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Abstract: Soils and rocks are natural heterogeneous geo-materials, and their properties exhibit site-specific spatial variability 

as an outcome of the previous geological processes that the soils and rocks in the site have undergone. Spatial variability of 

ground properties and other geotechnical uncertainties may be modelled probabilistically using random variables or random 

field. Some questions are frequently raised by practicing geotechnical engineers when they consider using probabilistic 

methods. For example, what is the physical meaning of failure probability and random variable or random field modeling? Is 

a large amount of data necessary for using probabilistic methods? This paper aims at providing answers to these questions 

from a Bayesian perspective. Bayesian methods and tools are also presented that were recently developed for characterization 

of ground property variability from sparse site investigation data.  
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1 Introduction 

 

One indispensable task in geotechnical practice is to characterize engineering properties of subsurface soils and 

rocks for geotechnical analysis and design. Soils and rocks are natural geo-materials, whose properties are 

affected by many spatially varying factors during the geological process, such as properties and textures of their 

parent materials, weathering and erosion processes, transportation agents, and sedimentation conditions (e.g., 

Lacasse and Nadim 1996; Phoon and Kulhawy 1999a,b; Baecher and Christian 2003). Soils and rocks are, 

therefore, heterogeneous, and ground properties exhibit site-specific spatial variability (e.g., Webster 2000; 

Wang et al. 2016a) as an outcome of the previous geological processes that the soils and rocks in the site have 

undergone. Spatial variability of ground properties and other geotechnical uncertainties may be modelled 

probabilistically using either a single random variable (SRV) or a series of spatially distributed and correlated 

random variables, i.e., a random field (RF). Both SRV and RF have been widely used in literature on 

geotechnical risk and reliability, and they were a key element in the calibration and development of new 

generation of geotechnical design codes around the world, such as the Load and Resistance Factor Design codes 

(Phoon et al. 2003a&b; Paikowsky et al. 2004&2010) in the United States, the Geo-Code 21 (JGS 2006; Honjo 

et al. 2010) in Japan, and the 2014 Canadian Highway Bridge Design Code in Canada (Fenton et al. 2016). 

However, direct application of probabilistic methods to routine projects by practicing geotechnical engineers 

seems rather limited, even though it is required in some national standards, such as the new safety standards for 

flood defenses in the Netherlands (e.g., Schweckendiek et al. 2015; Wang et al. 2016b). Some questions are 

frequently raised by practicing geotechnical engineers when they consider using probabilistic methods. For 

example, what is the physical meaning of failure probability and SRV or RF modeling? Is a large amount of data 

a must for using probabilistic methods? For facilitating geotechnical practitioners to adopt probabilistic methods 

in engineering practices, this paper aims at providing answers to these questions from a Bayesian perspective. 

Bayesian methods and tools are also presented that were recently developed for characterization of ground 

property variability from sparse site investigation data.  

After this introduction, two different schools of probability (i.e., frequentist and Bayesian) are introduced, 

followed by a review of the general process of geotechnical site characterization, the occurrence of uncertainties 

and variabilities during geotechnical characterization of a site, and propagation of uncertainties during ground 

property characterization. Then, the physical meaning of SRV or RF modeling of spatial variability is provided 

from a Bayesian perspective. In addition, to deal with the issue of sparse data that are often encountered in 

geotechnical site investigation, Bayesian equivalent sample methods (Wang and Cao 2013a; Wang and 

Aladejare 2015) and Bayesian compressive sampling – Karhunen -Loève expansion method (Wang et al. 2018) 

are presented, respectively, for SRV and RF modeling of ground property spatial variability. 

 

2 Two Schools of Probability: Frequentist vs. Bayesian 

 

Proceedings of the 7th International Symposium on Geotechnical Safety and Risk (ISGSR)

Editors: Jianye Ching, Dian-Qing Li and Jie Zhang

Copyright c© ISGSR 2019 Editors. All rights reserved.

Published by Research Publishing, Singapore.

