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Abstract: If you scan a page from a soil report, this is called digitization. If you deploy digital technologies, both 

software such as building information modeling and machine learning and hardware such as autonomous drones and 

additive manufacturing, to support new and more collaborative forms of project delivery, this is called digitalization. 

Data lies at the heart of this transformation that is targeted at re-valuing infrastructure from a “brick and mortar” asset 

to a service for the interests of the end-users. There is a need to view the value of data completely differently from how 

they are routinely used in current practice. In particular, there is a need to treat data as assets in themselves, over and 

above their conventional roles as inputs to a physical model or as monitoring data to trigger interventions. This paper 

explores the availability and nature of geotechnical data and presents two recent advances made in this direction for a 

specific but important task of estimating soil/rock properties (compressive sampling and Bayesian machine learning). 

Data-driven decision making does not imply taking the engineer out of the entire life cycle management chain. It is 

intended to support rather than to replace human judgment. 
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1 Introduction 

 

The principal finding in the report of the National Research Council (1995) concerning the role of probability in 

geotechnical engineering is that “probabilistic methods, while not a substitute for traditional deterministic design 

methods, do offer a systematic and quantitative way of accounting for uncertainties encountered by geotechnical 

engineers, and they are most effective when used to organize and quantify these uncertainties for engineering 

designs and decisions”. There is no debate that the geotechnical engineer has to grapple with many sources of 

uncertainties, including natural geologic variabilities. There is however a long drawn discussion on whether 

these uncertainties and the associated risks arising from consequences of a decision made in the face of 

uncertainties can be treated more formally. For example, the partial factors of safety in Eurocode 7 (EN 

1997 1:2004) are not explicitly calibrated according to reliability principles described in Annex C of the head 

Eurocode (EN 1990:2002) or Annex D of ISO2394: 2015 at this point in time. Notwithstanding the unique 

features of geotechnical practice, Phoon (2017) opined that reliability methods can handle complex real world 

information (cross and/or spatially correlated multivariate data) and information imperfections (sparse, uncertain 

and/or incomplete information) more effectively than relying on empiricism and judgment alone. In particular, it 

is sensitive to data while the conventional factor of safety or partial factors of safety are not. He further clarified 

that “reliability analysis is not a panacea for all uncertainties affecting design calculations based on the factor of 

safety or geotechnical practice in general. Reliability analysis is merely one of the many mathematical methods 

routinely applied to model the complex real-world for engineering applications. It is susceptible to abuse in the 

absence of sound judgment in the same manner as a finite element analysis. The importance of engineering 

judgment clearly has not diminished with the growth of theory and computational tools. However, its role has 

become more focused on those design aspects that remain outside the scope of theoretical analyses.” In short, 

data-driven decision making supports rather than replaces human judgment. 

In the meantime, the Institution of Civil Engineers (ICE) strongly urged the civil engineering industry to 

engage in digital transformation with greater urgency. The ICE State of the Nation Report in 2017 looks at how 

advances in digital technologies and data are transforming how we design, deliver and operate infrastructure and 

recommends the following: 

1. Need to view the value of data differently - “bodies of data on built assets are becoming increasingly 

important, and need to be managed as significant assets in themselves …”, 

2. Need to consider infrastructure as a service - “putting the end-user first should prompt us to embrace the 

full value of new technologies and data estates ...”, 

3. Need to keep pace with rapid advances. The report cited 64% of firms operating in Europe & the Middle 

East are rated as either ‘industry following’ or ‘behind the curve’ in terms of technology adoption, and 
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4. Need for infrastructure and construction industries to work with other industries – “Need to collaborate 

and coordinate … with the technology and manufacturing industries if we are to keep pace with these 

advances, and seize the moment.” 

Gerbert et al. (2016) pointed out that the construction sector in general is “ripe for change: labor 

productivity in construction has been stagnating for decades, and companies have been slow to adapt and 

innovate”. At present, it is accurate to say geotechnical risks are largely managed by the factor of safety at the 

design stage and the observational approach (Peck 1969) at the construction stage. In fact, the design phase and 

the construction phase in geotechnical engineering may not be as distinct as those in structural engineering. For 

example, it is not uncommon to adjust rock bolt spacing as tunneling progresses, but it is unheard of to adjust 

column spacing as each story is erected in a building. This is not a difference in tradition, but a fundamental 

difference in risk management to address qualitatively different design conditions. Although the geotechnical 

engineering profession has been very successful in making safe decisions based on a hybrid strategy combining 

site and observational data, modeling, testing, precedents, experience, and judgment, this strategy is now 

fundamentally out of alignment with broad sweeping trends disrupting all industries due to the advent of digital 

technologies. For example, the factor of safety remains effectively the same since it was presented as early as 

1948 in the classic text “Soil Mechanics in Engineering Practice” (Terzaghi and Peck 1948). There is no rational 

mechanism to adjust the factor of safety (or partial factors of safety) based on the amount of data collected at a 

given site. The Eurocode 7 (EN 1997 1:2004) adopts a notion of a characteristic value that can be adjusted 

(mostly empirically) based on site data. The design value is a function of the characteristic value and a fixed 

partial factor. In this sense, the design value depends on site data. Nonetheless, the design value is an input and 

its effect on performance (an output) cannot be assessed by judgment alone. One key advantage of the reliability 

index is that it is sensitive to data at the performance level. A design parameter that is estimated with more 

precision would result in a higher reliability index. Alternately, one can say that a more economical design can 

meet the desired target reliability index when more precise information is available or vice-versa (Ching et al. 

2014a). 

Risk-informed decision making needs data (Gransberg et al. 2018). It may be possible to do this informally 

using extremely limited data complemented by experience and judgment. Geotechnical practice is one such 

example, although we are none the wiser if our decisions are extremely safe or optimal for a particular site. 

Leaving aside the debate between deterministic and reliability approaches (Phoon 2017), the emerging limitation 

for the former in the face of digital transformation is that it does not quite know what to do with more data, 

beyond reducing it to a single number (average, cautious estimate, worst credible estimate, etc.), transforming it 

as an input to a physical model, or treating it as a simple trigger to activate interventions. There may be other 

applications, but arguably none is truly transformative when compared to developments in other industries and 

none is founded on capturing the best value from data as a core objective. Alternate approaches will need more 

data and will need clever and efficient algorithms to extract the most value out of data for decision making. The 

authors view the reliability approach as a good start, but it is unlikely to be the best when data scarcity is no 

longer a feature of geotechnical engineering. 

