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Complex technical infrastructures are systems-of-systems characterized by hierarchical structures,
made by thousands of interconnected components performing different functions associated to various

domains.

Given the difficulty of deriving their functional logic using traditional risk and reliability

analysis methods, we address the problem of critical component identification from an innovative
perspective, which exploits the large amount of available monitored data of operation. Specifically,
we develop a data-driven framework of analysis which employs Bayesian additive regression trees and
validate it on a synthetic case study, which mimics the complexity of a complex technical infrastructure.

Keywords: Critical Components Identification, Bayesian Additive Regression Trees, Complex Technical
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1. Introduction

Complex Technical Infrastructures (CTIs) are
large-scale systems of systems consisting of nu-
merous mutually interconnected components.
The various CTI systems perform different
functions, use technologies from various do-
mains, and are typically designed and built
independently (Boardman and Sauser, 2006;
Keating et al., 2008; Eusgeld et al., 2011; Zio,
2016). The identification of critical compo-
nents in a CTI has become a priority for
improving CTT reliability and availability, and
reducing maintenance and operation costs.
The traditional risk and reliability analysis
approach for the identification of critical com-
ponents is based on the use of Importance
Measures (IMs), which quantify the contribu-
tion of components to a measure of system
performance, such as, system reliability, un-
reliability, unavailability or risk. The compu-
tation of IMs requires the knowledge of the
functional logic of the system in the form of

a structure function, which is typically not
known for CTIs due to their complexity and
continuous transformations.

On the other hand, recent developments in
sensors, signal processing systems and ma-
chine learning have opened up opportuni-
ties for analyzing the large amount of data
available to support cost-effective and robust
decision-making for design, operation and
maintenance. In this context, the objective
of the present work is to define an innova-
tive data-driven framework of analysis for the
identification of critical components based on
the use of the substantial operational data
collected from the CTI systems.

Specifically, the identification of the CTI
critical components is formulated as a fea-
ture selection problem and addressed using
Bayesian Additive Regression Trees (BART)
(Bleich et al., 2014), which is a Bayesian
non-parametric regression approach based on
an ensemble of decision trees. The critical
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components are identified considering the pos-
terior inclusion frequencies of the correspond-
ing signals. The defined method is validated
on a synthetic case study, which mimics the
complexity of a real CTIL.

The remainder of the work is as follows.
Section 2 presents the problem setting. Sec-
tion 3 reviews the feature selection meth-
ods, whereas Section 4 illustrates the BART
method for critical components identification.
Section 5 presents the results of its application
to a synthetic case study. Section 6 summa-
rizes the main findings of the work.

2. Problem Statement

We consider a CTI made by p components
C;, whose degradation and failure process is
monitored by measuring signals X; € R,j =
1...p. The set of all monitoring signals are
referred to as X = (Xq,...X,) € R? and the
overall CTT safe(0)/failure(1) state as Y € Y
with ) = {0,1}. A large amount of data
D = {(x",y")}I, are collected during the CTI
operation, containing the measurements x’ =
(z1,...,z,) of p signals and the corresponding
safe(0)/failure(1) states y* of the CTI at n
time instants.

The objective of the present work is to
identify the CTI critical components C* =
(Crl,...,CTq),l <rm < ... <7, <pto
the CTI safe/failure state. To this aim, we
consider the use of feature selection techniques
for the identification of the subset X* =
(Xry,..., Xy, ) of the relevant monitoring sig-
nals.

3. Feature Selection Techniques

In general, feature selection techniques have
the objective of identifying the subset of sig-
nals (features) X*, which allows maximizing
the classification accuracy of a learning ma-
chine performing the mapping g : & — Y
(Genuer et al., 2010, 2015; Bolon-Canedo and
Alonso-Betanzos, 2019).

Feature selection approaches fall into the
three categories of wrapper, embedded and
filter methods. Wrapper methods select an
optimal subset of features using the learning
machine itself, i.e., the learning machine is
wrapped within the search algorithm which
aims at identifying the feature subset pro-
viding the ‘best’ classification performance.
Filter methods rank the features according
to their statistical association (e.g., mutual
information) with the response.

Embedded methods perform feature selec-
tion as part of the learning machine training.
They select signals using importance indica-
tors obtained during the training procedure,
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such as the node importance in decision trees
(Blum and Langley, 1997; Guyon et al., 2005),
and the regression coefficients in the Least
Absolute Shrinkage and Selection Operator
(LASSO) (Tibshirani, 1996).

As the feature selection literature is vast
and rapidly growing, we refer to the works
of Chandrashekar and Sahin (2014); Salcedo-
Sanz et al. (2018); Stetco et al. (2019);
Bolén-Canedo and Alonso-Betanzos (2019) for
broader views.

4. Critical Components Identification
Based on BART

The conjecture behind the use of feature se-
lection for critical component identification is
that if a signal is needed for the classification
of the system failure/safe state, the compo-
nent monitored by the signal is critical. In
this work, we investigate the potentiality of an
embedded feature selection method based on
BART for critical components identification.

