
Prognostics and Maintenance Optimization in Bridge Management

Renny Arismendi, Anne Barros, Jørn Vatn

Department of Mechanical and Industrial Engineering, NTNU, Norway. E-mail: renny.j.arismendi@ntnu.no,

anne.barros@ntnu.no, jorn.vatn@ntnu.no

Antoine Grall

Institute Charles Delaunay, LM2S, University of Technology of Troyes, France. E-mail: antoine.grall@utt.fr

This paper has been written in collaboration with the Norwegian Public Roads Administration (NPRA). In Norway,

bridges are a vital part of the transportation infrastructure. With more than 18,000 road bridges across the country,

an efficient bridge management system is of critical importance to avoid high costs from over expending, to ensure

safety of the public and availability of the transportation system. In the bridge management system applied by

NPRA, the inspections are mainly carried out periodically based on pre-defined rules and the decision about when

to perform the maintenance is based on the findings of these inspections. The objective of this paper is to propose

a modelling framework that makes it possible to challenge these pre-defined rules by doing degradation prognostic

and maintenance optimization. We propose to use a Piecewise Deterministic Markov Process to encompass

different modelling assumptions as non-negligible maintenance delays and time dependent inspections. State

probabilities and performance indicators are assessed through Monte Carlo simulations and a numerical scheme.

The experimental values provided at the end show that optimal maintenance and optimization strategies should be

investigated and further developed.
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1. Introduction

The use of automobiles experienced a rapid
growth during the 20th century and with this
growth came the development of a massive trans-
portation infrastructures. In Comission (2008),
the Council of the European Union includes the
transport sector in the list of Critical Infrastruc-
tures, considering that modern societies depend
on the availability of this service and that its
disruption or unavailability poses risks with seri-
ous consequences to the health, safety, economic
or social well-being of people and vital societal
functions. A systematic approach to maintenance
and rehabilitation strategies for the transportation
system was not identified until the late 1960s. The
Highway Safety Act of 1968 was a development
that resulted from the collapse of the Silver bridge
across the Ohio River, USA in 1967, and the con-
cerns related to the bridge management problem.
This Act required state road officials to inspect
and rate the condition of the bridges as mentioned
by Scherer and Glagola (1994).

Bridge management can be understood as the
optimal planning of inspections and maintenance
activities of road bridges, with the goal of pre-
serving the asset value of the infrastructure by
optimizing the costs over its lifetime, while en-
suring the safety of users and offering a sufficient

quality of service, as Woodward et al. (2000).
More than 50 years after the collapse of the Sil-
ver bridge, despite the advances in technology,
rehabilitation techniques and safety assessments,
bridge collapses continue to occur. Moreover,
the construction of new bridges has been slowing
down in most countries, which now face a stock of
aging bridges, requiring an effective and efficient
bridge management.

1.1. Bridge management in Norway

In Norway, bridges are a vital part of the trans-
portation infrastructure. With more than 18,000
road bridges across the country, an efficient bridge
management system is of critical importance to
avoid high costs from over expending and to en-
sure safety of the public and availability of the
transportation system.

As pointed by Kallen (2007), there are many
factors that make bridge management a challeng-
ing task, such as: the varying weight and inten-
sity of the traffic, the evolution of the building
codes over the years, the weather influence on the
structures, large number of structures spread over
a large area, and others. All these factors create
uncertainty, which makes the bridge management
a problem of decision making under uncertainty.

In the bridge management system applied
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by the Norwegian Public Roads Administration
(NPRA), the agency responsible for planning,
building, operating, and maintaining national and
country bridges in Norway, the inspections are
mainly carried out periodically based on pre-
defined rules and the decision about when to per-
form the maintenance is based on the findings of
these inspections. The handbooks for manage-
ment and inspections of bridges, Statens Vegvesen
(2014a,b), establish types of inspections for the
bridges and the period in which they must be
performed, e.g. a main inspection of a bridge,
with an overview of all the elements of the bridge,
must (in general) be performed every five years.
Statens Vegvesen (2014b) also establishes how the
inspections must be logged in a database, how the
findings must be reported and provides guidelines
on when to perform the repairs for found damages.