The objectives of this paper are to: (1) clarify if geotechnical engineering is data rich or data poor, (2) 

examine the general characteristics of its data, and (3) present possibilities on how data can support decision 

making in its own right. The observations made in this paper are entirely preliminary and restricted to one design 

decision pertaining to the estimation of soil/rock properties. They are intended to stimulate discussions so that 

we can keep pace with advances elsewhere. 

 

2 Data Rich or Data Poor? 

 

One common criticism of the reliability approach is that geotechnical information is too scarce for the approach 

to be meaningfully deployed in practice. For example, Schuppener and Heibaum (2011) remarked that “soil 

excavations and tests of the mechanical properties of soil never provide enough data to enable a probability 

calculation to be performed”. Macciotta et al. (2019) argued that there was not enough information for 

quantitative risk assessment to guide decision-making for adoption of rock fall protection strategies. Chilès and 

Delfiner (1999) noted that volume fractions for cores, cuttings, and logging at a Brent Field site in the North Sea 

are 1  10-9, 7  10-9, and 1  10-6, respectively. This “curse of small sample size”, a phrase coined by Phoon 

(2017), is certainly more conspicuous in geotechnical engineering. Nonetheless, there are two aspects that are 

generally not highlighted in this debate. First, the effect of sample size can be formally modeled as a statistical 

uncertainty. The National Research Council (1995) clarified this common misconception: “the lack of a large 

data set does not preclude the use of probability theory. Probability theory can be used to evaluate the 

uncertainties involved in working with meager information”. Prästings et al. (2018) also emphasized this 

advantage: “From a Bayesian point of view, one would rather have highly uncertain – but probabilistic – 

estimates of the geotechnical properties than no estimates at all”. Second, generic databases can be large, even 

when the constituent site-specific databases are small.  
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Phoon et al. (2016) and Ching et al. (2016a) provided useful overviews of generic univariate and 

multivariate databases on soil/rock properties, respectively. Table 1 shows a summary of these databases, labeled 

as (geo-material type)/(number of parameters of interest)/(number of data points). For example, the 

CLAY/10/7490 database consists of 7490 data points for ten clay parameters from 251 studies carried out in 30 

countries. The clay parameters cover a wide range of overconsolidation ratio (OCR) (but mostly 1~10), a wide 

range of sensitivity (St) (sites with St = 1~ tens or hundreds are fairly typical), and a wide range of plasticity 

index (PI) (but mostly 8 ~ 100). Most data points are classified as clays (some are sensitive or organic clays) on 

the Robertson’s soil classification chart. Some data points are classified as clayey silts or silt mixtures, and few 

are classified as sand mixtures or sands. This line of research has inspired comparable databases to be assembled 

in the literature recently (Müller et al. 2014; Liu et al. 2016). The availability of SPM2 (Soil Properties Manual 

version 2) as a freeware will hopefully encourage more data sharing and further enrichment of these databases to 

cover more parameters and/or more site conditions - http://140.112.10.150/fmanalysis.html?view=spm2 (Phoon 

and Ching 2017). The ISSMGE TC304 launched a database sharing initiative (304dB) recently to hasten the 

pace of machine learning research (http://140.112.12.21/issmge/tc304.htm?=6). 

Another source of information frequently collected comes from pile load tests. The performance databases 

for other geotechnical structures (in addition to piles) are available, but less commonly reported in the literature. 

A comprehensive survey of these databases was carried out by Phoon & Tang (2019). Table 2 includes further 

updates. The following geotechnical structures are covered: (1) shallow and deep foundations, (2) offshore 

spudcans, (3) mechanically stabilized earth and soil nail walls, (4) pipes and anchors (plate, helical, and shoring), 

(5) slopes and base heave, (6) cantilever walls, and (7) braced excavations. Details are given elsewhere (Phoon 

and Tang 2019). Another ongoing database sharing project called DINGO (Databases to Interrogate 

Geotechnical Observations) was reported by Hancock (2018). 

For soil/rock properties, the most basic design decision in geotechnical practice is to estimate their values 

from other test results, typically field test results. Empirical transformation (or regression) models such as those 

shown in Figure 1 are widely used for this purpose. They are based on generic databases covering multiple sites 

such as those presented in Table 1, because there are insufficient data in one site to establish a purely site-

specific or local model. Transformation uncertainty (scatter about the regression line) is an intrinsic 

characteristic of these empirical models. A second characteristic that is well understood but does not feature in 

the actual estimation of soil/rock properties is site effect as shown in Figure 2. If one were to accept these 

observations, namely: (1) a generic database is large, (2) a site-specific database is small, and (3) there are site 

differences, one could readily imagine research questions where data-driven algorithms can add value to routine 

decision making: 

1. How to characterize “site differences” based on sparse data from a routine project? 

2. How to adapt a generic database so that it is more relevant to a specific site? 

The above questions would apply to other design decisions. For example, Section 7.4.1 “Design methods” in 

Eurocode 7 (EN 1997 1:2004) recommends different design approaches for pile foundations: 

1. The results of static load tests, which have been demonstrated, by means of calculations or otherwise, to 

be consistent with other relevant experience; 

2. Empirical or analytical calculation methods whose validity has been demonstrated by static load tests in 

comparable situations; 

3. The results of dynamic load tests whose validity has been demonstrated by static load tests in comparable 

situations; 

4. The observed performance of a comparable pile foundation, provided that this approach is supported by 

the results of site investigation and ground testing. 

More site-specific estimates of soil/rock properties and the associated uncertainties in these estimates would 

clearly contribute to the second approach. For other design approaches, relevant databases could be compiled 

and exploited in the same way. In fact, the distinction between different approaches diminishes when different 

databases could be combined to support decision making even more holistically. Phoon and Tang (2019) opined 

that there is “potential to apply new deep learning methods to identify ‘similar’ load test data from a generic 

database to supplement limited site-specific load test data. By doing so, ‘site-specific’ model factors can be 

derived. This effort will contribute to a broader agenda to digitalize foundation design for ‘precision 

construction’, where ‘site-specific’ model factors and soil parameters can possibly customize design to a 

particular site and even a particular location in a site”. This direction of inquiry is closer in spirit to digitalization 

and clearly transforms existing practice more fundamentally than reliability-based design. It is evident that an 

outcome such as more site-specific property estimates will be useful for any design approach, deterministic or 

otherwise and will impact a design more directly than probability distributions. 
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Figure 1. Examples of transformation models in EPRI EL-6800 (Kulhawy and Mayne 1990). 