We consider the problem of building a learn-
ing machine g : X — ), which minimizes
the classification error P(Y # ¢(X)). Ac-
cording to Chipman et al. (2012), ensemble
of regression trees are more capable of captur-
ing interactions and non-linearities, as well as
additive effects, than single trees. BART is a
full Bayesian approach based on an ensemble
of trees. Specifically, the BART model for
classification assumes a probit transformation
of a regression tree:

PY =1X)=9 (iﬁ (X)> Y

where ® denotes the standard normal cumula-
tive density function, T;’s are distinct binary
regression trees. The prediction is given by
the sum of m leaf values when recursing down
all m trees.

BART considers a set of priors to provide
regularization by preventing the domination
of any single tree. Specifically, priors are
assigned to the tree structure and the leaf
parameters. The tree structure prior con-
trols the size and shape of 7; through the
probability of splitting a nonterminal node
of certain depth. Usually the depth of 7; is
kept small, e.g. less than 5. The splitting
rule consists of two steps: 1) random selection
of a feature to be split according to a prob-
ability distribution (e.g. discrete uniform or
Bernoulli distribution), and 2) random choice
of the splitting value among a set of values
according to a uniform distribution. The prior
on each leaf parameter follows a conjugate

normal distribution AV (., 07), such that the
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induced prior on E[Y|x] is N (mpu,, mo?).
The values of ji,, and o, are chosen such that
mﬂu*k\/ﬁau = Ymin, muu+k\/ﬁ0# = Ymazx
for a preselected value of k. Large k and
small UZ yield more model regularization. The
posterior distribution is, then, approximated
via a Markov Chain Monte Carlo (MCMC)
sampling (Kapelner and Bleich, 2016). Fur-
ther details about BART can be found in
Chipman et al. (2012).

4.1. BART-based Critical Components
Identification

BART-based feature selection approaches
have been proposed in Hill (2011); Bleich et al.
(2014); Linero (2018). In this work, we adopt
the approach of Bleich et al. (2014), which
measures the importance of a feature X; as the
‘feature inclusion proportion’, FIP(X;), i.e.,
the ratio between the number of times each
feature is split, divided by the total number
of feature splittings, in the model.

Bleich et al. (2014) propose a feature selec-
tion scheme based on a ‘null” permutation dis-
tribution of the feature inclusion proportion
FIP(X;) obtained by:

(i) permuting the output y* to break its
relationship with the features;

(ii) rebuilding the ‘null”’ BART model using
the permuted output and unpermuted
features to obtain the null inclusion pro-
portions of all features;

(iii) repeating steps (i) and (ii) several times
using different random permutations of
the data to estimate the distribution of
null inclusion proportion of each feature.

The identification of the subset of critical
features X* (thus, the subset of critical com-
ponents C*) is performed using the strategy
of Bleich et al. (2014), according to which a
feature X is selected if its average inclusion
proportion (37 FIP'(X})) over r repli-
cates of BART, exceeds the 1 — o quantile of
its own null distribution.

The open-source R packages bartMachine
(Kapelner and Bleich, 2018) is used to per-
form the BART-based ‘local’ feature selection
strategy of Bleich et al. (2014) (Section 4.1),
which will be referred to as ‘BART’ in the
latter sections.

5. Case Study

We consider a CTI formed by p = 50 com-
ponents, in which each component can be in
five states, D € {1,2,3,4,5} corresponding
to healthy, partially degraded, degraded, very
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degraded and failure, respectively. The com-
ponents perform transitions among the states
at random times. Figure 1 shows the possible
stochastic state transitions corresponding to:
degradation (from D = 1 to D = 2, from
D=2toD=3and from D =3toD =4),
partial restoration (from D = 4 to D = 3
from D = 3 to D = 2 and from D =

to D = 1), failure (from D = 4 to D =
and complete repair (from D =5 to D =
Table 1 reports the time-invariant transition

—& o

rates, )\f =D of component j from the state

D to D", D # D". Each component Cj is
monitored by a signal X; directly measuring
its state D.

1-2 2-3 3-4 -5
21 3-2 43

Fig. 1.

State transitions of a CTI component

We assume that the CTI can fail due to two
cascading failures:

(i) Component C4; performs a transition
from state 4 to state 5, which can cause
an ordered sequence of events leading to
the transitions of components Cio, Cig,
Ci4, C15 and (g into state 5 and the
consequent failure of the CTI. The prob-
ability of failure propagation between any
two components in the sequence is set
to 0.95 and the time necessary for the
malfunction propagation follows a uni-
form distribution in the interval [1,20]
minutes;

(ii) Component Cy; performs a transition
from state 4 to state 5, which can cause
an ordered sequence of events leading to
the transitions of components Cag, Chs,
Oy, Cos and Cyg into the state 5 and the
consequent failure of the CTI. The proba-
bility of failure propagation between any
two components in the sequence is set
to 0.95 and the time necessary for the
malfunction propagation follows a uni-
form distribution in the interval [1,30]
minutes.