When an inspection is performed on a bridge,
the severity of the found damages is assessed in a
scale of one to four, as:

• 1 - Small damage
• 2 - Medium damage
• 3 - Large damage
• 4 - Critical damage

Based on the severity of the damage, a mainte-
nance action is scheduled:

• Severity: 1 - No maintenance action is required
• Severity: 2 - A maintenance action must take

place between four and ten years
• Severity: 3 - A maintenance action must take

place between one and three years
• Severity: 4 - A maintenance action must take

place in less than six months

This bridge management system can be char-
acterized as a condition-based maintenance pro-
gram, in which the maintenance decisions are
based on recommendations from the information
gathered through condition monitoring. However,
following this program is a challenging task for
the NPRA. With such a large stock of bridges
throughout the country, it is difficult to keep up
to date the inspection program due to budget and
resources constraints.

A problem raised for some years by the NPRA
is to question if this bridge management system
can be optimized by moving from diagnostics to
prognostics.

1.1.1. Diagnostics to Prognostics

The current trend in many fields and with critical
infrastructures is to move the decision making in
condition-based maintenance from diagnostics to
prognostics.

Diagnostics involve the techniques and prac-
tice of determining whether a fault is present,
identifying its nature and estimating its severity.

Prognostics on the other hand, is the practice of
forecasting the likely development of such fault.

Through fault diagnosis, it is possible to im-
plement maintenance decisions by following pre-
established rules and recommendations saying
when to perform what. This process tends to be
dependent on the technical and mechanical edu-
cation of the maintenance staff and their hands
on expertise, and as pointed out by Rausand and
Høyland (2004), although the expertise is key
in maintenance management and performance, it
should not be the only basis for making the deci-
sions.

Prognostics allow to take the analysis one step
further in order to question such pre-established
rules, to reduce overestimated margins and to opti-
mize decision rules. With the use of mathematical
models, it may be possible to simulate different
maintenance strategies and to assess the associ-
ated effects, the maintenance costs and the oper-
ational performance in the long run. Therefore,
these simulations can be very helpful for deciding
the most appropriate maintenance strategy to im-
plement.

In this sense, the maintenance decision-making
in the bridge management of the NPRA may
be improved by using information available in a
national data base (BRUTUS), the NPRAs tool
for management and supervision of bridge-related
work tasks, and a model capable of describing the
deterioration of the bridge and the effect of deci-
sion criteria, such as: inspection interval, condi-
tion thresholds for performing preventive repairs,
and type of repair (complete renewal or partial
repairs).

The objective of this paper is to demonstrate
the implementation of a Piecewise-Deterministic
Markov Process (PDMP) as a framework to model
the deterioration process of a structure and main-
tenance strategies applicable by the NPRA, in
order to assess the effects of such strategies and
assist the decision-making process. The remain-
der of this paper is organized as follows: section
2 states the assumptions, the problem statement
and model formulation. Section 3 describes the
implementation and quantification of the model in
terms of next-event simulation and Monte Carlo
simulation. Section 4 presents discussions around
the framework and results.

2. Modelling Framework and

Assumptions

In the field of civil engineering and bridge man-
agement, it is widely common to assess the sever-
ity and condition of the structures in a discrete
scale similar to the one used by the NPRA. To
quantify for the uncertainties involved in the de-
terioration process of a structure, described in a
discrete scale, finite-state Markov processes have
been applied often for modelling the deterioration
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of bridges, as Kallen (2007), Cesare et al. (1992),
and Morcous (2006). More recently, semi-Markov
processes have been studied in order to account
for the aging of the structures as Mašović et al.
(2015), Thomas and Sobanjo (2016) and Zambon
et al. (2019).

2.1. Assumptions

For modelling the deterioration process of a struc-
ture and inspections and maintenance strategy
consistent with the bridge management of the
NPRA, the following assumptions are made:

(i) The observed condition of the unit is repre-
sented by a discrete variable ranging from
small or no damage to critical damage

(ii) The deterioration process of the unit can be
modelled with a homogeneous Markov chain
with constant transition rates

(iii) The unit is periodically inspected and not
continuously monitored

(iv) Inspections are perfect and reveal the true
state of the unit

(v) When an inspection reveals a damage with
severity medium or higher, a maintenance
action is scheduled

(vi) There is a significant delay before a mainte-
nance is performed

(vii) The duration of the delay is deterministic
(viii) Maintenance interventions occur at the

scheduled date instantaneously, i.e. the du-
ration of the intervention is null

(ix) After a maintenance action, the unit is as
good as new

A Markov process is not suitable to model the
inspection and maintenance strategy of the NPRA
due to assumptions iii and vii. Here, we propose a
PDMP, as a framework to model the deterioration
of the structure and the effect of inspection and
maintenance strategies.

