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Abstract 

We investigate the evaluation of the failure probability considering the uncertainties of the 

distribution parameters of random variables. When these uncertainties are considered, the failure 

probability becomes a random variable that is referred to as the conditional failure probability. 

In the present paper, a point-estimate method based on univariate-dimension reduction 

integration is used to approximate the mean of the conditional failure probability. The 

simplicity, accuracy and efficiency of the proposed methodology for evaluating the failure 

probability considering the uncertainties of distribution parameters are numerically examined, 

where MCS is utilized for comparison. It is found that neglecting parameter uncertainties will 

lead to the failure probability being underestimated. Since the developed method can be realized 

only if the first few central moments of the basic random variables are known, it can be utilized 

even when the probability distributions of the basic random variables are unknown. 

Keywords: Structural reliability; Parameter uncertainties; Conditional failure probability; 

Point-estimate method. 

 

1 Introduction 

A fundamental problem in structural reliability theory is the computation of the multifold 

probability integral (Sinozuka 1983; Zhao and Ono 2001) 
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where Pf is the probability of structural failure. In Eq. (1), X = [X1, X2, …, Xn]
T (where T denotes 

matrix transposition) is an n-dimensional vector of random variables representing uncertain 

quantities such as loads, material properties, geometric dimensions, and boundary conditions. 

Furthermore, fX(x) is the joint probability density function (PDF) of X, G(X) is the limit state 

function or performance function, and G(X) ≤ 0 is the domain of integration, which denotes the 

failure region of the structure. 

One may regard Eq. (1) as a theoretical formulation of the structural reliability problem 

because the PDFs of the basic random variables (i.e., the components of X in Eq. (1)) are 

generally assumed to be known, and their distribution parameters in the PDFs are usually 
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assumed to be certain. However, in practical engineering, one is faced with the problem of 

imperfect states of knowledge about such distributions. For example, the distribution parameters 

of the basic random variables involved in loads, environmental actions including chloride, 

temperature, oxygen, carbonation, moisture, and structural resistance are estimated from 

statistical data of limited sample size, and these distribution parameters may change as the 

amount of corresponding statistical data increases. All this results in uncertainties in the 

distribution parameters, and parameter uncertainties associated with the basic random variables 

in X lead to uncertainty in the calculated failure probability and in the associated reliability 

index (Der Kiureghian 1989). 

In order to consider the uncertainties in the distribution parameters of a structural system, 

such as the mean and standard deviation of the basic random variables in X, the distribution 

parameters are treated as a random vector Q in the Bayesian approach, whereby fX(x) becomes a 

conditional distribution function fX,Q(x,q). Therefore, the conditional probability of failure 

becomes (Der Kiureghian 1989) 
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where G(X,Q) expresses the performance function, fX,Q(x,q) is the joint PDF of X and Q, and the 

conditional failure probability Pf(Q) is a function of the distribution parameters Q. Because the 

distribution parameters Q are uncertain, the conditional failure probability Pf(Q) is also uncertain.  

For vector X of the random variables in Eq. (2), whose joint PDF includes uncertain 

parameters Q, the overall probability of failure is then defined as the expectation of the 

conditional failure probability Pf(Q) over the outcome space of the uncertain parameters Q, 

which can be formulated as 
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In most cases, Eq. (3) cannot be solved because of the difficulty in determining the explicit 

expression of the performance function G(X,Q) and the joint PDF fX,Q(x,q). This is because 

Q represents the distribution parameters of X, but X is a function of Q. However, the conditional 

failure probability of the structural system for given distribution parameter values Q = q can be 

evaluated readily using state-of-the-art techniques such as the first- and second-order reliability 

methods, moment methods, and simulation methods (Ang and Tang 1984; Ditlevsen and Madsen 

1996; Zhao and Ono 2001). Therefore, the overall probability of failure incorporating the 

uncertainties of the distribution parameters can be formulated generally as 

 ( ) ( )F fP P f dQ= òq
Q q q                                (4) 

where P
f
(Q) is the conditional probability of failure for a given Q = q (which can be evaluated 

from state-of-the-art techniques), and fQ(q) is the joint PDF of Q. 