 

 
 

Figure 2. Example of site-specific effects in the correlation between normalized undrained shear strength (su/ v) and 

overconsolidation ratio (OCR) (Ching and Phoon 2019a). 
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Table 1. Summary of some soil/rock databases (Phoon and Ching 2017). 

 

Database Reference Parameters of interest # Data points # Sites/studies 

Range of parameters 

OCR PI St 

CLAY/5/345 Ching and Phoon (2012) LI, su, su
re, ’

p, ’
v 345 37 sites 1~4 — Sensitive to quick clays 

CLAY/6/535 Ching et al. (2014b) su/ '
v, OCR, (qt v)/ '

v, 

(qt u2)/ '
v, (u2 u0)/ '

v, Bq 

535 40 sites 1~6 Low to very high plasticity Insensitive to quick clays 

CLAY/7/6310 Ching and Phoon (2013, 2015a) su from 7 different test 

procedures 

6310 164 studies 1~10 Low to very high plasticity Insensitive to quick clays 

CLAY/10/7490 Ching and Phoon (2014) LL, PI, LI, '
v/Pa, St, Bq, 

'
p/Pa, su/ '

v, (qt v)/ '
v, 

(qt u2)/ '
v 

7490 251 studies 1~10 Low to very high plasticity Insensitive to quick clays 

F-CLAY/7/216 D’Ignazio et al. (2016) su
FV, '

v, '
p, wn, LL, PL, 

St 

216 24 sites 1~7.5 Low to very high plasticity Insensitive to quick clays 

FG/KSAT-1358 Feng and Vardanega (2019a, b) e, ksat, LL, PI 1358 33 studies Fat clay, lean clay, elastic silts, and silts. 

e = 0.19 – 8.57; ksat = 1.44×10-13 – 7.5×10-6; 

LL = 22 – 675; PI = 5 – 625.9 

J-Clay/5/124 Liu et al. (2016) Mr, qc, fs, wn, d 124 16 Soft to stiff clayey soils and silty clay soils with high variability of 

the strength and stiffness characteristics 

Mr = 12.54~95.82 MPa, qc = 0.22~3.93 MPa, fs = 0.03~0.14 MPa, 

wn  (%) = 6.91~78.11, d=10.47~19.92 kN/m3 

SAND/7/2794 Ching et al. (2017a) D50, Cu, Dr, '
v/Pa, , qt1, 

(N1)60 

2794 176 studies 1~15 D50 = 0.1~40 mm, Cu = 1~1000+ 

Dr = -0.1~117% 

ROCK/9/4069 Ching et al. (2018) n, , RL, Sh, bt, Is50, Vp, 

c, E 

4069 184 studies  = 15~35 kN/m3, n = 0.01~55% 

c = 0.7~380 MPa, E = 0.03~120 GPa 

Note: LL = liquid limit; PL = plastic limit; PI = plasticity index; LI = liquidity index; wn = natural water content; Mr = resilient modulus; qc = cone tip resistance; fs = sleeve friction; d = dry 

density; e = void ratio; ksat = saturated hydraulic conductivity; D50 = median grain size; Cu = coefficient of uniformity; Dr = relative density; ’
v = vertical effective stress; ’

p = 

preconsolidation stress; su = undrained shear strength; su
FV = undrained shear strength from field vane; su

re = remoulded su;  = effective friction angle; St = sensitivity; OCR = 

overconsolidation ratio, (qt- v)/ '
v = normalized cone tip resistance; (qt-u2)/ '

v = effective cone tip resistance; u0 = hydrostatic pore pressure; (u2-u0)/ '
v = normalized excess pore pressure; Bq 

= pore pressure ratio = (u2-u0)/(qt- v); Pa = atmospheric pressure = 101.3 kPa; qt1 = (qt/Pa) CN (CN is the correction factor for overburden stress); (N1)60 = N60 CN (N60 is the N value 

corrected for the energy ratio); n = porosity;  = unit weight; R = Schmidt hammer hardness (RL = L-type Schmidt hammer hardness); Sh = Shore scleroscope hardness; bt = Brazilian tensile 

strength; Is = point load strength index (Is50 = Is for diameter 50 mm); Vp = P-wave velocity; c = uniaxial compressive strength; E = Young’s modulus. 
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Table 2. Summary of performance databases for some geotechnical structures (updated from Table 1, Phoon and Tang 2019). 

 
Geotechnical structure Database/reference Data source Test type Geomaterial N 

Shallow foundations UML-GTR ShalFound07 (Paikowsky et al. 2010) Global Laboratory/field Cohesionless 549 

UML-GTR RockFound07 (Paikowsky et al. 2010) Global Field Rock 122 

Akbas (2007) Global Field Cohesionless 400 

Mayne and Dasenbrock (2018) Global Field Sand 130 

Patra et al. (2012a, b) — Laboratory Sand 192 

Okamura et al. (1997) Japan Centrifuge Sand over clay 31 

Tang and Phoon (2017) — Centrifuge Dense sand 53 

Samtani and Allen (2018) USA/Europe Field Cohesionless 71 

Offshore spudcans Teh (2007) NUS Centrifuge Sand over clay 14 

Hossain (2014) UWA Centrifuge Clay with sand 14 

Hossain and Randolph (2010) UWA Centrifuge Layered clay 42 

Lee (2009) UWA Centrifuge Sand over clay 35 

Hu (2015) UWA Centrifuge Sand over clay 32 

Ullah (2016) UWA Centrifuge Clay-sand-clay 27 

Tang and Phoon (2019a) NUS and UWA Centrifuge Clay with sand 128 

Drilled shafts (vertical load) Ng et al. (2001) Hong Kong Field Rock/saprolite 38 

AbdelSalam et al. (2015) Egypt Field Various 318 

Asem et al. (2018) Global Field Soft rock 190 

DSHAFT (Garder et al. 2012) Iowa, USA Field Various 38 

Motamed et al. (2016) Las Vegas Valley Field Caliche 41 

Stark et al. (2017) Illinois, USA Field Weak rock 155 

TxDOT (Moghaddam et al. 2018) Texas Field Various 27 

Tang et al. (2019) Global Field Various 320 

Drilled shafts (lateral load) EPRI (Chen and Kulhawy 1994) Global Field Clay/sand 88 

Chen and Lee (2010) Global Field Clay/sand 99 

Chen et al. (2011) Global Field Clay/sand 40 

Marcos and Chen (2013) Global Field Gravel 24 

Augered cast-in-place piles Reddy and Stuedlein (2017) USA Field Cohesionless 112 

McVay et al. (2016) Florida, USA Field Various 78 

Driven piles AAU-NGI (Augustesen 2006) Global Field Various 420 

Zhang et al. (2006) Hong Kong Field (static/dynamic) Weathered granite 1514 

Long et al. (2009) Wisconsin, USA Field (dynamic) Various 316 

PILOT (Roling et al. 2011) Iowa, USA Field Various 275 

PSU (Smith et al. 2011) Global Field Various 322 

Long and Anderson (2014) Illinois, USA Field (dynamic) Various 111 

ZJU-ICL (Yang et al. 2016) Global Field Sand 117 

Long (2016) Wisconsin, USA Field (static/dynamic) IGM 215 

Lehane et al. (2017) Global Field Various 120 

Adhikari et al. (2018) Wyoming, USA Field Soft rock 25 
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Table 2 (continued). 