2.2. Modelling framework

A PDMP is an extension of a Markov chain that
incorporates continuous states with evolution that
follow discrete state-dependent deterministic dif-
ferential equations. The resulting stochastic pro-
cess is a Markov process with a mixture of ran-
dom jumps and deterministic motion. They were
introduced by Davis (1984), as a general class
of non-diffusion stochastic models that provides
a framework for studying optimization problems.

A PDMP is a hybrid process {It, Xt}t>0 with
values in a discrete-continuous space E × R, as
described by Lair et al. (2011, 2012). The first
component It is discrete, with values in a finite
state space E and corresponds to the unit states.
The second component Xt takes values in a Borel

subset R ⊂ R
k and it stands for the environmental

conditions, which in our case will refer to the time
until next inspection and next maintenance action.

2.2.1. Discrete component It

The discrete component It of the PDMP in our
case, is used to model the deterioration process of
the structure and to indicate a type of maintenance
that has been scheduled.

First, a variable indicating the condition of the
structure can be denoted iA(t).

iA(t) = {1, 2, 3, 4}, where:

• iA = 1 : Small or no damage
• iA = 2 : Medium damage
• iA = 3 : Large damage
• iA = 4 : Critical damage

Only when the unit is inspected, the degree of
deterioration of the unit is detected, and a main-
tenance is scheduled accordingly. The type of
scheduled maintenance can be denoted iB(t).

iB(t) = {1, 2, 3, 4}, where:

• iB = 1 : No maintenance is scheduled
• iB = 2 : Slow maintenance is scheduled, (i.e.

a maintenance intervention takes place between
four and ten years)

• iB = 3 : Medium maintenance is scheduled,
(i.e. a maintenance intervention takes place
between one and three years)

• iB = 4 : Fast maintenance is scheduled, (i.e. a
maintenance intervention before six months)

The discrete component of the PDMP is then
It = i, with i = (iA, iB), given that all the
combinations are not possible and should be taken
only in the finite state space E of the PDMP, E =
{(1,1), (2,1), (2,2), (3,1), (3,2), (3,3), (4,1), (4,2),
(4,3),(4,4)}. To simplify, we denote hereafter
i = (iA, iB), without reminding that the possible
couples of values (iA, iB) are limited to E.

2.2.2. Continuous component Xt

The continuous component here is not related to
any physical phenomena, but it is used as an
artefact to model a process that requires a com-
bination of stochastic random jumps and contin-
uous variables to count time. The environmental
condition in this case, stands for the date of the
next inspection, the date of the next maintenance
action and time.

Let Xt = x, with x = (xA, xB , t), where:

• xA : date of next inspection
• xB : date of next maintenance action
• t : time

2.2.3. PDMP

The complete process to consider {It, Xt} is
made of {(iA, iB), (xA, xB , t)}. The process may
experience jumps at random or at deterministic
times.

Jumps at random times are used in our case to
simulate the deterioration of the unit. The unit
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makes a transition to a more degraded state. This
degradation is not detected immediately, so the
scheduled type of maintenance does not change.
The discrete component jumps from (iA, iB) =
(j, k) to (iA, iB) = (m, k), while the continuous
component does not change. The deterioration
process of the unit with random jumps is shown
in figure 1.

iA = 1 iA = 2 iA = 3 iA = 4
λ12 λ23 λ34

Fig. 1. Deterioration process.

Jumps at deterministic times are used to model
the inspection and maintenance actions.

When an inspection is performed, the date to
the next inspection (xA) is updated, a maintenance
action is scheduled (xB) and the type of scheduled
maintenance (iB) is updated according the condi-
tion of deterioration of the unit.

When a maintenance action is performed, the
discrete component (iA, iB) jumps to (1, 1) (as
good as new), the date to the next inspection (xA)
does not change, and the date of the next main-
tenance action (xB) is set to infinite (no mainte-
nance scheduled).

Between two consecutive jumps, only the con-
tinuous variable t evolves, with speed of one.

3. Quantification

Solving the PDMP analytically is generally im-
possible due to complex system behaviour. For re-
liability assessments, Monte Carlo simulation and
numerical scheme based on finite-volume meth-
ods are two commonly used approaches to solve
PDMP. In our case, both approaches are used for
validating the results and compare the advantages
or disadvantages from each.

3.1. Monte Carlo simulation

The simulation procedure of the PDMP is shown
in figure 2. It includes five main steps to simulate
a realization of the PDMP until the horizon time
thor.

