Technical Programme

Session: T33Predictive Maintenance

T33-01

Interpretable Survival Models for Predictive Maintenance
Paul Castle, Janet Ham, Melinda Hodkiewicz and Adriano Polpo

T33-02

Low-Cost Solutions for Maintenance with a Raspberry Pi
Martin Larrañaga, Riku Salokangas, Olli Saarela and Petri Kaarmila

T33-03

Machine Learning-Enabled Modeling Approach for Predictive Mainte-nance Decision-Making Support
Chunsheng Yang, Yubin Yang, Xiaohui Yang and Qiangqiang Cheng

T33-04

The SUPREEMO Experiment for Smart Monitoring for Energy Efficiency and Predictive Maintenance of Electric Motor Systems
S. Kotsilitis, K. Chairetakis, A. Katsari and E. Marcoulaki

T33-05

Degradation Modelling of Centrifugal Pumps as Input to Predictive Maintenance
Tom Ivar Pedersen, Jørn Vatn and Kim A. Jørgensen

T33-06

Modeling Turbocharger Failures using Markov Process for Predictive Maintenance
Mahmoud Rahat, Sepideh Pashami, Slawomir Nowaczyk and Zahra Kharazian

T33-07

Data Analysis to Facilitate Offshore Seawater Ultrafiltration Membrane Replacement Decision and Scheduling of Chemical Wash
Abu MD Ariful Islam and Jørn Vatn

T33-08

Remaining Useful Life Estimation Using Vibration-based Degradation Signals
Bahareh Tajiani, Jørn Vatn and Viggo Gabriel Borg Pedersen

T33-09

Condition Monitoring and Reliability of a Resistance Spot Welding Process
Matteo Strozzi, Marco Cocconcelli, Riccardo Rubini, Gianmarco Genchi and Alessandro Zanella

T33-10

Avenues For Future Research on Predictive Maintenance Purposes in Terms of Risk Minimization
Rim Louhichi, Mohamed Sallak and Jacques Pelletan