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Abstract: The identification of cavities embedded in an elastic domain is an important inverse problem in engineering. A 

statistical solution that characterizes the mean and variance of the parameters of the cavity is sought. A Hamiltonian Monte 

Carlo (efficient variant of MCMC) based framework is employed to identify the position of a square cavity. Critical to the 

success of HMC is the evaluation of the gradient and the update of the parameters in such a manner that mesh distortions are 

eliminated. A moving mesh technique is used to update the parameters in a non-physical step, while the gradients are 

evaluated in a similar manner to those in the shape optimization literature. The framework is detailed and applied to the 

inversion of synthetic seismic data. 
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1. Introduction 

 

Inverse problems are generally characterized by non-uniqueness and instability, i.e. many different choices of 

parameters may be consistent with the observed data and a small perturbation in data can cause arbitrarily large 

perturbation in the identified parameters. A common approach to solve these problems is to formulate the 

problem in least squares form along with some regularization parameter. Such an approach yields the best 

possible solution to the problem. In this paper, the main goal is not only to estimate the best point estimate but to 

obtain its complete statistical description. Markov Chain Monte Carlo (MCMC) methods are the most common 

kind of algorithms employed for such problems. Classical methods like Metropolis Hastings (Metropolis et al. 

1953) are plagued by slow exploration rates of the parameter space owing to their random nature. A modern 

variant called Hamiltonian Monte Carlo (Duane et al. 1987; Neal 2011) solves this issue by enabling gradient 

guided motion of the parameter space in such a manner that the Hamiltonian remains constant. This reduces 

autocorrelation between successive samples and significantly speeds up the algorithm. 

Explicit cavity estimation has been an active topic of research (Guzina and Bonnet 2004; Nguyen and 

Nestorović 2016). Most methods, however, lack the ability to consider a continuous variation of parameters over 

the parameter space which may lead to inaccurate solutions. In this paper, we propose a framework in which a 

continuous variation of parameters is allowed. However, this framework raises new problems, in terms of the 

evaluation of the gradient and the update of the parameters. The details of the framework are provided in the 

following sections. 

 

2. Governing and Observation Equations 

 

Consider a domain , where  and  are the Cartesian coordinates, bounded by  composed of  

and . We also consider a cavity  embedded in the domain. The governing PDE for wave propagation in 

the domain  for  is given as  

where,  is the density, , ,  and  represent the Cartesian components of the Cauchy stress tensor, position 

vector, displacement field and external force respectively. The Dirichlet boundary condition on  is defined in 

the usual manner as  

where  are some prescribed displacements specific to the problem. Lysmer-Kuhlemeyer absorbing boundary 

conditions (Lysmer and Kuhlemeyer 1969) are applied to  such that 
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where,  and  are the normal and tangential component of the traction at the boundary. Similarly  and  are 

the normal and tangential velocities at the boundary node and  and  are the P-wave and S-wave velocity in 

the element at the boundary. 

Let , ,  and  be the discretized global nodal displacement, velocity, acceleration and 

force vectors respectively, where  are the global degrees of freedom. Suppose the discretized mesh of  

contains  nodes, then the node coordinates can be represented as  where . 

Suppose a parameterization  of the cavity  exists, such that the components of  at the cavity 

boundary  can be expressed as a function of the parameters  i.e.  then the semi-

discretized weak form of Eq. (1) is written as 

The matrices ,  and  , which are parameter dependent, are the usual mass, damping and stiffness matrices 

respectively. Eq. (5) represents the forward equation which needs to be solved for a particular . 

The inverse problem necessitates a measurement model. Let  be the state vector (usually a function 

of ) at discrete instances in time , and observations  be corrupted by some Gaussian 

noise , then the linear measurement model is given by  

 is the measurement model matrix while  is the covariance matrix of the zero mean Gaussian 

observation noise. Here,  refers to the total number of time steps discretizing the time interval . 

Equations of the form of Eq. (5) are usually solved using one-step methods (Hughes 1987). Assuming the 

state vector  where  ,the application of such one-step methods to Eq. (5) 

result in a single step time discretized recursive equation, for , of the form  

The amplification matrix  contains contributions from ,  and  while  contains 

contributions from the external force. 

 

3. Posterior Probability Density and HMC 

 

Parameter estimation is carried out through  an approximation of the posterior probability distribution  
in a Bayesian framework. Following Bayes rule we can obtain 

which when combined with a prior  , where  is the prior covariance matrix, completely 

defines the posterior.  