(i) Set initial system time and initial system state
In our case, initial time is set to zero, the

unit is set to be in new condition with no
maintenance action scheduled and the date of
the first inspection is set to the period. (i.e.
t = 0, iA = 1, iB = 1, xA = T and
xB = ∞), where T is the inspection period.

(ii) Sample date of next stochastic jump, if en-
abled

The date of the next stochastic jump tjump

is sampled from the corresponding probabil-
ity density function and the corresponding

I. Set initial system
time and initial

system state

II. Sample date of
next stochastic jump

III. t =
min(tjump, xA, xB)

t ≥ thor ? t =?
IVa. Update iA.

(Unit deteriorates)

IVc. Update iA, iB , xB .
(Unit is maintained)

IVb. Update
iB , xA, xB . (Unit
is inspected and

maintenance
is scheduled)

V. Final system
time thor and

final system state

no

yes

tjump

xB

xA

Fig. 2. Simulation procedure.

parameter(s). In our case, exponential dis-
tribution is considered with rates as shown in
figure 1.

(iii) Identify next event
The date of the next stochastic jump tjump

is compared with date of next inspection xA,
the date of next maintenance action xB and
the horizon time thor.

The system time is updated as: t =
min(tjump, xA, xB , thor). If the simulation
time has reached the horizon time, t = thor,
the simulation continues to step v, otherwise
it continues to step iv.

(iv) Update system state
The system state is updated according to

the jump that takes place at time t, deteriora-
tion, inspection or maintenance.

(a) Deterioration: (t = tjump)
Only iA is updated in this jump

(b) Inspection: (t = xA)
Variables iB , xA, xB are updated. The
after jump values (+) are:

i+B = iA;

x+

A = t+ T ;

x+

B = t + MiB ; where MiB is the delay
for maintenance action of the type iB .

(c) Maintenance: (t = xB)
Variables iA, iB , xB are updated. The
after jump values (+) are:

i+A = i+B = 1;

x+

B = ∞.

(v) Set final system time and final system state
The final system time is thor and the final
system state is the state resulting from the last
jump to take place no later than thor.

This simulation procedure is replicated N
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times, to approximate quantities of interest, such
as deterioration state probabilities.

3.2. Numerical scheme

The probability of the state of the system
of a PDMP can be completely described by
the Chapman-Kolmogorov equations, as demon-
strated by Cocozza-Thivent et al. (2006). A
numerical scheme based in finite-volume meth-
ods to approximate these probability measures is
proposed by Cocozza-Thivent et al. (2006), with
proof of the convergence to the unique solution.

The principle of the scheme is the discretization
of the continuous component Xt into cells. The
time evolution of the probability masses in each
cell of the environmental space is followed, and
at each step, a balance between the in-coming and
out-going probability masses is written, allowing
us to solve a linear system, as Lair et al. (2012).

Let M denote the mesh of the discretization of
the environmental state space R and δt denote the
environmental state space step (we use the same
step for xA, xB and t in our case, since xA, xB

and t have units of time). A cell w of M has cubic
shape w = [n1δt; (n1+1)δt)×[n2δt; (n2+1)δt)×
[n3δt; (n3 + 1)δt), with (n1, n2, n3) ∈ N3.

The evolution of the process, between t and t+
δt can be written as:

pt+δt{i, x} =
∑

u∈E
w∈M

pt{u,w}G
{i,x}
{u,w} (1)

Where G
{i,x}
{u,w} is the probability that the system

moves from state {u,w} to state {i, x} in the time
interval [t; t + δt). The conditional probabilities
for this model are included in the appendix.

The probability for the unit to be in the state of
deterioration j, Pr(iA = j), at time t is:

Pr(iA = j)t =
∑

k,r,s

pt((j, k), (r, s, t)) (2)

4. Results and Discussions

Both quantification approaches are used to ap-
proximate the deterioration states probabilities
shown in figure 3. The parameters used are
shown in table 1. The deterioration rates have
been estimated from previous works carried by the
NPRA based on the information available on their
database for inspections and maintenance actions,
BRUTUS.

4.1. Monte Carlo simulation vs numerical

scheme

To compare the results of the quantification from
both approaches, the residuals or difference be-
tween the state probabilities is shown in figure 4.

Table 1. Model parameters.

