform rational B-spline) basis functions are defined as 
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Then, a NURBS curve is described as 

 
1

( )
n p
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where R ( 1,2,..., )d

i i nÎ =B  represent the control points related to the basis functions p

iR . 

Through the tensor product of two coordinate directions x  and h , NURBS surfaces can be 

obtained. 

 

3.2    Isogeometric Analysis Based on NURBS 

In the framework of IGA, the NURBS basis functions describing the geometry exactly are used 

as shape functions to represent the physical field simultaneously. Namely, the geometric shape 

and the discretization of the field value adopt the same NURBS basis functions 

 
1 1
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where ( )IR x  is NURBS basis function, and Iu  denotes the vector of unknown displacements of 

the control point IB . 

 

4 Stochastic Isogeometric Analysis 

4.1    Stochastic Equilibrium Equation 
For linear elastic continuum, the static stochastic equilibrium equation can be written as 

 ( ) ( )q q =K U F   (8) 
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where ( )qK , ( )qU , and F indicate the global stiffness matrix, the global displacement vector 

and the load vector, respectively. ( )qK  is obtained by assembling the element stiffness matrices 

e

e WÎ

=åK K . And the element stiffness matrix is calculated through 

 T T

0( ) d ( , ) d
e e

e e eH
W W

q W q W= =ò òK B D B x B D B   (9) 

where B means the strain-displacement matrix, and ( )qD  indicates the random elastic matrix. 

However,  
0D  is the elastic constant matrix computed by setting Young’s modulus to be 1 unit. 

 

4.2    Perturbation Based Stochastic Isogeometric Analysis 
In this work, the stochastic perturbation method (Kleiber and Hien 1992), usually based on the 

Taylor series expansion, is employed to calculate the statistical moments of the structural 

responses. The first order Taylor series expansions of ( )qK  and ( )qU  with respect to their 

means are given as 
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where K  and U  denote the mean values of the stiffness matrix and displacement vector, 

respectively. 

Substituting Eq.(10) into stochastic equilibrium equation (8), and comparing the coefficients 

of 
ix  on both sides, the following relations can be easily obtained 
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Finally, 
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are acquired as the mean vector and covariance matrix of the displacement vector ( )qU . 

 

5 Numerical Examples of Stochastic IGA 

5.1    Cantilever Beam 
As shown in Fig.1, a two-dimensional cantilever beam with dimensions L = 10 units and D = 2 

units is considered (Long et al. 2016). The left edge is fixed and the right edge is subjected to a 

shear load p = 150 units. The Young’s modulus E of the beam is modeled as Gaussian random 

field with the mean μ = 3e7 units and the standard variance σ = 3e6 units. Poisson’s ratio υ is 

equal to 0.25. The plane stress condition is assumed. The autocovariance function is assumed to 

be the exponential type. The correlation length along the x and y directions are set to be 7 units 

and 1 unit, respectively. 
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Figure 1.  Cantilever beam 

 

The first two orders of statistical moments, i.e., mean value and standard deviation, of the 

displacements at node C are calculated utilizing the semi-analytical method and stochastic IGA 

method proposed herein. Compared to MCS, as the semi-analytical method deals with structural 

random field analytically, it is believed that its solution is more accurate. The associated results 

are listed in Table 1, and it is observed that the stochastic IGA method has close agreement with 

the semi-analytical method, with the maximum error 0.05%, demonstrating that the stochastic 

IGA method is of high accuracy to deal with stochastic structural analysis. Also, the errors 

between stochastic IGA method and MCS are no more than 1.96%, which verifies the 

effectiveness of stochastic IGA method. 

 
Table 1.  The first two orders of statistical moments of the displacements at node C 

 

 Semi-analytical 

solution 
SIGA 

Error (SIGA relative 

to semi-analytical) 

MCS (Long 

et al. 2016) 

Error (SIGA 

relative to MCS) 

x
m   -7.4554e-4 -7.4554e-4 0 -7.4787e-4 -0.31% 

y
m   -5.0533e-3 -5.0533e-3 0 -5.1054e-3 -1.02% 

x
s   4.7715e-5 4.7692e-5 -0.05% 4.8224e-5 -1.10% 

y
s   3.1292e-4 3.1302e-4 0.03% 3.1927e-4 -1.96% 

 

5.2    Mindlin Plate 

A Mindlin plate simply-supported on four edges, with dimensions 10 ´ 10 units, is considered 

here. Its thickness is 0.1 unit and Poisson ratio equals 0.3. The elastic modulus is modeled as 

Gaussian random field with the mean μ = 1.092e6 units and the coefficient of variation V= 0.1. 

The correlation length along x is 5 units as same as along y.  

 
Table 2.  The coefficient of variation of the response under uniformly distributed force 

 
Coefficient of variation SFEM SIGA MCS 

WA 0.0606 0.0611 0.0614 

QxB -0.0618 -0.0611 -0.0628 

 
Table 3.  The coefficient of variation of the response under a concentrated force 

 
Coefficient of variation SFEM SIGA MCS 

WA 0.0641 0.0639 0.0646 

QxB -0.0615 -0.0609 -0.0619 

 

The coefficients of variation of the deflection at the central point A (x=5, y=5), and of the 

rotation at one boundary midpoint B (x=0, y=5), are selected to calculate under different loading 
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conditions. In the first case, the uniformly distributed force with magnitude of 10 is acted on the 

whole plate. The coefficients of variation of the responses in two degrees of freedom are listed 

in Table 2. When only a concentrated force of 10 units is applied at the central point, the 

corresponding results are given in Table 3. Under both cases, the results of stochastic IGA are 

all in great agreement with those of SFEM and MCS. Meanwhile, they are smaller than the 

coefficient of variation of elastic modulus, which is equal to 0.1. Comparing Table 2 with Table 

3, it is reasonable to argue that the loading conditions do not yield remarkable effect on 

coefficient of variation of the response. 
 

6 Conclusions 

This work proposes the stochastic isogeometric analysis method for random response analysis of 

structures, by extending the deterministic IGA to stochastic framework. Moreover, the stochastic 

IGA formulas for the first two moments of structural responses are established. Two numerical 

examples demonstrated that the results of stochastic IGA are in great agreement with those of 

MCS, and stochastic IGA based on perturbation theory can achieve accurately and efficiently the 

stochastic responses of structures. In addition, the coefficient of variation of the responses are 

smaller than that of elastic modulus. According to the results of Mindlin plate under different 

loading cases, it is reasonable to argue that the coefficient of variation of the responses is 

insensitive to loading conditions. Due to the theoretical and applicational significance of 

uncertainty quantification and the advantage of IGA over FEM, the stochastic IGA is an 

alternative promising method for addressing the stochastic analysis problems of engineering. 
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