 
Geotechnical structure Database/reference Data source Test type Geomaterial N 

Driven piles TxDOT (Moghaddam et al. 2018) Texas Field Various 33 

Tang and Phoon (2018b, 2018c, 2018d) Global Field Various 783 

Helical piles Tang and Phoon (2018a, 2019b) Canada/USA Field Various 1010 

Driven cast-in-situ piles Long (2013) Wisconsin, USA Field Various 182 

Flynn (2014) United Kingdom Field Sand 116 

Pile foundations FHWA DFTLD (Abu-Hejleh et al. 2015) Mainly in USA Field Various 1567 

Dithinde et al. (2011) South Africa Field Various 174 

IFSTTAR (Burlon et al. 2014) France Field Various 174 

Niazi (2014) Global Field Various 330 

Galbraith et al. (2014) Ireland Field Various 175 

AUT-CPT (Moshfeghi and Eslami 2018) Global Field Various 466 

WBPLT (Chen et al. 2014) Global Field Various 613 

LADOTD (Rauser and Tsai 2016) Louisiana, USA Field (static/dynamic) Various 1465 

Nanazawa et al. (2019) Japan Field Various 441 

Micropiles Almeida and Liu (2019) Canada Field Ontario soils 47 

Foundations EPRI (Kulhawy et al. 1983) USA Field Various 804 

Mechanically stabilized earth walls Huang and Bathurst (2009) — Laboratory Cohesionless 318 

Miyata and Bathurst (2012a) Japan Laboratory/in situ Cohesionless 652 

Miyata and Bathurst (2012b) Japan Laboratory Various 503 

Miyata et al. (2014) Japan Laboratory N/A 362 

Miyata and Bathurst (2015) Japan Field Various 520 

Miyata and Bathurst (2019) Global In situ Cohesionless 113 

Allen and Bathurst (2018) — Field Various 378 

Miyata et al. (2018) — In situ/laboratory Various 202 

Wood et al. (2012a, b) Texas, USA Laboratory Cohesionless 650 

Soil nail walls Lazarte (2011) — Field — 166 

Cheung and Shum (2012) Hong Kong Field CDG/CDV 913 

Lin et al. (2017) Global In situ — 123 

Liu et al. (2018) — In situ — 95 

Yuan et al. (2019) China In situ Various 144 

Multi-anchor walls Miyata et al. (2011) Japan In situ Various 28 

Slopes Travis et al. (2011) Global Field Various 157 

Bahsan et al. (2014) — Field Clay 43 

Excavations (base heave) Wu et al. (2014) Global In situ Cohesive 24 

Pipes White et al. (2008) — Small/full-scale Sand 61 

Stuyts et al. (2016) — Small/full-scale Sand 108 

Ismail et al. (2018) — Small scale/centrifuge Sand 143 

Plate anchors White et al. (2008) — Small/full-scale Sand 54 
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Table 2 (continued). 

 
Geotechnical structure Database/reference Data source Test type Geomaterial N 

Plate anchors Stuyts et al. (2016) — Small/full-scale Sand 192 

Helical anchors Tang and Phoon (2016) — Laboratory Cohesive 78 

Field Cohesive 25 

Shoring anchors Chahbaz et al. (2019) Beirut Field Clay/marl/limestone 70 

Cantilever wall Phoon et al. (2009) — Centrifuge Sand 20 

Excavation (stability) Marsland (1953) — Small-scale Loose/dense sand 23 

Large-scale 10 

Excavation (wall displacement) Long (2001) Global Field Various 296 

Moormann (2004) Global Field Soft soil 530 

Wang J. et al. (2010) Shanghai Field Soft soil 300 

Wu et al. (2013) Taipei Field Soft clay 22 

Note: CDG = completely decomposed granite; CDV = completely decomposed volcanic; IGM = intermediate geomaterial; 

N = number of load tests; NUS = National University of Singapore; UWA = University of Western Australia; ZJU = 

Zhejiang University; ICL = Imperial College London. 
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The key theoretical difficulty here is that the characteristics of geotechnical data are more challenging than 

scarcity. The entire literature on reliability and risk management exist, because geotechnical data are uncertain 

and this uncertainty is magnified and its formal treatment possibly restricted by scarcity. The notion that decision 

making in geotechnical engineering is a matter of “calculated” risk is well appreciated for many years, although 

the actual “calculation” remains steeped in empiricism. Casagrande (1965)’s concept of “calculated risk” 

embodies the following two elements: 

 

1. The use of imperfect knowledge, guided by judgment and experience, to estimate the probable ranges for 

all pertinent quantities that enter into the solution of a problem; 

2. The decision on an appropriate margin of safety, or degree of risk, taking into consideration economic 

factors and the magnitude of losses that would result from failure. 

 

“Imperfect knowledge” has been interpreted as uncertain knowledge, but there are other characteristics that 

are arguably of comparable importance as explained in the following section. The topic of geotechnical risk has 

since been covered by at least three Terzaghi Lectures [Robert Whitman (1981). Evaluating calculated risk in 

geotechnical engineering; Suzanne Lacasse (2001). Protecting society from landslides - the role of the 

geotechnical engineer; and John Christian (2003). Geotechnical engineering reliability: How well do we know 

what we are doing?] and one Rankine Lecture [Suzanne Lacasse (2015). Hazard, Risk and Reliability in 

Geotechnical Practice]. It is safe to say that management of “uncertain geotechnical truth” (Baker 2010; Spross 

et al. 2018) is more of an art than science in practice. It is timely to examine the role of data in geotechnical risk 

management with these methodological advancements in mind. 