ISBN: 978-981-11-2725-0; doi:10.3850/978-981-11-2725-0 key5-cd 63



64 Proceedings of the 7th International Symposium on Geotechnical Safety and Risk (ISGSR)

Although probability and statistics are well-developed subjects, there are philosophically different schools of 

probability, the most prominent being the frequentist and Bayesian schools. Probability in frequentist theory is 

defined as the long-run or limiting expected frequency of occurrence. This is the one usually taught in most 

undergraduate courses and naturally linked with the classical examples of rolling a dice or flipping a coin. A 

large amount of data that satisfies the independent and identical distribution (IID) assumption is often needed for 

frequentist school. The frequentist definition of probability works well for some geotechnical applications, such 

as defining target failure probabilities, pT, in geotechnical design codes. For example, a pT = 6.9 ´ 10-4 (or a 

target reliability index of 3.2) was adopted for transmission line (and similar) structure foundations in North 

America (Phoon et al. 2003a,b). For a large number, saying 10,000, of foundation designs in 10,000 different 

projects (or sites) following this design code, it is expected to observe about 7 failure cases among these 10,000 

projects. However, this frequentist definition may encounter difficulty in some other applications, such as 

interpretation of site-specific geotechnical investigation data. The site-specific geotechnical data are spatially 

varying and correlated, and they are often only sparsely measured. A large amount of IID data that is often 

needed for frequentist school simply does not exist in many problems that geotechnical engineers routinely face. 

The Bayesian school of probability may be useful in these cases. 

In Bayesian school, probability represents a degree-of-belief of occurrence, with full certainty of occurrence 

or no-occurrence at the probability of 1 or 0, respectively. The probability is a quantitative measure of 

uncertainties associated with incomplete information or limited knowledge. As further information is gathered 

and the knowledge improves, the uncertainties might reduce, and the probability is updated. Therefore, Bayesian 

inference is often known as Bayesian updating. The degree-of-belief (i.e., the Bayesian school of probability) 

may be interpreted as a formalization of “engineering judgment” (e.g., Vick 2002; Cao et al. 2016a), which is a 

key element in geotechnical practice. From this perspective, most geotechnical engineers are intuitive Bayesians 

whether they know it or not (Baecher 2017). For example, Terzaghi’s observational method is a qualitative form 

of Bayesian thinking (Lacasse 2016). Bayesian methods have been used across a wide spectrum of geotechnical 

applications since 1970’s, such as Tang (1971), Einstein et al. (1978), Gilbert and Tang (1995), Juang et al. 

(1999), Zhang et al. (2004), Najjar and Gilbert (2009), Zhang et al. (2009), Wang et al. (2010), Papaioannou and 

Straub (2012), Ching and Phoon (2014), Wang et al. (2016a), and Ching et al. (2016). In addition, Baecher (2017) 

showed a number of successful Bayesian applications in geotechnical engineering. Early applications of 

Bayesian methods often relied on conjugate pairs of prior distributions and likelihood functions to avoid 

computational problems, but this nevertheless introduces artificial limitations to the choices of prior distributions 

and likelihood functions (e.g., Wang et al. 2010). In recent applications, numerical simulations, such as Markov 

Chain Monte Carlo (MCMC), are often integrated with Bayesian formulation to by-pass the computational 

complexity, while maintaining the user's flexibility to use non-conjugate prior distributions and likelihood 

functions for realistic modeling of the concerned applications (e.g., Wang and Cao 2013a). The simulation-based 

Bayesian methods may be further developed as computer software (e.g., Wang et al. 2016c) for removing 

mathematical hurdles and facilitating applications of Bayesian methods by geotechnical practitioners in 

engineering practice. This paper focuses on simulation-based Bayesian methods and tools that were recently 

developed for characterization of ground properties from sparse site investigation data.  

 

3 Uncertainty and Variability in Geotechnical Characterization of a Specific Site 

 

Geotechnical site characterization is a multi-step process that can be divided into six stages: desk-study, site 

reconnaissance, in-situ investigation, laboratory testing, interpretation of site observation data, and inferring soil 

and rock properties and underground stratigraphy (e.g., Clayton et al. 1995; Mayne et al. 2002). A general 

procedure of geotechnical site characterization is shown schematically in Figure 1. Geotechnical characterization 

of a project site often starts with desk-study and site reconnaissance, which provide prior knowledge about the 

site such as geological maps, regional guides, soil survey maps and records, published reports and studies, 

engineering judgment (or expertise) and/or engineering experience (e.g., Trautmann and Kulhawy 1983; Cao et 

al. 2016a). After desk-study and site reconnaissance, in-situ investigation (e.g., in-situ boring and testing) and 

laboratory testing are performed to obtain project-specific test results (i.e., site observation data) of a soil or rock 

property  measured by the tests. Note that the measured soil or rock property  is not necessarily the design 

property  that is used directly in geotechnical analysis. The design property  (e.g., undrained Young’s 

modulus Eu) might be estimated from the test data of  (e.g., the “N” values) obtained from in-situ/laboratory 

testing (e.g., standard penetration test, SPT) through a transformation model MT (e.g., empirical regressions and 

theoretical relationships) between  and . Engineers then utilize both the results interpreted from site-

specific observation data and prior knowledge to estimate soil and rock properties for engineering applications.  

