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As exploration and production of hydrocarbon extend towards deep water reserves, mooring 

structures are increasingly exposed to harsher environments with greater uncertainties.   

Consequently, the interdependency among environmental loads is becoming an important 

consideration in design against mooring overload failures.  In place of assuming design 

environments, methods of estimating long-term extreme responses aim to rationally account for 

failure probabilities across all possible sea states.  However, successful industry implementation 

is impeded by its high computational demand.  First, ultra-low industry target failure rates 

necessitate colossal amounts of sampling.  Second, the incorporation of short-term stochastics in 

the long-term analysis requires integration of high dimensionality.  Relative to the classic Monte 

Carlo approach, subset simulation offers a practical and robust alternative as an unbiased method 

of probabilistic evaluation.  By dividing the reliability analysis into subsets of intermediate 

conditional probabilities, sampling requirements are greatly reduced for low probabilities whilst 

maintaining dimensional insensitivity as an integration technique.  This paper explores its 

implementation on mooring reliability analysis, with its methodology illustrated on a mooring 

structure simulated in a site located in the Gulf of Mexico. 
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1 Introduction 

As global energy demand increases, the demand for higher hydrocarbon extraction rates have up-

surged over the past decades, accelerating the depletion of accessible land and shallow water 

reserves.  Pushed by the imminence of diminishing supplies and pulled by an estimated abundance 

of uncovered resources, petroleum companies have become motivated toward explorations for 

future deep-water production fields.  However, despite their massive potential, the industry's 

experience is minimal and the exploitation of deep-water reserves faces many challenges. 

The structural integrity of moorings lines is an important design consideration of floating 

facilities.  Mooring failures suffer severe consequences, such as off-station drifting, damage of 

risers and subsea equipment, production shut-down, and costly repairs. Unfortunately, the high 

occurrences of mooring failures have affected operational safety, with historical failure rates an 

order of magnitude greater than the industry target.  Statistics suggest at least one mooring failure 

is to be expected for a unit deployed for a field life exceeding nine years.  As the required operating 
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envelope is being extended towards greater water depths, harsher environments, larger vessels to 

be moored, higher pressures and longer design lives, the number of uncertainties affecting 

mooring safety margins increases.  Reliability-based design offers a rational account for 

uncertainties, presenting probabilities of structural failure for decision-making through risk 

matrices.  

However, long lead times of sufficiently accurate dynamic analyses accumulates severe 

resource expenditure, rendering analyses at the low probability tail-end infeasible.  The codified 

approach accordingly implements a semi-probabilistic alternative, where extreme value analyses 

are performed on design environments with metocean parameters of independently prescribed 

return periods as recommended by DNV (2014), otherwise known as the design sea states 

approach.  Such practices not only fail to address the imperfect correlations of the environmental 

loads are not accounted for, but also incorrectly infers an n-year response from and n-year 

environmental event.  Collinearity of all environmental vectors are often aligned against the lay 

of the mooring line, resulting in the overestimation of severity that do not account for directional 

differences of loads. Consequently, these shortcomings accumulate errors, with no means of 

assuring conservatism. 

 

Long-term Extreme Response Analysis 

The difficulty in applying probabilistic assessment methodologies on mooring structures is multi-

fold.  First, physical complexities arise from floating systems of numerous degrees of freedom 

exposed to highly dynamic loading regimes, necessitating costly structural analyses.  In practice, 

the long-term time series of mooring responses are represented by a series of independent, 

stationary ergodic processes, over shorter discrete time intervals.  Each stationary condition, 

hereby referred to as sea states, are distinctly defined by a set of metocean parameters, namely 

wave, wind and current vector components.  In this time scale, responses are subject to short-term-

stochastics due to random wave excitations despite deterministic wave spectra.  Hence among 

independent runs of the same metocean parameters, the structure is exposed to distinct surface 

elevation time histories due to random phase lags and amplitudes of wave packages.  Altogether, 

random variables of the analysis can be described by a high-dimensional vector X= [Xl Xs]=[Hs 

Tz W Θw V Θv A θ], where Xl is the long-term vector containing the metocean parameters of 

significant wave height Hs, zero-upcrossing period Tz, wind speed W, wind direction Θw, current 

speed V and current direction Θv, and Xs embodies the short-term vector of wave package 

amplitudes A and phase lags θ.  Evaluating a structure's extreme response requires calculating the 

probability of response exceedance across a given threshold, reducing to the expectation integral: 

 

               (1) 

  

Where x=[x1,...,xn] X n is a vector of uncertain variables with a joint probability density 

function (PDF) f, Iy is an indicator function of the X domain, equating to unity where the response 

is greater than threshold y and null otherwise.  The groundwork supporting this evaluation is the 

uncertainty modelling of the X domain, a distribution-fitting procedure against historical data to 

establish a joint probabilistic description f(x) of influencing variables.  Accordingly, structural 

response is iteratively evaluated across the variable space via the reliability algorithm for a 

probabilistic evaluation of the response.  