 

3 Characteristics of Geotechnical Data 

 

It is overly simplistic to say that geotechnical data are always scarce. The previous section clearly points out that 

this is true only for site-specific data. One can ponder if this will remain true even at the site level in the face of 

fast developing digital technologies. It is safe to say that the volume, variety, and velocity of data will continue 

to increase and the demand to manage data as assets in themselves will increase. Even at this point in time, the 

amount of generic data from multiple sites is certainly much larger than what is shown in Tables 1 and 2. Data 

from past projects are frequently left unattended, because engineers do not know what to do with them! The 

authors venture to suggest that ideal data (site-specific data directly suitable for design) may be scarce, but less 

ideal data from other sites are voluminous. One may argue against the presence of big data in geotechnical 

engineering by appealing to site-specificity, but we are undoubtedly in possession of big indirect data (BID). 

BID will encompass any data that are potentially useful but not directly applicable to the decision at hand. A 

generic database will be one type of BID. 

Besides possible scarcity, geotechnical data are generally multivariate as shown in Table 3. It is 

uneconomical to mobilize equipment just to conduct a single test. In addition, genuine multivariate data are 

rarely collected in a site investigation program, because it is not cost effective to conduct multiple tests in close 

proximity. There is an obvious tradeoff between conducting different tests in different locations and conducting 

different tests in the same location. The former strategy collects more information on the spatial variability of the 

site. The latter strategy collects information on the cross-correlations among all tests. In practice, it is common to 

adopt an intermediate strategy involving conducting different test combinations at different depths and locations. 

The grayed out cells in Table 3 denote absent measurements. Hence, geotechnical data are typically 

“incomplete”. 

 
Table 3. Site investigation results for a silty clay layer at a Taipei site (Ou and Liao 1987). 

 

Depth 

(m) 

su 

(kN/m2) 

su(mob) 

(kN/m2) 

Test results 

LL 

(Y1) 

PI 

(Y2) 

LI 

(Y3) 
s v/Pa 

(Y4) 

s p/Pa 

(Y5) 

su(mob)/s v 

(Y6) 

qt1 

(Y9) 

12.8 UU 55.2 46.9 30.1 9.1 1.20 1.26 1.71 0.37 3.35 

14.8 VST 50.7 52.9 32.8 12.8 1.43 1.43  0.36 3.34 

16.1 UU 61.9 51.7 36.4 14.5 1.24 1.54  0.33 3.15 

17.8 UU 54.2 42.8 41.9 18.9 0.90 1.68 1.79 0.25 2.74 

18.3 VST 59.5 59.3    1.72  0.34 2.76 

20.2 UU 73.1 60.5 38.1 17.3 0.70 1.88  0.32 2.73 

22.7 VST 63.3 64.4 37.0 16.0 0.58 2.08  0.31 2.97 

24.0 UU 82.2 67.5 38.0 16.2 0.75 2.19 2.19 0.30 2.80 

26.6 UU 98.1 82.1 34.8 13.8 0.80 2.41  0.34 3.92 
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Figure 2 illustrates that site effects do exist in an important transformation model that relates the normalized 

undrained shear strength to the overconsolidation ratio. Although site effects are well known, they are mainly 

characterized in research studies through a testing programme that is more detailed that what is routinely carried 

out in practice and for rather distinctive geo-materials. Kulhawy and Mayne (1990) pointed out that 

“comprehensive characterization of the soil at a particular site would require an elaborate and costly testing 

programme, well beyond the scope of most project budgets”. To the knowledge of the authors, no one has 

characterized site effects based on more routine data such as those shown in Table 3 commonly collected at a 

project level. In practice, site effects are broadly appreciated based on geology, soil mechanics, and experiences 

at comparable sites, rather than characterized quantitatively through a detailed multivariate analysis of the site 

data. The typical caveat included in design guides would include a general statement such as “caution must 

always be exercised when using broad, generalized correlations of index parameters or in-situ test results with 

soil properties. The source, extent, limitations of each correlation should be examined carefully before use to 

ensure that extrapolation is not being done beyond the original boundary conditions. ‘Local’ calibrations, where 

available, are to be preferred over the broad, generalized correlations” (Kulhawy and Mayne 1990). 

Notwithstanding this sensible caveat, the engineer is typically left with no recourse but to use these generalized 

correlations in the absence of “local” versions. Hence, BID is already routinely used in practice in the form of 

Figure 1. One could surmise that it has some real value. 

Phoon (2018) suggested that the characteristics of geotechnical data can be succinctly described as MUSIC: 

Multivariate, Uncertain and Unique, Sparse, and InComplete. The “unique” and “incomplete” characteristics 

have not received the attention they deserve in the literature, although they are surely present to different degrees 

in geotechnical databases. Table 3 is a site-specific example of a MUSIC database. Each row (record) in a 

MUSIC database is treated as independent. This assumption is reasonable if the depth interval between each 

record is larger than the spatial correlation length. Ching and Phoon (2019b, 2019d) extended MUSIC to 

MUSIC-X to account for spatial correlation between two records measured in close proximity. The symbol “X” is 

adopted to foreground the spatial/temporal dimension in MUSIC data. Spatial variability is a well-recognized 

characteristic in many geo-disciplines such as geostatistics. Spatial variation is used in the broad sense where 

stratigraphic changes and other variable geologic features are included. Other characteristics may emerge as 

property databases grow to incorporate other sources of data. It will be illustrated in the next section that an in-

depth understanding of these data characteristics is needed to develop data-driven algorithms that will bring 

more value to practice. 

 

4 Data-Driven Algorithms 

 

4.1    Compressive sampling 

Compressive sampling (or sensing, CS) is a novel sampling paradigm in digital signal processing to reconstruct a 

signal (e.g., an image with 1000 × 1000 = 1 million pixels) from a small number of measurements on that signal 

(Candès et al. 2006; Donoho 2006; Candès and Wakin 2008; Wang and Zhao 2016; Comerford et al. 2016, 

2017). In the context of signal processing, Table 3 is a 9 × 9 matrix and can be considered as an image with 9 × 9 

= 81 pixels and missing values at 9 pixels. Then, the MUSIC-X problem associated with Table 3 becomes a 

problem of how to estimate or recover the 9 missing values or how to add a new row to Table 3 at a new given 

depth. Indeed, many geotechnical data are images, such as geology maps and subsurface geological cross-

section, and direct measurements on the image are often sparse and only taken at a limited number of locations. 