As shown in Figure 2, both site-specific testing data and prior knowledge may be spatially variable and 

involve measurement errors, statistical uncertainty, and transformation uncertainty (e.g., Phoon and Kulhawy 

1999b; Baecher and Christian 2003; Wang et al. 2016a). The spatial variability exists long before the 

engineering project is planned, and it is usually categorized as “natural variability”, which is independent of the 
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state of knowledge about the soil and rock properties and cannot be reduced as the knowledge improves. On the 

other hand, measurement errors, statistical uncertainty, and transformation uncertainty are resulted from 

imperfect test equipment and/or procedural-operator errors, lack of test data, and insufficient knowledge about 

the relationship between  and , respectively. They are usually categorized as “knowledge uncertainty” and 

can be reduced gradually as the knowledge improves.  

 

 
Figure 1.  Geotechnical site characterization and uncertainty propagation (after Wang et al. 2016a). 

 

 
 

Figure 2.  Variability and uncertainties in soil and rock properties (after Phoon and Kulhawy 1999a; Wang et al. 2016a). 
 

4 Uncertainty Propagation during Ground Property Characterization 

 

Figure 1 also shows explicitly propagation of the uncertainties, including spatial variability and various 

knowledge uncertainties, in ground properties during different stages of geotechnical characterization of a 

specific site. The prior knowledge is obtained during desk-study and site reconnaissance, and it is associated 

with spatial variability and measurement errors incorporated in existing data, subjective uncertainties of 

engineers’ expertise, and so forth (e.g., Baecher 1983; Vick 2002). The site observation data fluctuate because of 

spatial variability and measurement errors.  

When the design property  is not measured directly, a transformation model MT is needed to relate the 

observation data (i.e., measured property ) to . The uncertainty (i.e., transformation uncertainty) associated 

with the transformation model is then combined with the uncertainties included in site observation data (i.e., 

spatial variability and measurement errors), propagating together into the interpretation outcomes of the site 

observation data. Finally, engineers commonly utilize both the interpretation outcomes of site-specific 

observation data and prior knowledge to infer ground properties. Because the inferred ground properties are 

based on information at some locations or depths (i.e., some samples of the population), rather than information 

at every location and depth (i.e., the whole population), statistical uncertainty occurs and is added to the inferred 

ground properties. 
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The knowledge uncertainties (i.e., measurement errors, statistical uncertainty, and transformation 

uncertainty) arise from insufficient knowledge or lack of data during geotechnical site characterization. Although 

such knowledge uncertainties inevitably affect the prediction or results of reliability studies, they have no 

influence on the existing condition of the project site or the observed performance (i.e., actual response) of 

geotechnical structures. For example, the actual settlement of a foundation does not change no matter how 

accurately the soil and rock properties under the foundation are measured, estimated, and subsequently used in 

the analysis. Accurate estimates of soil and rock properties only contribute to the accuracy of predicted response 

of geotechnical structures, e.g., the predicted settlement of foundations. On the other hand, the spatial variability 

of ground properties exists long before the project and affects significantly the actual response of geotechnical 

structures (e.g., Fenton and Griffiths 2002; Wang et al. 2011; Liu et al. 2019). The knowledge uncertainties and 

spatial variability, therefore, should be differentiated in probabilistic analyses. As described in the next section, a 

Bayesian inverse analysis framework directly and explicitly characterizes spatial variability of design property 

and account simultaneously for various knowledge uncertainties in a rational manner.  

 

5 Bayesian Perspective on Spatial Variability Modeling 

 