Hamiltonian Monte Carlo (Duane et al. 1987; Neal 2011) is an MCMC algorithm that samples a probability 

distribution defined over the parameter space  augmented with momentum variables . The 

joint probability distribution is defined as 

where, the probability distribution is usually defined as .  is called as the mass matrix and 

has the main role of rotating and scaling the target parameter space to ensure efficient transitions. A term called 

the Hamiltonian  is then defined over this augmented space by simply taking the negative log of Eq. 

(10). 

The second component in Eq. (11) , also called the potential energy  is written as 

. 

HMC first involves a stochastic step where the new momentum variables are sampled as . This is 

followed by a deterministic step that involves the solving of Hamilton’s equations given by 

                       (5) 

                       (6) 

                       (7) 

                       (8) 

where  are the discrete observations and the proportionality sign implies the presence of a normalization 

constant which is not required in any MCMC algorithm. Based on the observation model in Eq. (6) and using 

, the likelihood function can be formed as 

 (9)

             (10)

                 (11)
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Except for a few cases, these equations need to be solved numerically. The most popular numerical integrator for 

such a system in an MCMC setting is the Leapfrog method due to its properties of reversibility and volume 

preservation. Starting from  leapfrog integration is carried out for L steps, with a step-size of , through the 

equations 

This produces a new point . The final step in HMC is the usual Metropolis accept-reject step, where the 

acceptance probability is given by 

The critical question now is to determine how to update the parameters while maintaining acceptable mesh 

quality and how to calculate the gradient  in Eq. (13). Both these questions are addressed in the following 

section.  

 

4. Parameter Update 

 

A simple mesh moving method and derivatives motivated by shape derivatives (commonly used in shape 

optimization) are used to carry out the parameter update. 

 

4.1    Mesh moving method 

The update of parameters in the domain through normal elastic deformation is likely to lead to large 

deformations and distortions of the mesh. A simple approach employed in this paper, to prevent such large 

distortions, is to use the classical moving mesh techniques (Stein et al. 2003; Tezduyar et al. 1992) popular in the 

computational fluid structure interaction literature. The simple idea is to introduce varying degrees of stiffness 

based on the element sizes, through the introduction of the mesh dependent element Young’s modulus Em

e
, 

defined as 

 is the usual Young’s Modulus of element  and  is the determinant of the Jacobian associated with the 

transformation from physical to element (local) coordinates.  is an arbitrary scaling parameter that makes the 

equation dimensionally consistent and  is a positive number that provides varying degrees of stiffness to the 

corresponding elements. In the case that , the transformation Eq. (18) leads to a case where the Jacobian  

can just be dropped from the elemental stiffness matrix. The effect of such a transformation is that smaller 

elements become “stiffer” and deform rigidly (minimizing distortion) as compared to larger elements. The idea 

is then to place such rigid small elements near the cavity where most of the large deformations occur, while 

larger elements can be placed near the boundaries. 

 

4.2    Evaluation of  

Assume an updated parameterization  that produces the nodal coordinate update , through the moving 

mesh technique described in Section 4. Then the updated node coordinates can be expressed as 

where  represents the displacement during the moving mesh stage. Similar to Section 2, let 

, where  is the displacement of nodes at the cavity boundary. The 

displacement  arises from the elastic deformation produced in the domain due to the update of the nodes 

 such that . It is straight forward to form explicit expressions for the cavity nodal 

displacements  for simple cavity shapes such as the square shape considered in this paper. 

                    (12)
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The derivatives of the potential energy involve derivatives of the state vector . Assuming no material 

damping in the domain, this derivative ultimately implies the calculation of  and  . These derivatives 

are similar to those encountered in shape optimization (Haslinger and Makinen 2003). For element , the 

derivatives of the elemental stiffness  and mass matrices  defined over the elemental domain  are given 

as  

Following Haslinger and Makinen (Haslinger and Mäkinen 2003) expressions can be obtained for  and 

 such that both are functions of . The derivatives of the updated node coordinates  are obtained from 

a simple differentiation of Eq. (19), given by 

This completes the definition of all components required for the computation of the gradient of potential energy. 

 

4.3    Adaptive HMC and parameter constraints     

 

The HMC algorithm is carried out for sampling  samples, with  leapfrog steps per sample. The inverse analysis 

procedure at the end of  such leapfrog steps is the usual metropolis acceptance steps, where the  acceptance 

probability  is compared with a uniform number drawn from . An adaptive version of HMC is used 

where  is set adaptively with diminishing adaptation in a similar manner to Robbins Monro (Robbins and 

Monro 1951). The adaptation used here is a variant of the Dual Averaging Scheme (Nesterov 2009), proposed by 

Hoffman and Gelman (Hoffman and Gelman 2011) for HMC.  