In linear algebra, a 2D image with Nx1 × Nx2 pixels, such as the color map shown in Figure 3, can be represented 

by a matrix F with a dimension of Nx1 × Nx2 and expressed as a weighted summation of Nx1 × Nx2 number of 2D 

basis functions, such as cosine or wavelet functions (Zhao et al. 2018): 

1 2

2D 2D

1

x x
N N

t t

t

F B  (1) 

in which Bt2D is the t-th 2D basis function that is independent of F, while t
2D is the weight corresponding to 

Bt
2D. In the context of CS, most images are compressible, suggesting that only a small number of basis functions 

is necessary to properly represent the image and that the magnitudes of most t
2D are almost zero or trivial 

except several non-trivial ones (i.e., coefficients with significantly large magnitudes). Therefore, once the non-

trivial coefficients t
2D can be identified and estimated using sparse measurements Y, signal F can be 

approximately reconstructed. The relation between Y and t
2D is expressed as (Zhao et al. 2018): 
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Figure 3. Representation of a 2D image in compressive sampling (Zhao et al. 2018). 

 

where x1 and x2 are problem-specific measurement matrices, reflecting the locations of elements of Y in F 

along row and column directions, respectively. Although Eq. (2) is underdetermined, the non-trivial coefficients 

in t
2D can be obtained using several existing methods, including non-probabilistic methods, such as orthogonal 

matching pursuit (Pati et al. 1993; Wang and Zhao 2016), and Bayesian methods (Ji et al. 2008, 2009; Wang and 

Zhao 2017). Once the non-trivial coefficients in t
2D are properly estimated, the t

2D can be approximated as 
2Dˆ
t

 by setting those trivial elements of t
2D as zero. Then, the 2D image of interest F can be approximated as:  

1 2

2D 2D

1

ˆ ˆ
x x

N N

t t

t

F B  (3) 

When Bayesian methods is used to estimate 2Dˆ
t

 (Ji et al. 2008, 2009; Wang and Zhao 2017; Huang et al. 

2016; Zhao et al. 2018), both the best estimate and covariance of F̂  are obtained.  As an illustration, Figure 4a 

shows a 2D vertical cross-section with a thickness of 10.20m (in depth direction x1) and a length of 20.44m (in 

horizontal direction x2). A resolution of 0.04m is adopted in this example for both x1 and x2 directions, leading to 

256×512 = 131, 072 data points in total. Suppose that 10×4 data points, as shown by open circles in Figure 4a, 

are taken as the measured data Y and used together with their corresponding locations to recover the complete 

2D cross-section with 131, 072 data points. Figure 4b shows the best estimate of the 2D cross-section obtained 

from Bayesian CS or BCS (Zhao et al. 2018). A similar spatially varying trend can be observed in Figures 4a and 

4b, even when only 40/131,072 = 0.03% of the original data are used as input to BCS. To examine the 

uncertainty associated with the BCS results, Figure 4c shows standard deviation, SD, obtained from BCS 

multiplying a factor of 1.96, and Figure 4d shows the absolute residuals between the original 2D data (i.e., 

Figure 4a) and the BCS best estimates from Y (i.e., Figure 4b). The 1.96 SD surface shown in Figure 4c are 

generally larger than most residuals shown in Figure 4d, while some residuals at locations far away from the 

measurement data Y are larger than the 1.96 SD. These observations imply that many residuals fall within the 

region defined by the mean±1.96 SD (i.e., approximate 95% confidence interval or “credible interval” in 

Bayesian statistics parlance). 

CS is data-driven and the CS results improve as the data quantity increases. Figures 5b, 5c, and 5d show the 

BCS best estimate for three different measurement number scenarios of 30×15, 50×25 and 100×50, respectively, 

together with the 10×4 scenario in Figure 5a. When compared with the 10×4 scenario in Figure 5a, the best 

estimate for the 30×15 scenario (see Figure 5b) is more similar to the original 2D data as shown in Figure 4a. As 

the number of measurement data further increases, the best estimate of 2D data (see Figures 5c and 5d) gradually 

approaches to the original complete 2D data (see Figure 4a), and the BCS SD is reduced to almost zero, as 

shown by Zhao et al. (2018). 

Although Bayesian method can be used to provide both best estimate and uncertainty of  t
2D in Eq. (1) 

(Wang and Zhao 2017; Zhao et al. 2018), the fundamental principle of CS [see Eq. (1) and Eq. (2)] is non-

probabilistic and philosophically different from the commonly used geostatistical methods, such as kriging. In 

kriging, function types for both trend function and auto-covariance function are generally pre-assumed, and 

extensive measurement data, which are often not available in geotechnical practice, are needed for validating the 

assumptions and stationarity and for estimating the parameters required in the trend function and auto-covariance 

function. When the measurements are sparse, it is extremely challenging to examine the stationarity assumption, 
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properly select the suitable function types for trend function and auto-covariance function, or accurately estimate 

the required parameters, such as correlation length. In contrast, CS and BCS are non-parametric, and they do not 

need pre-assumed trend function or auto-covariance function [see Eq. (1) and Eq. (2)], therefore bypassing all 

the difficulties mentioned above for kriging. Wang Y. et al. (2017) and Zhao et al. (2018) performed 

comparative studies between kriging and BCS for 1D and 2D data, respectively, and showed that BCS performs 

much better than kriging for sparse measurements and that BCS and kriging have similar performance for 

extensive measurements. 

 

 
 

Figure 4. Comparison between the original 2D data and that estimated from 10×4 measurement: (a) Original 2D data; (b) 

best estimate of spatially varying 2D data; (c) 1.96 standard deviation of estimated results; and (d) absolute residuals between 

(a) and (b) (Zhao et al. 2018). 

 

 

 
 

Figure 5. Best estimate of spatially varying 2D data under different number of measurements scenarios: (a) 10×4 (b) 30×15 

(c) 50×25 and (d) 100× 50 (Zhao et al. 2018). 

 

The BCS results can be used together with Karhunen–Loève (KL) expansion to generate random field 

samples (RFSs) directly from sparse measurements (Wang Y. et al. 2018). KL simulation of RFSs generally 

requires the mean of the random field of interest and deterministic orthogonal eigen-functions and eigenvalues 

corresponding to the covariance function or covariance matrix (Phoon et al. 2002). On the other hand, BCS 

provides both the best estimate (i.e., the mean of the random field) and the covariance matrix for the signal of 

interest directly from sparse measurements. Wang Y. et al. (2018) developed a BCS-KL random field generator 

to simulate RFSs directly from sparse measurements and offered a Bayesian perspective of random field 

modeling of site-specific spatial variability (Wang Y. et al. 2019a). The BCS-KL generator is non-parametric 

and data-driven. No pre-determined function forms are needed for marginal probability density function or 

covariance function of the random field. Therefore, the BCS-KL generator is readily applicable to non-Gaussian 

and non-stationary RFSs, including RFSs with non-stationary auto-covariance structure (Montoya-Noguera et al. 

