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Abstract: Estimation and prediction problems in geotechnical engineering belong to the class of inverse problems. Many 

different approaches to analyze these problems have been reported in the literature. In recent years, the use of machine 

learning has become increasingly common in many research fields because of the rapid increase of computational capacity 

and advances in algorithms. In particular, the methodology for solving inverse problems known as “sparse modeling” has 

been receiving considerable attention. Sparse modeling is a statistical method which exploits specific features/structures in 

data based on solution sparsity, and has a great potential for application to geotechnical problems. This paper demonstrates 

the potential of sparse modeling for solving geotechnical engineering problems by means of two practical examples: a cross-

borehole tomography, and a stratigraphic soil profiling based on cone penetration test. 
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1 Introduction 

 

Inverse analysis is a methodology which permits to infer unknown properties of a system using a model of the 

system and (usually noisy) observation data. The unknown system properties in inverse analysis often include 

unknown governing equations, boundary and initial conditions, and material properties. Some of the applications 

of inverse analysis include X-ray tomography in material/medical science, image analysis/processing, and 

geophysical methods such as electromagnetic monitoring, seismic tomography, and ground penetrating radar. In 

geotechnical engineering, inverse analysis has been applied to geotechnical problems for the past four decades. 

For instance, applications have been reported for tunnel excavation in rock, consolidation, pile settlement, and 

retaining walls (e.g., Sakurai and Takeuchi 1983; Asaoka 1978; Honjo et al. 1993; Ledesma et al. 1996; Finno 

and Carvello 2005). 

Recently, inverse analysis has been receiving attention due to the rapid increase and availability of 

computational power on the one hand, and advances in machine learning algorithms on the other hand. Although 

machine learning tasks are classified into several categories, the main common goal is to infer an estimator using 

a finite set of data or samples. This goal is same as that of inverse analysis. Moreover, the methodologies utilized 

in both inverse analysis and machine learning rely on common theories (DeVito et al. 2005). The machine 

learning method known as “sparse modeling”, in particular, has received much attention for its ability of 

managing several types of inverse problems. According to the general principle of sparsity, a phenomenon 

should be represented with as few variables as possible. This approach, which essentially favors simple theories 

over more complex ones, is central to many research fields. One of the most widely adopted methodologies for 

achieving sparse modeling is the least absolute shrinkage and selection operator (lasso) proposed by Tibshirani 

(1996). Some researchers have demonstrated the effectiveness of sparse modeling in solving inverse problems 

(Lustig et al. 2007; Honma et al. 2014).  

Sparse modeling can be applied not only for solving ill-posed inverse problems, but also for exploiting 

internal structures in the data, and automatic selecting simpler but accurate statistical models. Clearly, it has a 

great potential for application to geotechnical problems, and existing technical issues in geotechnical engineering 

can be overcome through its use. 

This paper demonstrates the potential of sparse modeling for solving geotechnical engineering problems by 

showing two practical examples: a cross-borehole tomography (CBT), and stratigraphic a soil profiling based on 

cone penetration test (CPT). The paper is structured as follows: in Section 2, the theoretical fundamentals of 

inverse analysis, classification and solution of inverse problems are presented; in Section 3, the concept of sparse 

modeling and its mathematical fundamentals are outlined; in Section 4, numerical algorithms to solve sparse 

modeling problems are summarized. Then, the two practical examples of sparse modeling and their results are 

shown in Section 5 and, finally a summary of the results of sparse modeling in geotechnical engineering are 

presented in Section 6. 

 

2 Introduction to Inverse Analysis 

 

Let us consider the following linear system model and the corresponding inverse problem: 
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=y Ax   (1) 

where, y is an m-dimensional observation vector, x is an n-dimensional (unknown) parameter vector, and A is an 

m×n matrix representing a linear operator. We want to estimate the unknown vector x using the observation 

vector y. This is a typical example of inverse analysis. If the A matrix has full rank, the inverse problem can be 

classified into three categories depending on the values of m and n: 

:  Over-determined problemm n>  

:  Even-determined problemm n=  

:  Under-determined problemm n<  

If solutions exist, even-determined problems have unique solutions, and the error vector e = y – x is a zero 

vector. With more observation data than unknown parameters, there is no solution that can fit exactly with the 

observation data. However, least square solutions can be defined by minimizing the quantity: 