Both prior knowledge and site-specific observation data are utilized during geotechnical site characterization to 

estimate ground properties. From a Bayesian perspective, such a process can be considered as a process of 

updating the prior knowledge using observation data from a project site, as shown in Figure 3. The prior 

knowledge obtained during desk-study and site reconnaissance is represented quantitatively by a prior 

distribution. The site observation data obtained from in-situ/laboratory testing is reflected through a likelihood 

function. After the prior distribution and likelihood function are specified, using the Bayes’ Theorem (e.g., Sivia 

and Skilling 2006) leads to a posterior distribution that quantitatively reflects the updated knowledge (i.e., 

posterior knowledge) and combines the prior knowledge and site observation data. This process corresponds to 

the last two stages (i.e., Stages 5 and 6 shown in Figure 1) of geotechnical site characterization, where soil and 

rock properties are estimated using prior knowledge and site observation data. The six stages of geotechnical site 

characterization shown in Figure 1 are mapped to the three key elements (i.e., prior distribution, likelihood 

function, and posterior distribution) of the Bayesian framework, as shown in Figure 3. Because of the page limit, 

details of prior distribution quantification, likelihood function formulation, and MCMC simulation of the 

posterior distribution are not included in this paper, but referred to Cao et al. (2016a), Wang et al. (2016a), and 

Wang and Cao (2013a), respectively. 

 

 

Figure 3. Bayesian framework for geotechnical characterization of a project site (after Wang et al. 2016a). 
 

The Bayesian updating may be performed in a sequential manner when additional information on the ground 

properties is available (Cao et al. 2016b). For example, after the Bayesian updating is finished with existing site 

observation data, if additional or other types of in-situ or laboratory tests are subsequently performed to obtain 

additional site observation data, a new round of Bayesian updating can be performed to incorporate these 
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additional data. The posterior knowledge obtained in the previous round of Bayesian updating can be taken as 

the prior knowledge and used together with the additional site observation data to further update the knowledge 

on ground properties, as shown by the dashed line in Figure 3. The Bayesian framework offers a systematic way 

of gradually improving knowledge of ground properties for a project site as observation data are accumulated. 

As shown in Figure 3, a probabilistic model MP (e.g., an SRV or RF) is needed to represent the spatial 

variability of  in the Bayesian framework. Consider, for example, a statistically homogenous soil layer. The 

spatial variability of  in the soil layer (i.e., the actual  value at any location within the soil layer) can be 

modelled by an SRV (e.g., Wang and Cao 2013a). An SRV can be uniquely defined by a probability distribution 

function, PDF, with its associated parameters. Note that PDF for a specific site may not necessarily follow any 

commonly used PDF, such as normal or lognormal PDF (Wang et al. 2015). When explicit consideration of 

spatial coordinates is needed, a RF  can be used to represent the spatial variability of  in the soil layer (e.g., 

Wang et al. 2018). A RF may be fully specified by its marginal PDF and spatial auto-correlation structures 

(Vanmarcke 1983; Cao and Wang 2014a). Bayesian quantification of spatial variability of ground properties is 

therefore reduced to characterization of SRV’s PDF or RF’s marginal PDF and spatial auto-correlation structures 

from prior knowledge and site-specific observation data, with simultaneous consideration of various knowledge 

uncertainties in a rational manner.  

 

5.1    Physical meaning of single random variable modeling  

In SRV modeling of spatial variability, spatial coordinates of the ground property are not considered explicitly. 

Therefore, even when the ground property is measured at every location, it is still a population or random 

variable following a PDF. From a Bayesian perspective, the missing information that leads to uncertainties in the 

SRV modeling is the spatial coordinates. Because the spatial coordinates have never been used in the Bayesian 

updating of the ground properties, SRV modeling of spatial variability is often categorized as “natural 

variability” from a frequentist perspective, which is independent of the state of knowledge about the ground 

properties and cannot be reduced as the knowledge improves (Baecher and Christian 2003). The SRV modeling 

of spatial variability is suitable for geotechnical applications where variation of spatial coordinates of the ground 

properties is not important, such as foundation design (e.g., Wang 2011; Wang and Cao 2013b). For example, 

side resistance of a pile foundation is a summation of unit pile side resistance along a pre-specified surface (i.e., 

the interface between the pile shaft and soils). However, the SRV model may not perform well when variation of 

spatial coordinates of the ground properties is important, such as slope stability analysis (e.g., Griffiths and 

Fenton 2004; Li et al. 2019; Liu et al. 2019) where a search for the minimum resistance path is needed from a 

large number of potential slip surfaces. In these cases, RF modeling of spatial variability, with explicit 

consideration of spatial coordinates, is preferred.  

 

5.2    Physical meaning of random field modeling 

In RF modeling of spatial variability, the spatial coordinates of ground properties are modelled explicitly. 