The CTT critical components are those in-
volved in the two cascading failures, i.e. Ci;
Ci2, Ci3, Cuy, C15 ,Ci6, and Ca1, Cha, Cag,
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Table 1. Transition rates in hours™?!.
Component C Transition rates
j=1,2,3,6...,10, ,\]1.—>2 =0.5 /\§—>3 =0.02 /\?—’4 =05 ,\;1.—*” =0.01
11,12,17,21, 22, 35, 36 A%Hl =0.5 )\;HZ =0.01 )\;;»3 =04 ,\gﬁl =02
j=4,5,13,14, 18,19, 20, 23, A=2 =03 )\?”3 = 0.005 A3=4 =04 A4=5 = 0.01
24,27,...,34,38,39 )\?—ﬂ =0.3 ,\33—>2 =0.01 )\;%—>3 =04 ,\?—ﬂ =0.2
j =15,16,25,26, 37, A=2 =04 A?*‘ = 0.005 X34 =04 A4=5 = 0.01
40,...,50 A7l =04 A2 =0.01 AJ78 =04 A7 =0.2
Coy, Cos , Cog. various values of a and the performances of

The CTTI behavior is simulated for 720 days
and the signals X, j = 1...50 assessing the j-
th component degradation state are collected
every 2 hours, as well as the corresponding
CTI safe(0)/failure(1) state Y. Therefore, a
dataset D = {(x’,y")}}_, formed by n = 8642
patterns is obtained. The simulated dataset
is unbalanced, being the fraction of positive
patterns (y* = 1) over the total number n of
simulated patterns equal to 5.3%.

5.1. Critical Components Identification

We consider the following three performance
metrics to quantify the ability of identifying
the critical components of the BART-based
(Section 4.1) method:

TP°

precision® = TPey Fpe’ (2)
TP¢

= — 3

reca The 1 FN¢ (3)

S e c
e _ 2 - precision® - recall
=

precision® + recall® ’

where T P¢ denotes the number of compo-
nents correctly identified as critical; FP¢ the
number of components incorrectly identified
as critical; FN€ the number of components in-
correctly identified as non-critical. Therefore,
the precision® indicates the fraction of compo-
nents correctly identified as critical over all the
selected components; the recall® indicates the
fraction of components correctly identified as
critical over all the critical components; the
FY score is a summary score that balances
the previous two. The values of precision®,
recall® and FY fall within the range of [0, 1]:
the larger the value, the more satisfactory the
performance.

The application of the proposed BART fea-
ture selection strategy requires to properly set
the parameter a (Section 4.1). This is done by
adopting a trial-and-error approach in which
the BART feature selection is repeated using

the BART classifiers built using the selected
features are evaluated on a validation set. We
have considered the F} metric to evaluate the
classification performance and used 50% of the
patterns of D for feature selection, 40% for the
classifier training, the remaining 10% for esti-
mating their classification performance. The
most satisfactory classification performance
(Ff = 1) has been obtained with o = 0.15.

Using this setting, the proposed method
identifies 10 among the 12 critical components
(recall® = 0.833, precision® = 1, Ff = 0.909).
The CTI critical components Cio and Coas,
which are at the beginning of the two cascad-
ing failures, are not selected. This is due to
the fact that they are characterized by a larger
number of failures (80 and 51 respectively),
which do not lead to the system failures,
than the other critical components (23.4 on
average).

5.2. Robustness of the Critical
Components Identification Method
The robustness of the proposed method has

been verified when the number of CTI compo-
nents (p) is increased from 50 to 200 by adding

number of selelected
omponents

critical component
identification performance

—#— precision® ****" et recall® S
0 : ‘
50 100 150 200
P
Fig. 2. Critical components identification perfor-

mances, when the number of CTI components p in-
creases from 50 to 250.
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noncritical components. Figure 2 shows the
obtained performance in terms of critical com-
ponents identification. Notice that when p
increases, all critical components are identi-
fied (recall® = 1), although few non-critical
components are also selected (precision® <
1).  Furthermore, when the total number
of components exceeds 140, the performance
becomes stable with the identification of a set
of 15 components, which includes 3 noncritical
components.

6. Conclusion

This work proposes a data-driven method for
the identification of CTT critical components
in those cases in which the system functional
logic structure is unknown. The method is
based on the application of a feature selection
technique based on BART to operational sig-
nal data. Its application to a synthetic case
study has shown its capability of identifying
most of the CTI critical components. Its main
limitations are the difficulty of identifying
critical components at the beginning of cas-
cading failures and the tendency of identifying
few non-critical components when the overall
number of CTI components increases. Never-
theless, the obtained results encourage the use
of data-driven methods for investigating the
risk and reliability of CTIs, whose components
are normally monitored.
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