2

2

1
min  

2
-

x
y Ax   (2) 

These two problems are hardly encountered in inverse problems in geotechnics, as observation data are 

usually much less than the unknown parameters. Most of the inverse problems in practice might be under-

determined (ill-posed) problems, therefore the study on the methods for solving under-determined problems is 

the central topic of inverse analysis. One approach to solve under-determined problems is to use some kind of 

regularization. The most commonly used method consists of minimizing the quantity: 

2 2
min   s.t.  t- £x y Ax   (3) 

where || . ||2 identifies the l2 norm, and t is a user-specified tuning parameter. The above optimization problem 

can also be written in the following unconstrained form: 

2 2

1
min  

2
- + l

x
y Ax x                                                                                                                                         (4) 

where l is the regularization parameter, which controls the intensity of the regularization term ||x||2 and the least 

square term ||y – Ax||2. There are several advantages of using this objective function: the function is strictly 

convex, therefore it always has a unique solution; moreover, the solution to the problem is available in close 

form, which is defined by: 

T 1 Tˆ ( + )-= lx A A I A y   (5) 

This method is termed “ridge regression” (Hoerl and Kennard, 1970), or “weight decay” in the context of neural 

network (e.g., Bishop 2006). In the context of Bayesian framework, the regularization term can be interpreted as 

“prior information” of the solution, which corresponds to saying that the “l2 norm of the solution vector should 

be small.” 
 

3 Sparse Modeling 

 

3.1    Solution sparsity 

Solution sparsity is a property in which the solution vector x has xj = 0 in many components {1, , }j nÎ K . In 

other words, it is assumed that only a relatively small subset of x is truly important in a specific context: e.g., 

usually only a small number of simultaneous faults occurs in a system; a small number of nonzero Fourier 

coefficients is sufficient for an accurate representation of various signal types; and a small number of predictive 

variables is most relevant to the response variable, and is sufficient for learning an accurate predictive model. In 

all these examples, the solution we seek can be viewed as a sparse high-dimensional vector with only a few 

nonzero coordinates. 

 

3.2    Best subset selection and its approximation 

Solution sparsity is a useful prior information to solve under-determined problems. The role of this property in 

solving an underdetermined problem is shown in Figure 1. In the figure, colored cells indicate non-zero 

components (also called active-set), and white cells indicate zero components. When the solution x is sparse, and 

if we know how many zeros are and which components are nonzero in x, the under-determined problem can be 

solved by minimizing the following 

0 2
min   s.t.  t- £x y Ax  (6) 
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where || . ||0 is an l0 norm (this is not a proper “norm”, though), and indicates the number of non-zero components 

in x. This procedure is called the “best subset selection”. The corresponding Lagrangian form of Eq. (6) is given 

by: 

2 0

1
min  

2
- + l

x
y Ax x  (7) 

where l is the regularization parameter, and its role is the same as that in Eq. (4). By minimizing Eq. (7), the 

sparse solution can be obtained. In general, however, finding a minimum-cardinality solution satisfying linear 

constraints is an NP-hard combinatorial problem (Natarajan 1995). Thus, an approximation is necessary to 

achieve computational efficiency, and it turns out that, under certain conditions, approximate approaches can 

recover the exact solution. 

An alternative approach of best subset selection is provided by the following equation: 

2 1

1
min  

2
- + l

x
y Ax x  (8) 

where || . ||1 is an l1 norm, and stands for sum of the absolute values of x. A famous schematic of comparison 

between Eqs. (4) and (7) is shown in Figure 2. The constraint region for ridge regression is the disk x1
2 + x2

2, 

while that for lasso is the diamond |x1| + |x2|. Both methods find the first point where the red line hits the 

constraint region. Unlike the disk, the diamond has corners; if the solution occurs at a corner, then it has one 

parameter x1 equal to zero. When n > 2, the diamond becomes a rhomboid, and has many corners, flat edges, and 

faces; there are many more opportunities for the estimated parameters to be zero. This idea can be applied in 

many different statistical models. In statistical literature, the problem of Eq. (8) is widely known as the least 

absolute shrinkage selection operator (lasso, Tibshirani 1996). 

There have been many works on lasso since it was first proposed in 1996, and it has become clear that the l1 

penalty has the following advantages. 