Deterioration Maintenance Inspection

rates (h−1) delays (y) interval (y)

λ12 = 1.5e−5 M1 =∞ T = 5

λ23 = 6e−6 M2 = 8

λ34 = 1.4e−6 M3 = 3

M4 = 0.5

0 5 10 15 20 25 30 35 40

Time (years)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(t

)

States probabilities - Numerical

P1

P2

P3

P4

Fig. 3. Deterioration states probabilities

It can be observed that the difference in results is
small, with an order of magnitude of 10−3. In
addition, the difference is reduced by performing a
higher number of replications of the Monte Carlo
simulation, showing same convergence.

The Monte Carlo simulation method is widely
used in practice, conceptually easy to apply and
without particular restrictions on the dimension
of the PDMP. On the other hand, the numerical
scheme has high accuracy with short computation
times, as pointed by Lin et al. (2018). In our case,
the Monte Carlo simulation with 100,000 replica-
tions took approximately one hour to obtain time-
dependent probabilities, while with the numerical
scheme the results are obtained in one second.

4.2. Strategy assessment

The PDMP allows to test different inspection and
maintenance strategies and assess their effect on
the structure condition. In a first attempt, we
can challenge the inspection period, evaluating the
effect on the condition of the structure. Figure
5 shows how the critical condition of the unit
(iA = 4), varies with time for different inspec-
tion periods. This allows to support the decision
process related to inspections by evaluating the
associated risk on the structure.

The PDMP framework supports the modelling
of a strategy in which the inspection is not per-
formed periodically, but that can instead be de-
pendent on the condition of the structure. The
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Fig. 4. Residuals between quantification approaches

Fig. 5. Critical damage probability for different inspection

intervals

model proposed here can be modified to allow for
this strategy, in a similar way to how different
maintenance delays have been set dependent on
the condition of the unit.

Moreover, to assist the decision process in
bridge management, the cost of a strategy can be
evaluated in addition to the effect on the condition
of a structure. In this way the strategy can be

optimized, by finding an inspection/maintenance
strategy that minimizes the mean cost over a time
period, with acceptable risk for the structure. The
cost function can be set as:

(3)
C(t) = Ninsp(t) · Cinsp +Nmr(t) · Cmr

+Nlr(t) · Clr(t) +Ncr(t) · Ccr(t)

Where:

• Cinsp: Cost of inspection
• Cmr: Cost of medium repair (unit with medium

damage)
• Clr: Cost of large repair (unit with large dam-

age)
• Ccr: Cost of critical repair (unit with critical

damage)
• Ninsp(t): Mean number of inspections until t

• Nmr(t): Mean number of medium repairs until
t

• Nlr(t): Mean number of large repairs until t
• Ncr(t): Mean number of critical repairs until t

The number of inspections and repairs can be
counted from Monte Carlo simulations or ex-
pressed in terms of the marginal distributions of
the PDMP and approximated with the numeri-
cal scheme. For example, the mean number of
medium repairs until t, can be approximated as
the probability that the system jumps from state:
{u,w} to state {i, x} with u = (2, 2) and i =
(1, 1) before time t, when δt is small so that
the probability of two or more medium repairs in
(t, t+ δt] is negligible, as:

Nmr(t) ≈

t∑

z=0

pt{(2, 2), w}G
{(1,1),x}
{(2,2),w} (4)

5. Conclusions and Further Works

Diagnostics allow the application of condition-
based maintenance by following pre-established
rules and guidelines that state when to perform
inspection and maintenance activities. Prognos-
tics empower the decision makers by enabling
them to evaluate the effect and cost of a given
strategy, therefore allowing to allocate resources
in a more efficient manner and optimize the bridge
management.

In this paper, we propose a PDMP as a sta-
tistical data driven approach to model the dete-
rioration of a structure as a stochastic process,
relying on available past observed data, and to
make prognosis for a unit that is not monitored
continuously but periodically and with significant
delay for a maintenance action to be performed.

Two approaches for solving the PDMP are pre-
sented. In general, the Monte Carlo simulation
approach is conceptually easier to apply while the
numerical scheme can provide better accuracy in
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the results with faster computation times. In the
PDMP presented here, the evolution of the contin-
uous component is reduced to a trivial equation.
This makes it relatively simple to apply the numer-
ical scheme, presenting a convenient alternative
for optimization problems which require testing
different strategies, thus repeating the quantifica-
tion procedure several times.

With support from the NPRA, the work pre-
sented here can be developed further. More ad-
vanced estimation of parameters for the PDMP
can be explored, with sensitivity analysis. Other
strategies can be evaluated, such as a condition-
based inspection policy rather than inspections
performed at equal time intervals, and other main-
tenance alternatives than as-good-as-new replace-
ments. A PDMP is a framework suitable to model
such strategies. In addition, the proposed cost
function needs to be addressed together with the
definition of constraints on the risk, to optimize
the bridge management.