However, site-specific tests are only performed at a number, often limited, of locations. From a Bayesian 

perspective, the lack of information that leads to uncertainties in the RF modeling is the missing measurements 

at unsampled locations. Therefore, RF modeling of spatial variability reflects uncertainties in the prediction of 

ground property at unsampled locations from prior knowledge and the often sparse site-specific measurement 

data. If the ground property is measured at every location in a specific site, the spatial variability is fully 

specified and deterministic. No uncertainty in this case, and it is a fully certain case. The Bayesian RF modeling 

of spatial variability may be considered as an interpolation from sparse measurements with quantified 

interpretation uncertainty. This is similar to conditional RF modeling using Kriging. When measurements are 

taken at every location in a specific site, Kriging and conditional RF modeling converge to the measurements 

themselves with negligible uncertainty. It is like a deck of shuffled cards which has definite order although the 

shuffling process involves randomness (e.g., Baecher and Christian 2003). Drawing a card from a specific deck 

of shuffled cards produces a deterministic result even though it is unknown before the drawing. Note that, 

however, this is very different from the frequentist perspective of RF modeling, where the RF samples are still 

random even when measurements are taken at every location in a specific site. The Bayesian perspective of RF 

modeling is more suitable for modeling site-specific (or intra-site) spatial variability, while the frequentist 

perspective of RF modeling is more suitable for modeling inter-site spatial variability, or natural variability 

across different sites. Applications of RF model of spatial variability to development and calibration of 

geotechnical design codes may be considered as modeling of inter-site spatial variability.  

In the following two sections, two recently developed Bayesian methods are presented for characterization 

of ground properties from sparse site-specific data: (1) MCMC-based Bayesian equivalent sample method for 

SRV modeling in Section 6; and (2) Bayesian Compressive Sampling and Karhunen–Loève Expansion method 

for RF modeling in Section 7.  
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6 Bayesian Equivalent Sample Method for Single Random Variable Modeling 

 

Starting from the Bayes Theorem, Eq. (1) can be derived to update statistical parameters  (e.g., mean  and 

standard deviation ) of a design ground property  (e.g., soil effective friction angle f'), which is treated as an 

SRV, given a set of site-specific test data as: 

P(ΘP|Data, Prior) = K∙P(Data|ΘP)P(ΘP) (1) 

where K is a normalizing constant independent of the statistical parameters  of XD; Data =  is the site-

specific measurement data (e.g., a set of standard penetration test SPT-N values);  is the prior distribution 

of the statistical parameters in the absence of site-specific measurement data; and =  is 

the likelihood function.  

 

6.1    Bayesian formulation and MCMC simulation 

The likelihood function  is a PDF of site-specific measurement data  for a given set of statistical 

parameters . It quantifies probabilistically the  information provided by . Formulation of the likelihood 

function (i.e., ) requires a likelihood model that probabilistically describes the relationship between 

the statistical parameters  of a design property  and project-specific test data . Generally speaking, the 

likelihood model should reflect sound physical insights into the relationship between the design property  and 

the measurement data  and the propagation of various uncertainties that occurred during site characterization. 

As much as possible insights from soil or rock mechanics should be incorporated in the likelihood model. For 

example, insights from soil mechanics suggest that undrained shear strength, Su, of clay is not a fundamental soil 

property, but depends on the vertical effective stress, sv’. It is therefore a better likelihood model to consider 

Su/sv’ than Su as an SRV (Cao and Wang 2014b). In addition, the design property  might not be measured 

directly, and a transformation or regression model is needed to relate  to . The uncertainty (i.e., 

transformation uncertainty) associated with the transformation model should also be incorporated in the 

likelihood model. Based on the likelihood model,  (e.g., SPT-N value) can be derived as a random variable 

that has a (e.g., normal or lognormal) PDF (Wang et al. 2016a). Statistical parameters for the random variable 

 are a function of the statistical parameters  for the random variable  and the transformation uncertainty. 

This establishes a link between the site-specific measurement data  and the statistical parameters  for the 

design property  and allows the likelihood function to be formulated mathematically. Therefore, the statistical 

parameters  for  (e.g.,  and  for the soil effective friction angle f') can be updated from  (e.g., SPT-N 

values), as shown in Eq. (1). 