1. The l1 penalty provides a natural way to encourage sparsity and simplicity in the solution. The lasso 

enables simultaneous model selection and parameter estimations and gives interpretable models. 

2. The l1-based penalties are convex. This fact and the assumed sparsity can lead to significant 

computational advantages. For example, if we have to estimate one million non-zero parameters with 

100 observation data, the computation is very challenging. However, if we apply the lasso, then at most 

100 parameters can be nonzero in the solution, and this makes the computation much easier. 
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Figure 1.  The role of solution sparsity in solving an under-determined problem. 
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Figure 2.  Schematic comparison between ridge and lasso 
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3.3    Structured sparsity 

The basic lasso does not perform well when the solution is not sparse. In other words, the basic lasso has certain 

limitations in exploiting inherent structures that arise from underlying index sets, such as time and space, in the 

data. The unknown target parameters might each have an associated time stamp, and we might then ask for time-

neighboring coefficients to be the same or similar. The sparse modeling performs well even in the problems by 

enforcing smoothness of neighboring unknown parameters. The approach is called “fused lasso” (Tibshirani et al. 

2005), and can exploit such structure within a data. The fused lasso is the solution of the following optimization 

problem: 

2 1

1
min  

2
- + l

x
y Ax Bx  (9) 

where B is a (n–1) × n matrix, and a commonly used form of B is: 
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This regularization term enforces the sparsity in the first-order differences of neighboring solutions, and is called 

“total variation”. The total variation in Eq. (9) can be generalized to use a higher-order difference leading to the 

problem: 

( 1)

2 1

1
min  

2

k+- + l
x

y Ax D x  (11) 

where D(k+1) is a matrix of dimension (n – k – 1) × n that computes discrete differences of order k + 1. This 

method deals with different kinds of structures in the data in natural ways.  

 

3.4   Bayesian view of Lasso estimates 

In a Bayesian statistical framework, the lasso estimates can be derived as the Bayes posterior mode under 

Laplacian prior for the xj, as: 

| |
( ) exp

2

j

j

x
p x

æ öl
= -ç ÷t tè ø

  (12) 

where t = 1/l. It is favorable to perform a Bayesian analysis for assessing the detailed uncertainty in the lasso 

solution. In this regard, Park and Casella (2008) proposed the “Bayesian lasso”, which computes the posterior 

mean and median estimates from a Gaussian regression model with Laplacian prior, but the estimates are not 

sparse. If one wants to obtain sparse solutions from standard Bayesian analysis, prior has to be defined so that 

some mass is at zero, such as using the spike-and-slab model (George and McCulloch 1993). However, this 

method leads to non-convex problems that are computationally intensive, and does not have the advantages the 

basic lasso has. 

 

4 Numerical Algorithm for Lasso Problems 

 

Solving Eqs. (8) and (9) is a convex minimization problem. A standard approach to this minimization problem is 

to take the gradient with respect to x and set it to zero. However, one of the central difficulties in solving the 

problems is the presence of a non-smooth l1 norm. In other words, the absolute value function |xj| does not have 

a derivative at xj = 0. Nevertheless, this problem can be solved by applying a soft-thresholding operator (Donoho 

1995) to xj, which is defined as: 
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  (13) 

where Sl is a soft-thresholding function. This operator translates x toward zero by an amount l, and sets it to 

zero if |x| < l. When l = 0, the solution of Eq. (8) becomes the solution for the ordinary least squares problem. 

The general approach for solving the lasso problem can be summarized as: 1) minimize the first term in the 

objective function; 2) apply the soft-thresholding operator to x; and 3) repeat steps 1 and 2. Of the many 
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reconstruction algorithms proposed for solving convex problems, the alternating direction method of multipliers 

(ADMM, Boyd et al. 2010), which blends the decomposability of the dual-ascent method with the superior 

convergence properties of the method of multipliers, is used in this paper to solve the lasso problem. This 

algorithm solves problems in the form: 

2 2

1
min      s.t.    

2
- + l =

x
y Ax z Bx z                                                                                                              (14) 

and the ADMM updates take the form of: 

( ) 1
1 T T T T1

( )k
-+ ì ü= +r +r -í ý

lî þ
x A A B B A z B z u                                                                                                    (15) 

1 1

1/ ( )k kS+ +
r= +z Bx u                                                                                                                                            (16) 

1 1 1( )k k k k+ + += + -u u Bx z                                                                                                                                      (17) 

where the r is the penalty parameter, the u vectors are Lagrange multipliers associated with the constraint, and 

S1/r is the soft-thresholding operator defined in Eq. (13). The algorithm involves a ridge regression update for x, 

a soft-thresholding step for z, and a simple linear update for u.  
 