An additional part of the HMC algorithm used in this study is the imposition of constraints on the 

parameters. Following the parameter update, a check is made on whether each component of the parameter lies 

within the respective lower  or upper bounds . If the condition is violated, the corresponding component 

of the momentum is flipped (Neal 2011) and the usual leapfrog steps resume. This alleviates the requirement of 

transformation of constrained parameters to an unbounded space and the calculation of the Jacobian involved 

with this transformation. 

 

5. Numerical Implementation and Results 

 

The HMC framework proposed above is used to identify the position of a square cavity parameterized by 

 as shown in Fig. 1(a). The elastic modulus of the domain is 25 

MPa, density  is 2000 Kg/m3 and Poisson’s ratio 0.25. The mesh is generated in such a manner that more 

refined elements are placed near the cavity (Fig. 1(b)) while coarser elements are placed near the boundaries. 

The left and right boundaries are permitted to move only in the  direction while Lysmer-Kuhlemeyer 

absorbing boundary condition was applied to the left, right and bottom boundaries. Observations, which 

comprise of velocities only, are recorded at all the time steps at the markers shown in Fig. 1(a). The domain is 

considered to be large enough and the observation points are placed in sufficiently far enough from any feasible 

position of the cavity. Synthetic data were generated using the true position of the cavity and an example of the 

synthetic waveform generated in the  direction contaminated with Gaussian noise (mean=0 m/s, standard 

deviation = 10-4 m/s), observed at a point on the top surface (marked green in Fig. 1(a)) is shown in Fig. 1(c). 

Even though no material damping is considered, the decrease in amplitude of velocity is due to the absorption of 

elastic waves at the absorbing boundaries. Numerical integration is performed using the Newmark-  scheme 

with  and  in the forward problem. 

A total of 2000 samples were generated using HMC starting from an initial point  shown on 

the left in Fig. 2. The number of leapfrog steps per HMC sample is sampled from a Gaussian i.e.  . 

 500 steps were considered for adaptation, which was ultimately found to be sufficient as the Markov chains 

converged well within this limit. These 500 initial steps are considered as burn-in and discarded in all post 

processing steps. The initial step size was chosen as  0.001 and standard parameter values (Hoffman and 

Gelman 2011) of Dual Averaging were used in this analysis. Both, the mass matrix  and  were chosen as 

the identity matrix . The lower bound and upper bound vectors for the parameters are  and 

 respectively.  

             (20)

             (21)

             (22)
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Figure 1.  (a) Schematic showing position of true cavity along with mesh and observation points. (b) Zoomed version of the 

refined mesh near the cavity. (c)  component of true and noisy observed velocity at (6.4, 10), see left figure, in response to 

a triangular load (inset) of 1 kN applied for 0.4 s. 

 

 
 

Figure 2.  Mesh at different stages of HMC: (left) step 1, (middle) step 50 and (right) step 500. 

 

 
 

Figure 3.  Normalized bin counts for .  and represent the number of samples in a bin and the total number of 

samples respectively. Red and green lines represent the true and HMC mean parameter values respectively. 
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Starting from  the mesh gradually advances towards the solution. Fig. 2 shows the mesh at different stages 

 of HMC. It can be seen that the small elements near the cavity deform rigidly and prevent large distortions. 

The normalized bin counts for the components of  along with the true and HMC mean parameter values are 

plotted in Fig. 3 using only the samples after burn-in. The estimated mean from HMC is . 
Fig. 3 also shows the confidence in the estimated parameters. It can clearly be seen that the estimated values of 

 and  are close to the true values while  is slightly biased. This is clearly reflected in the variance of the 

parameters. While the normalized bin count  and  is sufficiently high and concentrated near the true solution, 

the corresponding values for  are smaller and more dispersed.    

 

6. Conclusions 

 

A framework in which a square cavity (parameterized by the coordinates of its center and its side length) can be 

estimated in an HMC framework is presented. The key components of this framework are the Moving Mesh 

method and the shape derivatives employed to evaluate the gradient. Inverse analysis on artificially generated 

noisy data validates the proposed framework. The advantage of this HMC based framework is the ability of the 

parameters to vary continuously over the confined parameter space making the estimated solution independent of 

mesh discretization. The explicit consideration of the shape produces another advantage in terms of the ability to 

accurately resolve the cavity boundaries which is a major drawback in many inverse analysis methods. 
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