 

2 Environmental Uncertainty Modelling 

The joint environmental model in this work seeks to describe marginal distributions and partial 

correlations between various environmental variables, which would establish the groundwork 

towards assessing conservatism in traditional design methodologies.  An existing joint 
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environmental framework by Bitner-gregersen and Haver (1991) is referenced in this work.  

Measurement records, including significant wave height and period, wind speed and direction, 

and current profile, and available via the National Oceanic and Atmospheric Administration’s 

public domain.  Hereafter, the location id: 42041 would be applied as a geographical case study 

represented by the probabilistic environmental model. 

 

 
Figure 1.  Conditional description of environmental variates. 

 

The Conditional Modelling Approach (CMA) is applied to model the relationships between 

variable pairs (X, Y) via established idealizations of conditional distribution functions (FX|Y).  In 

addition to the CMA framework, wind and current directions are accounted for via established 

joint distributions of their vector components.  By establishing the parameters of the probabilistic 

idealizations through data-fitting, the probabilistic descriptions of random environmental variates 

can be conditionally defined via the process sequence in Figure 1. 

 

Significant Wave Height Distribution 

Notorious for its severe hurricane conditions, Kwan (2005) notes that operating experience in the 

GoM has indicated structural overloading to be the driving causality in mooring system failures.  

The gulf's unique severity of storms conventional Hs distribution-fitting techniques recommended 

by DNV (2014) unsuitable for providing adequate representation of the data in the low probability 

domain.  Instead, the 4-parameter distribution established by Ochi and Whalen (1980) is applied, 

with parameters selected via Least Squares. 

 

Zero Upcrossing Period Distribution 

The conditional density of Tz is established by DNV (2014) to observe a Log-normal distribution 

where the conditional mean and standard deviation of ln(Tz) observe empirical relationships 

against Hs.  Parameters and  are the mean 

and standard deviation of ln(Tz) at a given significant wave height, and sub-parameters aj and bj 

(j=0,1,2) are respectively obtained from regression power and exponential optimizations against 

historical data.  

The direct approach of obtaining conditional samples of Tz on Hs is to gather an array of zero-

upcrossing period t values in the scatter diagram corresponding to wave height h within an interval 

of [hi±Δh].  However, the larger the width, the noisier the conditional data while selecting a narrow 

width would yield insufficient conditional samples.  A Gaussian smoothing scheme applied by He 

and Low (2014) is hence adopted as rational treatment for conditional data, where a weighting 

function is implemented on each record of Tz to obtain conditional central moments. 
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Wind Speed Distribution 

The marginal wind speed probability density is described by Bitner-gregersen and Haver (1991) 

to observe a 2-parameter Weibull distribution.  Parameters  and  are 

distribution shape and scale parameters respectively, and sub-parameters cj (j=1,2,…,5) are 

obtained via the same weighted regression analysis applied for Tz, while simultaneously 

optimizing k and Uc against lth (l=1,2) raw distribution moments: 

 

                                                      (2) 

  

Where ψj is the weighting function.  The weighted conditional moments and parameters are 

hence evaluated across a range of Hs before performing Least Squares optimization of the sub-

parameters cj. 

 

Wind Direction Distribution 

The anisotropic Gaussian model proposed by Weber (1991) is modified to describe the joint 

distribution of the Cartesian wind velocity components.  Instead of aligning the component axes 

to the prevailing wind direction as proposed, the alignment of zero component correlation 

directions is applied to minimize correlation modelling errors.  The probabilistic relationship 

between wind direction and speed is obtained from polar transforming the Cartesian joint 

distribution. 

 

Current Direction Distribution 

Due to significant kurtosis of current Cartesian components, the shifted generalized lognormal 

distribution (SGLD) proposed by Low (2013) is applied in place of the Gaussian distribution.  

Similar to that of the wind vector, the fitted Cartesian distribution is polar transformed to establish 

probabilistic relationship between direction and speed. 

 

Current Speed Distribution 

The long-term distribution of the normalized current velocity V has been established by 

Ashkenazy and Gildor (2011) to observe a 2-parameter Weibull distribution, with the scale and 

shape parameters optimized via Maximum Likelihood Estimation.  