5 Application Examples 

 

5.1    CBT 

The CBT is a method for inferring properties of the ground between two parallel boreholes (Figure 3). It has 

been used in geological and geotechnical practice since the early 1970s. A common problem in geophysical 

methods is that only a limited number of transmitters and receivers can be used. In addition, in contrast to X-ray 

computed tomography (CT) scanning, in which transmitters and receivers can be placed arbitrarily around the 

targets, the ray paths in CBT are restricted. These limitations affect the quality of image reconstruction, which 

tends to be an ill-posed problem from the perspective of inverse analysis. This subsection demonstrates the 

performance of the sparse modeling for CBT through the corresponding numerical tests. 

 
5.1.1    Mathematical fundamentals of CBT 

Image reconstruction techniques for CBT can be classified into two broad categories: transform methods and 

series expansion methods. We focused on the latter methods, as they are the most widely used in geotechnical 

applications. Figure 4 shows the schematic view of the image reconstruction procedure based on the series 

expansion method. In the figure, the dashed line indicates the i-th ray path (i = 1, 2,…, m), and the reconstruction 

area is divided into n cells. Each cell has a material property, i.e. the inverse of wave propagation velocity, 

defined as xj. The aij indicates the length of the i-th ray path crossing the j-th cell. Assuming that the ray paths 

are straight, the wave observation vector can be discretely approximated by (Honjo and Kashiwagi 1991): 

= +y Ax ε                                                                                                                                                            (18) 

where y is an m-dimensional observation vector, x is an n-dimensional parameter vector, e is an m-

dimensional noise vector, and A is an m-by-n observation matrix defined as: 
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In this problem, the error e is assumed to be an independently and identically distributed random variable that 

follows a normal distribution with a mean of 0 and a standard deviation of se. 
We applied the sparse modeling to two numerical examples of CBT to investigate the reconstruction 

accuracy. Figure 5 shows true images of the ground, in which (a) is the ground with some cavities (or potential 

piping holes), and (b) is a ground with layered structure. The inverse problem to solve here is to estimate the 

material properties of the cells (x) using the observations (y). 



Proceedings of the 7th International Symposium on Geotechnical Safety and Risk (ISGSR) 107

 

Borehole Borehole

Transmitter Reciever
         

Receiver

Transmitter cell-1

ith
 ra

y

ija
cell-2

cell-n

 
Figure 3.  Cross-borehole tomography.                                   Figure 4.  Image reconstruction procedure. 

 

                   
(a) Problem 1: Ground with cavities                                                (b) Problem 2: Layered ground 

Figure 5.  True images for the numerical tests. 

 

5.1.2    Numerical setup 

The total number of cells (n) is 441. Each cell has a value assigned, which can be considered a physical property 

of the ground, such as stiffness or the inverse of wave propagation velocity. Considering 21 receivers and 

transmitters, there are 21×21=441 ray paths in total. Although the dimension of the parameter vector n and that 

of observation vector m are identical in this problem, the observation matrix A is not a full-rank matrix because 

of rank deficiency. Hence, the reconstruction problems here are under-determined problems. The synthetic 

observation data (y) used for the inverse analysis is generated as follows: 

1. Assuming that all ray paths are straight, e the observation matrix A is computed (Eq. 1). 

2. Ax is computed; the parameter vector x is the vector of true values given in Figure 5. 

3. Gaussian observation noise with mean 0 and standard deviation se is added to the computed Ax. 

The basic sparse modeling, Eq. (8), cannot function well in the two problems because neither of them have 

sparse solutions. The reconstruction of the layered structure (Figure 5b) can be solved by structured lasso 

considering total variation (Eq. 9), and the image of the ground with cavities can be reconstructed well by 

minimizing the following objective function: 

02 1

1
min  

2
- + l -

x
y Ax x x  (20) 

where x0 represents the geotechnical parameters of the “healthy” areas. It is assumed here that vector x0 can be 

obtained through geotechnical boring when the transmitter and receiver are installed into the ground, so that 

vector x0 can be also considered as an additional prior information of the ground. 