An advanced first-order second-moment method, which developed from the first-order 

reliability method by introducing an auxiliary variable, for solving Eq. (4) has been proposed by 

Zhao and Jiang (1992), in which the effect of distribution parameter uncertainties on the overall 

probability of failure was discussed. An efficient analysis procedure was proposed by Hong 

(1996) to evaluate the overall probability of failure by using the point-estimate method to 

discretize the uncertain distribution parameters; the overall probability of failure was then 

obtained by weighting the conditional probability of failure at each discrete point. Later, Der 

Kiureghian (2008) derived a simple approximate formula by using the first-order approximation 

method to compute the mean of the conditional reliability index. Ang and De Leon (2005) 

developed Monte Carlo simulation (MCS) to solve this problem. All the methods mentioned 
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above are assumed that the probability distributions of the basic random variables are known. 

However, due to the lack of statistical data, the probability distributions of some basic random 

variables are often unknown, and the probabilistic characteristics of these variables are often 

expressed using only statistical moments. 

In the present paper, a point-estimate method based on univariate-dimension reduction 

integration is used to approximate the mean of the conditional failure probability including the 

basic random variables with unknown probability distributions. The simplicity, accuracy and 

efficiency of the proposed methodology for evaluating the failure probability considering the 

uncertainties of distribution parameters are numerically examined, where MCS is utilized for 

comparison. 

 

2 Point-estimate method for evaluating the mean of the conditional failure probability 

We note that the right-hand side of Eq. (4) represents the mean of the conditional failure 

probability E[Pf(Q)]. Therefore, the overall probability of failure incorporating the uncertainties 

of the distribution parameters is essentially the problem of estimating the mean of the 

conditional failure probability P
f
(Q). Rewriting Eq. (4) in standard normal space, we obtain 

 1= [ ( )] [ ( )] ( )
u

u u uF f fP E P P T df-= òQ                       (5a) 

where f(u) denotes the PDF of each standard normal variable; and T-1(u) denotes the inverse 

normal transformation which can realized by using third-moment transformation (Zhao and Ono 

2000a; Zhao et al. 2006; Lu et al. 2017) as follows. 
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Eq. (5) gives the mean of the conditional failure probability P
f
(Q), which is a function of the 

random vector Q. In practice, the integral in Eq. (5) cannot be evaluated analytically because of 

its high dimensionality and the complicated integration required. To avoid this problem, we use 

the point-estimate method (Zhao and Ono 2000b) to solve Eq. (5), i.e., we evaluate the mean of 

P
f
(Q), which is one of the moments of function P

f
(Q). 

Using the standard point estimate, the mean of P
f
(Q) (i.e., PF) is estimated as 
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where n is the dimension of random vector Q, c is a distinct combination of n items from group 

[1, 2, …, m], m is the number of estimating points, ci is the ith item of c, uci is the cith estimating 

point, and Pci is the weight corresponding to uci ; and S is the sum of the calculations for each 

combination. 

Because all distinct combinations have to be considered, mn function calls are required to 

compute P
f
(Q). Therefore, the computations involved in Eq. (6) can be massive if n is large. To 

avoid this problem, we need to adopt dimension-reduction integration (Rahman and Xu 2004). 

Because only the first-order moment (i.e., the mean of P
f
(Q)) is considered, the 

univariate-dimension reduction method (Zhao and Ono 2000b; Rahman and Xu 2004) is used 

here. The function P
f
(Q) may then be approximated by P

f
*(Q) as follows: 
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where 
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and m represents the vector in which all the random variables take their mean values. In addition, 

Pf (m) is a constant because it is the function of the mean of each random variable. Furthermore, 

we have Qi = [m1, …, mi-1, qi, mi+1, …, mn]T and Ui = [um1, …, umm , ui, umi+1, …, umn]T, where 

umk, = 1, …, n except i is the kth value of um, which is the vector in u space corresponding to m. 