 

Current Profiling 

The Power Law description of the two-dimensional current profile applied in Orcaflex will be 

fitted from temporal mean speeds across depth bins: 

 

                                            (3) 

 

Where d=1316m is the water depth, z is the vertical distance from the still water level 

(negative downwards), the Exponent is the Power Law exponent, Sf and Sb are the current speeds 

at the surface and seabed respectively, optimized via Least Squares fitting.  Currents amplitude 

and directional distributions are assumed to be governed by the flow measured at Depth Bin 2, the 

vertical sector with the highest current speed, with the resulting two dimensional profile modelled 

as , such that  is the amplitude multiplier of the current profile 

function, or otherwise described as the normalized speed to the temporal mean at Depth Bin 2. 
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5 

3 Reliability Sampling 

Monte Carlo Simulation 

Monte Carlo Simulation (MCS) is a robust method of evaluating Eq. (1) by sampling the system's 

responses across the X domain.  Naturally, simulating infrequent events require larger sample 

sizes, with massive required numbers of iterations on coupled time domain simulations amounting 

to unrealistic computational costs.  Nonetheless, MCS is to provide a robust probabilistic 

evaluation of structural response across the 4 moorings down to moderate probability levels.  A 

pseudo-random scatter of N=10,000 sea states, across the long-term environmental description 

established in the environmental model, followed by coupled time-domain dynamic evaluation of 

line tensile responses.  The complementary cumulative distribution function of each mooring 

line’s response is presented in Figure 2, where tensile severity is greater in Lines 2 and 3. 

 

 
Figure 2.  Conditional description of environmental variates. 

 

Subset Simulation 

Subset simulation, presented by Au and Wang (2014), is an efficient reliability method of dividing 

burdensome low probability problems into simpler ones of intermediate conditional probabilities. 

The exceedance probability P of response Y across a threshold of high severity level can be 

evaluated as a product of conditional probabilities of exceedance across intermediate levels: 

 

                               (4) 

 

Where bm is the highest threshold to be evaluated at Level m, such that b1<b2<...<bm. All 

product terms are computed via a separate sets of Monte Carlo simulations, referred as a ‘subsets’.  

The first subset is executed via the conventional MCS where samples are pseudo-randomly drawn 

from the established joint-distribution across the probability space.  A convenient high probability 

P(Y>b1) of low estimation variance is selected while its corresponding response recorded as the 

first level threshold b1.  Subsequent subsets evaluate conditional probabilities of responses above 

the preceding level threshold bi-1.  Efficiency superiority over direct MCS becomes apparent as 

the evaluated probability declines exponentially while the number of evaluations increases only 

linearly.   
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In this experiment responses of return periods up to 1000 years are evaluated using 41,000 

coupled time-domain simulations.  The subset algorithm’s advantage of evaluating low target 

probabilities becomes apparent in the level specifications presented in Table 1.  From the ten 

subset levels the 10, 100 and 1000 year return period probabilities bear reasonable coefficients of 

variation of 11.1, 12.4 and 13.4% respectively.  The response CCDF (Figure 3) is evaluated at 

lower probabilities, with an ‘uplift’ of the tail-end is observed beyond the probability of 10-3 owing 

to the unique severity of GoM hurricanes.   

As a measure of maximizing sampled information, failure samples from the preceding level 

are included in the conditional sample set of the current subset.  In this work, at every level 

increment the marginal computational expenditure remains a constant of 4000 samples while the 

evaluated cumulative probabilities decay by a factor of 0.2.  Hence, the implementation of subset 

levels beyond the conventional Monte Carlo enables the component reliability analysis of a 

mooring line to access industrial target probabilities, addressing feasibility issues elaborated in 

Section 1. 

 
Figure 3.  Subset simulation CCDF of critical Line 3. 

 
Table 1.  Subset level results of critical Line 3. 

 

 
  



Xudong Qian, Sze Dai Pang, Ghim Ping Raymond Ong, Kok-Kwang Phoon (Eds.) 479

 
4 Conclusion 

With a growing shift from deterministic means to probabilistic approaches in offshore structural 

design, advanced techniques employed in this work grant access to probabilistic evaluations on 

black swan events of mooring loads, otherwise regarded computationally absurd by conventional 

means.  The environmental modelling methodology presented delivers a comprehensive long term 

description of the production site's characteristics, accounting for directional variability between 

surface and subsurface loads.  By representing joint behavior between metocean variates with a 

series of conditional distributions, the probabilistic space can be conveniently transformed into 

standard normal space, allowing the approach to be an ideal uncertainty model for a wide array of 

reliability algorithms.  One such application is subset simulation, where mooring overload 

reliability is assessed with low error margins, even at extremely low industrial target failure rates.  

With a means of unbiased probabilistic evaluation within reasonable lead times, the presented 

methodology is a suitable candidate for probabilistic verification against approximate reliability 

methods for long-term extreme response analysis, enabling disruptive strides towards offshore 

reliability research.  
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