2019) and RFSs with unknown trend function without de-trending (Wang Y. et al. 2019b). In addition, the BCS-

KL generator may be readily extended to simulate cross-correlated bivariate RFSs (Zhao and Wang 2018). 
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4.2    Bayesian machine learning 

Ching and Phoon (2019c) proposed a Bayesian machine learning method to construct a site-specific distribution 

function for a MUSIC database such as that shown in Table 3. Each database consists of m soil parameters (Y1, 

Y2, … , Ym) (columns of Table 3) at n different depths (z1, z2, …, zn) (rows of Table 3). Note that site data are 

typically multivariate (m > 1) and incomplete (grayed out cells in Table 3). The observed data are denoted by Yo 

and unobserved data denoted by Yu. Because soil parameters can be highly non-normal, Ching and Phoon 

(2015b) adopted an analytical transformation based on the Johnson distribution to convert (Y1, …, Ym) to 

approximately normal data. The approximately normal data are denoted by x = (X1, …, Xm)T, where “T” refers 

to vector/matrix transpose. A key assumption made in Ching and Phoon (2019c) is that x at a certain depth 

follows the multivariate normal PDF: 

1
T 1

2 2
1

| , 2 exp
2

m

s s s s s sf x C C x C x  (4) 

The multivariate normal PDF has mean vector = s and covariance matrix = Cs; the subscript “s” is to 

highlight that s and Cs are “site-specific”. Because site-specific data are sparse (small n), it is technically 

challenging to estimate s and Cs using conventional methods such as matching moments or maximizing 

likelihood. It is also very challenging to estimate the statistical uncertainties associated with s and Cs, which are 

significant for a typical set of site-specific data and will dominate other uncertainties when n is sufficiently 

small. Ching and Phoon (2019c) developed a novel Gibbs sampler to overcome this long standing challenge. The 

key idea is to treat s, Cs, and xu (transformed from Yu) as unknown random quantities and to sequentially 

sample one random quantity at a time from distributions conditioned on the rest of the quantities and the 

observed data xo (transformed from Yo). Simulation is practical because these conditioned distributions are 

available in closed-form for suitably chosen conjugate priors. There is room to further improve efficiency, but 

this is possibly the first practical proposal to tackle all aspects of MUSIC, particularly incompleteness in the 

presence of sparsity and high random dimensions. 

Consider properties at a new depth (xnew) that does not appear in the training data previously used in the 

Gibbs sampler. Based on the total probability theorem, the conditional multivariate PDF f(xnew|Xo) is a mixture 

of multivariate normal PDFs: 

b

T
o o

new new news s s s,ts s s s,t
t t 1b
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f x | f x | , f , | d d N x | ,

T t
X C C X C C  (5) 

where ( s,t, Cs,t) are the GS samples at time step = t; tb is the end of the burning-period; and T is the total number 

of GS time steps or samples. Figure 6 illustrates the shape of f(xnew|Xo), the histogram of the mean of X1, and the 

histogram of the correlation coefficient for two, ten, and one hundred data points simulated from a bivariate 

normal distribution (X1, X2) with mean = 0 and covariance matrix = identity. In general, f(xnew|Xo) is not a 

multivariate normal distribution. It is flat or uninformative when n = 2, because there is almost no site data to 

“learnt” from. The histogram of the mean covers a wide range and the histogram of the correlation coefficient is 

not too far from a uniform distribution as to be expected. 

The simulation of a site-specific probability distribution appears very complicated to the average engineer, 

but it can support a critical design decision on how to choose soil/rock properties at a particular site by 

“learning” from site-specific data alone. An appreciation of geology tempered by experience and judgment 

remain important as a reality check, but such a machine learning method is clearly of immediate value to routine 

practice when applied judiciously to complement the expertise of the engineer. It is not appropriate to ask an 

engineer to process MUSIC data by judgment alone. For example, Ching and Phoon (2019a) developed a 

similarity index (S) based on f(xnew|Xo) to identify records from a generic database that are “similar” to those 

from a specific site. Figure 7 illustrates a target site in Onsøy, Norway (red solid squares), and how records from 

another site in Norway (Drammen) are identified as “similar” (S > 1) (black solid circles) or “dissimilar” (S < 1) 

(black open circles) based on this concept. The Drammen and Onsøy sites are roughly 50 km apart with 

comparable geologic origins (Lacasse et al. 1981; Lacasse and Lunne 1982). Ching and Phoon (2019b, 2019d) 

generalized Eq. (5) to predict properties in a new location based on all available information, by conditioning on 

the other test results at the same depth using both parameter cross-correlation and conditioning on the data 

measured at nearby depths through spatial correlation. The insights provided by these complex algorithms are 

surely beyond the reach of judgment. 

It is also noteworthy that the applicability of the proposed GS method is independent of the nature of the 

data. It can be used to construct the site-specific PDF model for clays, sands, or rocks. Namely, it is a machine 

learning framework that is purely driven by data. Bayesian machine learning methods such as Bayesian network 

(Heckerman et al. 1995), Bayesian neural network (MacKay 1995), Gaussian processes (Rasmussen and 
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Williams 2006), relevance vector machine (Tipping 2001), Bayesian deep learning (Wang and Yeung 2016), 

Bayesian model class selection (Beck and Yuen 2004; Yuen 2010), and Bayesian simulation (MacKay 1998; 

Gilks et al. 1996; Doucet et al. 2001) have made significant advancement in recent years. The GS method 

proposed in the current study belongs to Bayesian simulation methods. 

 
n f(xnew|Xo) Mean of X1 Correlation coefficient 

2 

   
10 

   
100 

   
 

Figure 6. Site-specific probability distribution f(xnew|Xo) and the histogram of the correlation coefficient “learnt” from two, 

ten, and one hundred measured data points simulated from a bivariate normal distribution (X1, X2) with mean = 0 and 

covariance matrix = identity. 

 

5 What Next? 

 

A taxonomy of methods based on the type/amount of data available could help guide future development in data-

driven algorithms and strengthen a virtuous cycle of data collection hardware developing hand in hand with 

algorithms. Hand (2014) said: “In general, when building statistical models, we must not forget that the aim is to 

understand something about the real world. Or predict, choose an action, make a decision, summarize evidence, 

and so on, but always about the real world, not an abstract mathematical world: our models are not the reality - a 

point well made by George Box in his oft-cited remark that ‘all models are wrong, but some are useful’”. Hence, 

it is not fruitful to ask whether a probability model is right or wrong (our community has been embroiled in this 

question for many years), but to judge a model by its ability to help us make economic decisions in the real 

world.  