Using the theorem of total probability, the posterior PDF of the design property  can be further expressed 

as (Wang and Cao 2013a; Wang et al. 2016a): 

 (2) 

where  is the conditional (e.g., normal or lognormal) PDF of  for a given set of statistical parameters 

 (e.g., μ and σ); and  is obtained from Eq. (1). When the prior knowledge and likelihood 

function in geotechnical practice are sophisticated, the  PDF might be complicated or difficult to express 

analytically or explicitly. To remove this mathematical hurdle in engineering practice, MCMC simulation (e.g., 

Robert and Casella 2004) is used to depict the  PDF numerically. The generated MCMC samples collectively 

reflect the posterior PDF of  (i.e.,  in Eq. (2)), and they are referred to as Bayesian 

equivalent samples of the design property  (Wang and Cao 2013a). Note that although a normal or lognormal 

PDF is often used for  because of the Gaussian assumption often used in the development of 

transformation or regression model,  in Eq. (2) is a weighted summation of many , 

and it may turn out to be another distribution (Wang et al. 2015). 

 

6.2    Computer software 

Although the Bayesian framework described above is general and applicable for various soil or rock properties, 

its formulations vary for different properties when they are estimated from various in-situ and laboratory tests. 

For example, the formulation for Bayesian characterization of uniaxial compressive strength, UCS, of a rock 

using point load test data (e.g., Wang and Aladejare 2015) is different from the formulation for characterizing 

effective friction angle of soil using SPT-N values (e.g., Wang et al. 2015). Therefore, extensive backgrounds in 

probability, statistics, and simulation algorithms are needed to formulate the method for various properties. To 

remove this mathematical hurdle for geotechnical practitioners, a user-friendly Microsoft Excel-based toolkit, 

called Bayesian Equivalent Sample Toolkit (BEST), has been developed for implementing the Bayesian 

equivalent sample method (Wang et al. 2016c). The BEST was developed using the Visual Basic for 
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Applications (VBA) in a commonly available Microsoft Excel spreadsheet platform. The Excel-based BEST 

Add-in can be obtained without charge from https://sites.google.com/site/yuwangcityu/best/1. 

 

6.3    Application examples 

Bayesian equivalent sample method has been applied to various soil or rock properties (e.g., undrained shear 

strength (Cao and Wang 2014b) and Young’s modulus (Wang and Cao 2013a) of clay, sand friction angle 

(Wang and Zhao 2017a), and UCS (Wang and Aladejare 2015), Geological Strength Index (Wang and Aladejare 

2016a), and Young’s modulus (Wang and Aladejare 2016b) of rock) and validated by real site data. Consider, 

for example, characterization of the undrained Young’s modulus  of clay using SPT-N value data obtained 

from the clay site of the United States National Geotechnical Experimentation Sites (NGES) at Texas A&M 

University (Briaud 2000). A limited number of SPT-N values (i.e., 5 SPT-N values) were obtained within top 

stiff clay layer of the clay site, as illustrated in Figure 4(a). Figure 4(b) shows the results of 42 pressuremeter 

tests performed in the same clay layer (Briaud 2000) which are used for validating the BEST results. 

The design property  in this example is the  of clay, and its corresponding measured data are the SPT-

N values. A relationship between SPT-N and  of clay developed by Kulhawy and Mayne (1990) is used, since 

it is a built-in model in BEST Add-in. A set of non-informative prior knowledge is used, and it is taken as a joint 

uniform distribution with a mean of  varying between 5 MPa and 15 MPa and a standard deviation of  

ranging from 0.5 MPa to 13.5 MPa. This set of prior knowledge is consistent with the typical ranges of  of 

clay reported in literature (e.g., Phoon and Kulhawy 1999a,b; Cao et al. 2016a). Using this set of prior 

knowledge and the 5 SPT-N values shown in Figure 4(a), BEST is executed to generate 30,000 equivalent 

samples of . Conventional statistical analysis, such as calculation of mean and standard deviation and plotting 

histogram for PDF or cumulative distribution function, CDF, can be easily performed on the 30,000 equivalent 

samples using built-in functions in Excel. Table 1 shows statistics of the  samples obtained from BEST and 

their comparison with those obtained directly from the pressuremeter tests. Figures 5 and 6 show, respectively, 

the  PDF and CDF estimated from the BEST equivalent samples, together with the pressuremeter test results. 

The results from the Bayesian equivalent samples agree well with those obtained from 42 pressuremeter tests. 

In addition, the Bayesian equivalent sample method may be extended to model joint probability distribution 

between two ground properties, such as effective cohesion and friction angle of soil (Wang and Akeju 2016) and 

uniaxial compressive strength and Young's modulus of rock (Wang and Aladejare 2016b). 

 

 
 

Figure 4. SPT-N values and undrained Young’s modulus, Eu, 

measured by pressuremeter tests at the clay site of the NGES at 

Texas A&M University (after Briaud 2000). 

 

Table 1. Summary of the Eu statistics. 