Finally, Pfi is a function of only ui for specific P
f
*(Q). For independent random variables Q, Pfi 

can be expressed simply as 
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Observe that ui (i = 1, …, n) are independent and Pfi is a function of only ui; therefore, Pfi, i = 

1, …, n are also independent. Hence, the mean of P
f
*(Q), i.e., the mean of the conditional failure 

probability, can be expressed as 
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where 
fiPm  is the mean value of Pfi and can be point-estimated from 
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where ui1, ui2, …, uim are the estimating points of random variable ui, and P1, P2, …, Pm are the 

corresponding weights. 

The estimating points uik and their corresponding weights Pk can be readily obtained as 

2 ,   k
ik k k

w
u x P

p
= =                            (12) 

where xk and wk are the abscissas and weights, respectively, for Hermite integration with the 

weight function exp(−x2), as given in Abramowitz and Stegun (1972). For a seven-point estimate 

(m = 7) in standard normal space (Zhao and Ono 2000b), we have the following: 

 ui1=−ui7 =−3.7504397,  P1 = P7 = 5.48269×10-4               (13) 

  ui2= −ui6 = −2.3667594,  P2 = P6 =3.07571×10-2                 (14) 

ui3=−ui5=−1.1544054,   P3 = P5 =0.2401233                   (15) 

 ui4 = 0,  P4 = 0.4571427                               (16) 

 

3 Numerical examples 

Considers a bar subjected to tensile stress. The bar fails if the applied load exceeds the tensile 

strength of the bar, and the performance function is expressed simply as 

 XG R S( ) = -
   

                              (17) 

where R is the resistance of the bar and S is the applied load. 

Assume that R and S are independent random variables with means mR and mS, standard 

deviations sR and sS, and skewness of a3R = a3S =0, respectively. For this example, the 

third-moment reliability index is available as a closed-form equation (Zhao et al. 2006) 

             
3 2
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and the failure probability is 

                              3( )f MP b= F -                            
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Table 1. Probabilistic information about the distribution parameters 

Parameter Distribution Mean Standard deviation 

mR Lognormal 50 2 

ms Lognormal 35 2 

ss Lognormal 5 1 

sR Lognormal 7 1.4 

 

Here, the distribution parameters mR, mS, sR, and sS are assumed to be random variables, and 

their probabilistic information is listed in Table 1. According to Eq. (4), the overall failure 

probability can be formulated by 
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According to Eq. (7), the conditional failure probability P
f
(Q) can be approximated as 
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Using a seven-point estimate in standard normal space as given by Eqs. (13)–(16), the 

estimating points of Pf(mR) in original space can be obtained with the aid of Eq.(5b), and are 

given as follows: 

mR1 = 43.003, mR2 = 45.449, mR3 = 47.706, mR4 = 49.96 

mR5 = 52.320, mR6 =54.919, mR7 = 58.043. 

Therefore, the mean of Pf1,
1fPm , is readily obtained as 

( )
1
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Similarly, the means of Pf2, Pf3, and Pf4 are obtained as 
2fPm = 4.477×10−2, 

3fPm = 4.245×10−2, 

and 
4fPm = 4.160×10−2, respectively. 

Therefore, according to Eq. (10), the overall probability of failure, i.e., the mean of the 

conditional failure probability, is readily estimated as 
4

2

1

= [ ( )] 3 ( ) 5.168 10
fiF f P f

i
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Using an MCS with 1,000,000 samples, the overall probability of failure, i.e., the mean of the 

conditional failure probability (Eq. (20)), is obtained as 5.123 × 10−2. One can see that the result 

obtained by using the proposed method is close to that of the MCS. From Eq. (18), the failure 

probability without considering the parameter uncertainties is readily obtained as 4.06 × 10−2, 
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which is less than the mean of the conditional failure probability when considering the parameter 

uncertainties, i.e., the failure probability is underestimated or the structural reliability is 

overestimated. 

 

4 Conclusions 

A point-estimate method based univariate dimension-reduction integration was developed to 

evaluate the failure probability considering the uncertainties of distribution parameters. It is 

found that neglecting parameter uncertainties will lead to the failure probability being 

underestimated. Since the developed method can be realized only if the first few central 

moments of the basic random variables are known, it can be utilized even when the probability 

distributions of the basic random variables are unknown. 
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