In fact, why do we need a model at all? One answer is that we do not have sufficient data to make a decision 

without mediation by a model. The simplest probability model is to assume data are independent and identically 

distributed (i.i.d.). Limited data are needed to characterize this model, but it clearly deviates from a reality that 

exhibits spatial variability. The random field model is a closer match to this reality, but it cannot be applied in its 

most general non-stationary form because we do not have sufficient site investigation data for statistical 

characterization. The current practice is to assume a trend function can be removed from the data and the 

residuals are second-order stationary within a typical site. The reason for this assumption is that pairs of 

measurements regardless of where they are measured can be used to estimate the autocorrelation function. 

Needless to say, there is no trend, no stationary residuals, and no autocorrelation function in reality. These 

concepts exist purely within the stationary random field model. However, it can produce useful outcomes, such 
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as estimating the values at unmeasured locations using kriging or general regression (Yuen and Ortiz 2016, 

2018; Yuen et al. 2016). These predictions produced by the stationary random field model are closer to reality 

than those produced by the i.i.d. model (which are simply equal to the mean). 

However, trend removal can be difficult (Ching et al. 2016b, 2017b; Ching and Phoon 2017). Estimation of 

random field parameters is also computationally challenging (Tian et al. 2016; Xiao et al. 2018; Wang H. et al. 

2018). Fine details of the autocorrelation function such as sample path “smoothness” are important (Ching and 

Phoon 2019e). Characterization of site stratigraphy is a major missing feature of past random field studies until 

quite recently (Wang Y. et al. 2013; Ching et al. 2015; Li et al. 2016; Qi et al. 2016; Wang X. et al. 2016; Wang 

H. et al. 2017; Wang X. et al. 2018; Cao et al. 2019; Wang H. et al. 2019; Wang X. et al. 2019). More 

discussions are found elsewhere (Juang et al. 2018). 

 

 

  
 

Figure 7. Automatic detection of records from a generic database CLAY/10/7490 that are “similar” to those from a specific 

site in Onsøy, Norway (Ching and Phoon 2019a). 

 

Compressive sampling is not derived from the random field model, but originates from signal processing. 

Some attempts have been made to apply compressive sampling without detrending (Wang Y. et al. 2019a) and 
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without assuming stationarity (Wang Y. et al. 2019b) as discussed in the preceding section. In fact, when 

sufficient data are available say in the form of training images, multiple point methods that consider more than 

two-point autocorrelation information are being explored in geostatistics (Mariethoz and Caers 2015). These 

methods are regarded as closer to “model free” in the sense that they are not founded on probability theory. The 

level of abstraction is certainly higher than going from parametric to non-parametric statistics, but how does one 

quantify veracity of the outcome in the absence of a probabilistic basis? Bayesian methods have been adopted to 

carry out compressive sampling for this reason (Ji et al. 2008, 2009; Wang and Zhao 2017; Huang et al. 2016; 

Zhao et al. 2018). The conventional wisdom is that big data can be characterized by 4Vs: volume, velocity, 

variety and veracity. 

It suffices to say that no data-driven algorithm exist that can deal with the complex subsurface reality in its 

3D entirety and for the full range of MUSIC-X characteristics. This line of inquiry is likely to be very active in 

the near future with the strong interest in machine learning. The authors venture to suggest “Seven Es” to guide 

the development of such algorithms that will be of value to practice, promotes data exchange, robust, maintains 

alignment with current knowledge and experience, and engages engineering judgment in a meaningful way: 

1. Essence: Data is the essence and therefore, algorithms must be data-centric besides value-centric. More 

precise understanding of the data characteristics in the geotechnical environment is needed. An 

algorithm-centric strategy requires data to fit its assumptions. This is only possible if new data acquisition 

hardware is developed alongside. 

2. Economic value: Focus on monetizing data. Remember the adage: “all models are wrong, but some are 

useful”. 

3. Exchange: The industry is more likely to share and exchange data if client confidentiality can be 

respected. This requires development of suitable data anonymization methods. 

4. Extremes: Identification of outliers and/or robustness of algorithms against outliers are fundamental 

issues that one should be mindful of given their potential impact on the outcomes (Yuen and Mu 2012; 

Mu and Yuen 2019). The authors suggest that MUSIC can be re-interpreted to cover extremes: 

Multivariate, Uncertain and Unique, Sparse, Incomplete, and potentially Corrupted. 

5. Errors: An engineer can make a more informed decision if both bias and precision of the outcomes can 

be provided. Biased and imprecise data will produce biased and imprecise outcomes. It is not sufficient to 

provide the most likely outcomes, because an engineer needs to manage risks. Responsible risk 

management is a core element of our professional ethics.  

6. Extrapolation: Need to watch out for over-fitting and to caution users when extrapolation occurs. 

7. Explanation: It is judicious to establish a degree of connection with the existing body of knowledge and 

experience. Correlation is not the same causality. Engineers cannot “understand” outcomes delivered 

purely by a black-box algorithm and cannot meaningfully “agree” or “disagree” with such outcomes.  

 

6 Concluding Remarks 

 

Digitization is the process of converting information to a digital format. This is more or less taking place in 

tandem with the growth of computing. Digitalization is the deployment of digital technologies to transform an 

entire industry. Data lies at the core. But deeper insights must be gleaned, beyond applying data as inputs in a 

physical model to predict responses or as direct measurements of responses to support the observational 

approach, to produce sufficient value for decision making so that data can be viewed as assets in themselves. 

This paper explores the availability and nature of geotechnical data and presents two recent advances made in 

this direction for a specific but important task of estimating soil/rock properties (compressive sampling and 

Bayesian machine learning). Data-driven decision making does not imply taking the engineer out of the entire 

life cycle management chain. It is intended to support rather than to replace human judgment. 

Gerbert et al. (2016) concluded that the construction sector “has finally set out on the digital pathway, and a 

profound transformation — long overdue — now seems inevitable. The sector as a whole is bound to benefit; so, 

too, is society at large as well as the international economy”. It cautioned against staying still: “Individual 

companies that continue to ignore the digital wave will struggle to survive. For adopters, speed matters: there is 

only a narrow window of time during which digital savvy provides a significant competitive advantage over the 

average industry participant. If companies want to contribute to redefining the competitive landscape, they need 

to seize the opportunity soon”. 
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