In this numerical test, we investigated two cases: without observation noise, or with observation noise (se = 

2.0), and compared the results by sparse modeling with those of ridge regression. The choice of the 

regularization parameter l is important in sparse modeling to obtain reasonable results. Although there have 

been several approaches, such as information criteria (e.g., Ninomiya and Kawano 2016), cross-validation (e.g., 

Bishop 2005), and stability selection (Meinshausen 2010), we used l = 0.1 for noiseless problems, and l = 1.0 

for problems with noise. The accuracy of the reconstructed image is evaluated in terms of the root-mean-square 

error (RMSE):  
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where xi is the true value of the geotechnical parameter for the i-th cell, shown in Figure 5, and ˆ
i

x  is the 

reconstructed (estimated) value for the i-th cell obtained through the tomography. 
 

5.1.3    Results 

Figure 6 shows the reconstructed images of the ground by ridge regression and sparse modeling. Figures 6 (a) 

and (b) are the results by the ridge regression, and (c) and (d) are those obtained by sparse modeling. In problem 

1, the ridge regression can roughly identify the location of the cavities, but an image with some noise was 

obtained even in the noiseless case. On the other hand, the sparse modeling almost accurately identifies the 

cavities, and a considerably clear image was obtained. In problem 2, the ridge regression approximately detects 

the layers and also estimates the properties of the cells; on the other hand, the sparse modeling more accurately 

reconstructs the image and perfectly detects the soil layers. In terms of quantitative accuracy, the RMSE of 

sparse modeling (0.0164) is smaller than that of ridge regression (0.0537). 

Figure 7 shows the results taking the observation noise into account. In problem 1 (Figures 7a and 7b), both 

of the two methods seem difficult to detect the cavities with high accuracy, but sparse modeling yields a clearer 

image than ridge regression. A similar trend can be seen in the layered-ground problem (Figures 7c and 7d), for 

which the sparse modeling reconstructs the image more accurately than ridge regression, and almost perfectly 

detects the layer boundaries.  

In summary, sparse modeling can perform well in solving the cross-borehole tomography. 

 

              
(a)                                          (b)                                                        (c)                                          (d)  

Figure 6.  Reconstructed images of the ground (without observation noise). 

 

               
(a)                                          (b)                                                        (c)                                          (d)  

Figure 7.  Reconstructed images of the ground (with observation noise). 

 

5.2    Stratigraphic soil profiling 

Stratigraphic profiling is a central task in geotechnical site investigation. Some studies have demonstrated the 

importance of soil stratification on the design of shallow foundations (e.g., Burd and Frydman 1997; Lee et al. 

2013), deep foundations (e.g., Pardon et al. 2008), and structures on soft grounds (Huang and Griffiths 2010). In 

order to quantify the underground stratification, the number of layers (e.g., soil types) and their thickness (and 

hence their boundaries) should be identified.  

In recent years, stratigraphic profiling based on the cone penetration test (CPT) has attracted attention 

because the CPT can provide data (tip resistance, sleeve friction, and pore pressure) with high spatial resolution 

(0.01 ~ 0.05 m) within a reasonable time. Because no soil samples are extracted, the CPT-based stratigraphic 

profiling is performed by means of a soil classification system. Among the available systems, the soil behavior 

type (SBT) and the Ic index are widely used. Nevertheless, due to the heterogeneity of soils, SBT and Ic vary 

spatially, and the interpretation of soil stratigraphy can be very difficult. An example of profile of Ic with depth is 

shown in Figure 8 (a) (Ching et al. 2015). Small- and large-scale fluctuations can be seen in the profiles. Figure 8 

(b) shows the SBT profile based on the direct use of the Ic – SBT mapping.  The SBT profile with depth also 

shows small-scale fluctuations in the data, suggesting the presence of many thing layers, less than 10 cm-thick, 

were identified. This results in a typical “unreasonable” soil stratification and cannot be used in geotechnical 

practice. To address the difficulty, several methods have been developed for CPT-based stratigraphic profiling 

using machine learning techniques (Jung et al. 2008; Wang et al. 2013). 
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As noted, the main advantage of sparse modeling is its ability to exploit some “structures” in the data, 

therefore it is expected that sparse modeling would be useful in stratigraphic soil stratification. The objective of 

this section is to conduct soil stratification using a sparse modeling-based method, and compare it with past 

studies in order to discuss the applicability of the proposed approach.  