Statistics  Mean (MPa) 
Standard 

deviation (MPa) 

BEST Excel 

Add-in 
11.46 6.00 

MATLAB 

(Wang and 

Cao 2013a) 

11.60 6.00 

Pressuremeter 

Tests 
13.50 7.50 

Difference 

between 

BEST and 

Pressuremeter 

Tests 

2.04 1.50 
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                   Figure 5. Eu PDF and frequency plots                                         Figure 6. Eu CDF plot. 
 

7 Random Field Modeling by Bayesian Compressive Sampling and Karhunen–Loève Expansion 

 

Random field modeling of spatial variability requires two sets of parameters: marginal PDF for each random 

variable and spatial auto-correlation structures among random variables at different locations. Estimation of 

these random field parameters, particularly auto-correlation structures (e.g., auto-correlation function types and 

correlation length), requires extensive measurements. However, data gathered from geotechnical 

characterizations of a specific site are usually sparse, particularly for projects with small or medium sizes. 

Therefore, it is challenging to provide an accurate estimation on random field parameters from sparse 

measurements, leading to significant uncertainty in the random field samples (RFS) subsequently generated and 

used in reliability and risk analyses. To simulate RFSs with proper consideration of such uncertainty, a non-

parametric and data-driven random field generator was recently developed. The generator is based on Bayesian 

compressive sampling (BCS) and Karhunen–Loève (KL) expansion, and it is denoted as BCS-KL generator.  

Bayesian compressive sampling or sensing is the formulation of compressive sensing (CS) from a Bayesian 

perspective, and it aims to reconstruct a digital signal (e.g., variations of a quantity with time or space in a 

discrete form) from sparse measurement data on the digital signal and to quantify the uncertainty associated with 

the reconstruction. During the reconstruction, the compressibility in many physical signals is exploited (e.g., 

Wang and Zhao 2017b; Zhang et al. 2017). Compressibility means that a complete digital signal, f, with a length 

of N, can be represented concisely by a weighted summation of a number of proper basis functions. 

Mathematically, f = Bw, where B is an N × N orthonormal matrix composed by columns of pre-specified basis 

functions and w is a vector of length N composed of the corresponding weight coefficients, most of which are 

virtually zero, except of S non-trivial components with significant magnitude, because of the compressibility of f 

(e.g., Foucart and Rauhut 2013; Wang and Zhao 2016). Therefore, f can be reconstructed from sparse 

measurement data y once the non-trivial components of w are obtained. y is a real-valued vector with a length of 

M, where M is much smaller than N. In the context of CS, f is unknown and needs to be estimated from sparse 

measurement data y using ωfy AΨ == , where Ψ is an M × N matrix representing the locations of components 

y in f. A=ΨB is also an M × N matrix. ωfy AΨ ==  is an underdetermined system of linear equations that can 

be solved by various efficient algorithms, including Bayesian methods (e.g., Ji et al. 2008; Foucart and Rauhut 

2013; Wang and Zhao 2017b). Once the non-trivial coefficients in w are properly estimated, the w can be 

approximated as ωs by setting those trivial elements of ω as zero. Then, the reconstructed signal f̂  can be 

expressed as sωf B=ˆ . When Bayesian methods are used to estimate ωs, both the best estimate and covariance 

of f̂  (i.e., mean vector 
f̂
μ  and covariance matrix 

f̂
COV ) are obtained, as illustrated in Figure 7.  

The BCS results can be used together with KL expansion to generate RFSs directly from sparse 

measurements (Wang et al. 2018). KL simulation of RFSs generally requires the mean of the random field of 

interest and deterministic orthogonal eigen-functions and eigenvalues corresponding to the covariance function 

or covariance matrix (Phoon et al. 2002). As shown in Figure 7, BCS provides both the best estimate (i.e., the 

mean of the random field) and the covariance matrix for the signal of interest directly from sparse measurements. 

When BCS and KL expansion is used together as referred to as BCS-KL generator, RFSs may be directly 

generated from sparse measurement data. The BCS-KL generator is non-parametric and data-driven. No pre-

determined function forms are needed for marginal probability density function or covariance function of the 

random field. Therefore, the BCS-KL generator is readily applicable to non-Gaussian and non-stationary RFSs, 
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including RFSs with non-stationary auto-covariance structure (Montoya-Noguera et al. 2019) and RFSs with 

unknown trend function without de-trending (Wang et al. 2019). In addition, the BCS-KL generator may be 

readily extended to simulate cross-correlated bivariate RFSs (Zhao and Wang 2018). 
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Figure 7. Schematic illustration of BCS-KL random field generator. 