A PDMP presents a framework for hybrid
models prognostics, a combination between data-
driven and physics-based models, that could be
explored for bridge management. It is also of
interest to study the application of the PDMP
for maintenance models for multi-units systems,
accounting for their dependencies, and evaluating
the advantages and disadvantages of the numeri-
cal scheme and Monte Carlo simulation in these
applications.
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Appendix. Conditional probabilities for

the numerical scheme

Consider the environmental state space cells w =
w1 ×w2 ×w3 and x = x1 × x2 × x3. Where wj ,

xj are intervals, e.g. wj = [njδt, (nj +1)δt) with

nj ∈ N , j = {1, 2, 3}. For simplicity, we denote:

wj = [wj , wj), where wj = wj + δt
Due to the deterioration of the unit, modelled

with random jumps, the probability masses move
from w to x, which are neighboring cells of the
mesh M, i.e. x1 = w1, x2 = w2 and x3 =
w3+[δt, δt), since only the environmental variable
t evolves with speed of one between two consecu-
tive jumps.

The non-null transition probabilities due to a
random jump, can be written as:

• G
{(1,1),(x)}
{(1,1),(w)} = 1− (λ12δt)

• G
{(2,1),(x)}
{(1,1),(w)} = λ12δt

• G
{(2,1),(x)}
{(2,1),(w)} = 1− (λ23δt)

• G
{(3,1),(x)}
{(2,1),(w)} = λ23δt

• G
{(2,2),(x)}
{(2,2),(w)} = 1− (λ23δt)

• G
{(3,2),(x)}
{(2,2),(w)} = λ23δt

• G
{(3,1),(x)}
{(3,1),(w)} = 1− (λ34δt)

• G
{(4,1),(x)}
{(3,1),(w)} = λ34δt

• G
{(3,2),(x)}
{(3,2),(w)} = 1− (λ34δt)

• G
{(4,2),(x)}
{(3,2),(w)} = λ34δt

• G
{(3,3),(x)}
{(3,3),(w)} = 1− (λ34δt)

• G
{(4,3),(x)}
{(3,3),(w)} = λ34δt

• G
{(4,1),(x)}
{(4,1),(w)} = 1

• G
{(4,2),(x)}
{(4,2),(w)} = 1

• G
{(4,3),(x)}
{(4,3),(w)} = 1

• G
{(4,4),(x)}
{(4,4),(w)} = 1

In our case, jumps between non-neighboring
cells of the environmental space occur only at
inspection and maintenance dates.

At inspection dates (w1 = w3), the probability
masses may move from cell w to cell x, when a
maintenance is scheduled or re-scheduled, or may
move from cell w to cell y when no maintenance
action needs to be scheduled or re-scheduled,
with: x1 = w1 + [T, T ), x2 = min(w2, x3 +
MiB), x3 = w3, y1 = w1 + [T, T ), y2 = w2 and
y3 = w3. The non-null transition probabilities of
this type are:

• G
{(1,1),(y)}
{(1,1),(w)} = 1

• G
{(2,2),(x)}
{(2,1),(w)} = 1

• G
{(2,2),(y)}
{(2,2),(w)} = 1

• G
{(3,3),(x)}
{(3,1),(w)} = 1

• G
{(3,3),(x)}
{(3,2),(w)} = 1

• G
{(3,3),(y)}
{(3,3),(w)} = 1

• G
{(4,4),(x)}
{(4,1),(w)} = 1
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• G
{(4,4),(x)}
{(4,2),(w)} = 1

• G
{(4,4),(x)}
{(4,3),(w)} = 1

• G
{(4,4),(y)}
{(4,4),(w)} = 1

At maintenance dates, (w2 = w3), the prob-
ability masses move from cell w to cell x, with
x1 = w1, x2 = ∞ and x3 = w3. The non-null
transition probabilities of this type are:

• G
{(1,1),(x)}
{(2,2),(w)} = 1

• G
{(1,1),(x)}
{(3,2),(w)} = 1

• G
{(1,1),(x)}
{(3,3),(w)} = 1

• G
{(1,1),(x)}
{(4,2),(w)} = 1

• G
{(1,1),(x)}
{(4,3),(w)} = 1

• G
{(1,1),(x)}
{(4,4),(w)} = 1
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