 

     
(a)                                                   (b) 

Figure 8.  Profiles of Ic and SBT with depth. 

 

5.2.1    Numerical setup 

Stratigraphic soil profiling was conducted for the data shown in Figure 8. First, a hidden structure in the depth 

profile of Ic (Figure 8a) can be exploited using trend filtering with a TV regularization term, and the objective 

function Eq. (9) can be rewritten as: 
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where yi is the value of Ic at depth i, xi is the value of Ic at depth i (to be estimated), and m is the number of data 

values. Subsequently, the soil stratification is identified directly through the Ic - SBT mapping based on the 

filtered profile.  

Although the lasso-based sparse modeling has many desirable properties, it is a biased estimator, for which 

the bias does necessarily disappear as m à ∞. Moreover, this bias becomes evident in stratigraphic soil 

profiling problems. In order to deal with this bias, we used a two-stage algorithm called “relaxed lasso 

(Meinshausen 2008)”. For more details on bias in lasso and the relaxed lasso, the reader is referred to Fan and Li 

(2001) and Meinshausen (2008). 

 

5.2.2    Results 

The estimated depth profiles of Ic and SBT are shown in Figure 9 and Figure 10, respectively. The red lines 

indicate filtered data, and the gray lines indicate original data. A 5-fold cross validation was used to determine 

the regularization parameter, and yielded a value of l = 0.2. The filtered depth profile of Is with l = 0.2 (Figure 

9a), however, still presents small and large fluctuations, and does not change significantly after trend filtering. 

The corresponding SBT profile (Figure 10a) seems unrealistic in soil stratification practice because many thin 

layers are identified. A possible technical reason for this failure is that the Ic profile has non-stationary noise. For 

example, although the upper part (depth from 0 to 20 m) of the Ic profile features a relatively small noise, the 

noise level becomes large in the lower part (depth > 20 m; Figure 8a). Analyzing data including non-stationary 

noise might be beyond the capabilities of the lasso, thus more flexible approaches, such as the Bayesian lasso 

mentioned in section 3.4, should be employed to achieve a more reasonable stratigraphic soil profiling. 

Nevertheless, sparse modeling has an attractive property, which is that of reasonably exploiting structures in 

the data without computational complexity. We analyzed the data using different regularization parameters, 

namely l = 1.0, 2.0, 5.0, and 10.0 to investigate the performance of sparse modeling in stratigraphic soil 

profiling. Figures 8 and 9 show the filtered Ic and SBT profiles with different choices of l. The larger the 

regularization parameter l, the simpler trend is identified. We assumed the result with l = 5.0 to represent a 

reasonable soil stratification, and compared it with results of past studies. The comparison is shown in Figure 11. 

No widely accepted or quantitative criteria exist to define “what is the reasonable soil stratification”; 
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nevertheless, sparse modeling seems to yield a reasonable soil stratification which can be used in geotechnical 

practice.  

 

                 
                             (a) l = 0.2                 (b) l = 1.0                (c) l = 2.0                 (d) l = 5.0               (e) l = 10.0 

Figure 9.  Filtered profile of Ic with depth, obtained using different regularization parameters. 

 

                         
                             (a) l = 0.2                 (b) l = 1.0                (c) l = 2.0                 (d) l = 5.0               (e) l = 10.0 

Figure 10.  Profile of SBT with depth based on the filtered Ic. 

 

 

Figure 11.  Comparison of stratification results (Modified from Ching et al. 2015). 
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6 Summary 

 

This paper demonstrated the potential of sparse modeling in geotechnical engineering applications by means of 

two practical examples: cross-borehole tomography, and stratigraphic soil profiling based on cone penetration 

testing. If a “solution sparsity” can be properly induced, i.e., the regularization term is properly modeled 

depending on the problems, sparse modeling performs well in geotechnical engineering application. In particular, 

the reconstruction accuracy in cross-borehole tomography can be considerably improved using sparse modeling. 

The trend filtering via sparse modeling is also promising in stratigraphic soil profiling. However, sparse 

modeling is not exempt from technical limitations, such as in the case of non-stationary noise in the data, and 

further research is needed to investigate the applicability of sparse modeling in geotechnical engineering. 
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