To illustrate the BCS-KL generator, a soil property X within a soil layer with a thickness of 20.44m is 

simulated from a random field with a constant mean of 30 and standard deviation of 2, together with an 

exponential auto-correlation structure, i.e., ρ = e-2∆/λc. ∆ represents the relative difference of X data at different 

depths; λc =2m represents the correlation length within which X is highly auto-correlated. Using the random field 

parameters prescribed above, one X RFS with a resolution of 0.04m is shown in Figure 8a by a bold solid line. 

This X RFS (i.e., the solid line in Figure 8a) is denoted as the original X profile hereafter, which has N = 512 

data points in total.  

A number (e.g., M =20) of data points are obtained from the original X profile, as shown in Figure 8b by 

open triangles, and used as measurement data y to the BCS-KL generator. Then, many (e.g., 1000) X RFSs are 

generated accordingly. Figure 8b plots some X RFSs generated from the BCS-KL generator by gray lines. Figure 

8b shows that the gray lines follow trends that are quite similar to the bold solid line, suggesting that the X RFSs 

generated from the BCS-KL generator is realistic and reasonable. Figure 8b also includes the statistics of the 

1000 X samples, i.e., the average and 95% confidence interval (CI) of X at each depth, by a dashed line and two 

dotted lines respectively. In Figure 8b, the dashed line is very consistent with the bold solid line, and most local 

variations of the bold solid line falls within the 95% CI obtained from the 1000 X RFSs. These agreements 

suggest that the BCS-KL generator performs reasonably well and generates realistic RFSs. Figure 9 plots the 

experimental auto-covariance function (AF) of the original X profile (i.e., the bold solid line in Figure 8) and the 

statistics (i.e., the average and 95% CI) of the AFs from the 1000 X RFSs simulated from y. Evidently, the 

dashed line (i.e., the averaged AF of the X samples) is in very good agreement with the bold solid line (i.e., the 

AF of the original X profile). Almost all variations of the bold solid line fall within the 95% CI of AF.  

In addition, as the number M of measurements increases, the X RFSs generated from the BCS-KL generator 

gradually converge original X profile, as shown in Figures 8c and 8d. The corresponding AF also converges to 

the AF of the original X profile, which is not reported here due to page limit. The convergence of RFSs with 

increasing M is consistent with the Bayesian RF modeling of site-specific spatial variability. The BCS-KL 

generator has also been tested with a large number of real CPT data (Wang et al. 2018). Because of page limit, 

performance of the BCS-KL generator on real CPT data is not reported here, but referred to Wang et al. (2018).  
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Figure 8. Original X profile (a) and X RFSs generated from y: (b) M = 20;     Figure 9. Comparison of AF for X RFSs. 
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8 Concluding Remarks 

 

Bayesian thinking is in line with geotechnical thinking, particularly when dealing with site-specific data or 

analysis. Most geotechnical practitioners behave as Bayesians, even if they are not aware or deny. A large 

amount of data is not needed when using Bayesian methods. Strong Bayesian inference can be obtained from 

prior knowledge (e.g., engineering judgment, data from other sites with similar geological settings) and sparse 

and incomplete data, which are frequently encountered in geotechnical practices. From a Bayesian perspective, 

spatial coordinates are the missing information that leads to uncertainties in the SRV modeling of site-specific 

ground property variability. Because the spatial coordinates have never been used in the Bayesian updating of 

the ground properties, SRV modeling of spatial variability may also be categorized as “natural variability” from 

a frequentist perspective. On the other hand, in RF modeling of site-specific spatial variability, the spatial 

coordinates of ground properties are modelled explicitly. However, site-specific tests are only performed at a 

number, often limited, of locations. From a Bayesian perspective, the lack of information that leads to 

uncertainties in the RF modeling is the missing measurements at unsampled locations. Therefore, RF modeling 

of spatial variability in a specific site reflects uncertainties in the prediction of ground property at unsampled 

locations from prior knowledge and the often sparse site-specific measurement data. If the ground property is 

measured at every location in a specific site, the spatial variability is fully specified and deterministic. This is 

consistent with conditional RF modeling and Kriging in geostatistics. For facilitating geotechnical practitioners 

to adopt probabilistic methods in engineering practices, Bayesian equivalent sample method and BCS-KL 

random field generator have been developed for characterization of ground property variability from sparse site 

investigation data.  
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