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Today, fault trees are still created and maintained manually by experts. But there are various approaches for the
automatic generation of fault trees. These procedures are very different and have been strongly influenced by their
application domain. Therefore, no standard procedure exists yet. In order to define a standardized procedure, it is
necessary to understand the generation process and to implement a pragmatic solution. In this work, we describe
an approach to generate fault trees automatically by using automatically created component fault trees. The aims
of this approach are to simplify the creation of fault trees and enable the continuous maintenance.
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1. Introduction

The development of safety-critical systems re-
quires more effort, since these systems also need
to prove safety. Standards such as the ARP 4761
[SA96] show that the system development and
safety assessments should take place simultane-
ously. However, [AB14] shows safety assess-
ments often start too late. Using the model-based
safety assessment (MBSA) approach can help to
reduce this problem, because MBSA eases ac-
cess to the required data for all developers at any
time. Moreover, the recurring, time-consuming
tasks of creating fault trees can be automated. In
this way, inconsistencies in the system descrip-
tion can be avoided, since manual synchroniza-
tion of the system model and the developed fault
trees are no longer necessary. In addition, it is
possible to provide fault trees for joint discus-
sions in early design phases and continuously
during the whole design process [ZK16].

Currently no standardized procedure exists for
the automatic generation of fault trees. Fault
trees are created and maintained manually,
which can lead to problems. The created fault
trees are refined or reviewed by safety engineers,
who require the current system information to
perform their tasks. Maintaining consistency
between systems and safety engineering is com-
plex and if this is carried out manually, it is time-
consuming and error-prone [PM9S§]. Therefore,
MBSA proposes the automatic creation of fault
trees from the system model. Various existing
approaches for automatic generation were inves-
tigated in [AB16]. In summary, the automatic
generation of fault trees: (1) can be done with
very different approaches which are strongly
influenced by their application domain and (2)

these approaches are not derived from a stand-
ardized method. To cope with these challenges,
we present a generic approach for an automatic
generation of fault trees by using component
fault trees during the development life cycle of
safety-critical systems.

Thus, the main contributions of this paper are:
(1) Fully automatic generation of safety analysis
models (in form of CFTs) in early development
phases based on a logical or functional architec-
ture. (2) Seamless refinement of the safety analy-
sis models during the whole development life
cycle. (3) Support of the systematic development
of safe system architectures. The applicability of
the approach is shown by a case study using
CFT’s.

2. Related Work

Various previous approaches deal with the gen-
eration of fault trees. In [AB99], [HG04] and
[MMO8] fault tree models are generated from
UML models to perform safety analysis during
design. Other approaches such as [MBO04],
[LGO5], [AJO7], [NM11], [YPO1], [ARO4] and
[GS09] wuse specific system models (e.g.
MATLAB, AADL, etc.). A review and classifi-
cation of the generation procedures was carried
out in [AB16]. It was shown, that the generation
can be based on system structure or behavior. In
addition to the system structure and relations
among system components, a failure model is
also required. This model contains the compo-
nent faults and failure conditions which lead to a
failure and is used to analyze the failure propaga-
tion, which leads to system failures. In case of a
state-driven approach, all system states need to
be determined. Hence, the resulting state model
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contains the failure model. Various representa-
tive methods and their understanding of a failure
model are briefly discussed below.

In AltaRica a model consists of a component
hierarchy. Components are related as nodes and
include flows, states, events, state transitions,
and assumptions. The model is described as a
text document using a domain-specific language.
The algorithm to generate a fault tree is de-
scribed in [AR02]. HiP-HOPS [PM99] can ana-
lyze systems that have identifiable components
and material, energy or dataflow transactions
among them. In HiP-HOPS, a system model is
annotated with safety-related information. This
information includes component failure modes
and expressions for output deviations, which
describe how a component can fail and how it
responds to failures occurring in other parts of
the system. In [FM14] an approach using SysML
for the automatic generation of fault trees is
shown. System components and their interfaces
are modeled using an internal block diagram
(IBD). Flow ports are used to model the interac-
tions among the components. The IBD is con-
verted into a directed graph and by performing
an FMEA, component faults are identified. The
graph incorporating component faults corre-
sponds to the failure model. It is transformed
into a fault tree by using patters on the graph.

Each of the described approaches uses its own
system description as well as a failure model. In
collaborative engineering additional efforts are
necessary to synchronize the different system
models. Unfortunately this is usually the case,
because in companies different tools are used
and therefore document-driven engineering is
often applied. Regardless of the previously de-
scribed approaches, the generation creates com-
plete, system-wide fault trees. However, the
system has to be described almost completely
before the generation can be performed. To cope
with this challenge, an approach using CFT to
enable the automatic generation of fault trees is
required.

2.1 CFT- Component Fault Trees

A component fault tree is a Boolean model asso-
ciated with system development elements such
as components [BKO03]. In CFTs, a separate
Component Fault Tree Element is attached to a
component. Failures that are visible at the com-
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ponent output are modeled using Output Failure
Modes which are related to the specific outport.
To model how specific failures propagate from a
component input to the component failures,
Input Failure Modes are used. The internal fail-
ure conditions that influence the failures are
modeled using Boolean expressions. Using the
system structure and the identified top-level
events, fault trees can then be created. The basic
events used by several components are identified
and marked as input of those components. Then
the top-level elements of the components are
identified. By analyzing the failure conditions of
each component the corresponding fault tree is
created. Since a fault tree must be free of cycles,
cycles must be broken.

CFT methodology corresponds to the "divide and
conquer" strategy, which is already intuitively
applied as the "best practice" when creating fault
trees. This has advantages for team collabora-
tion: Fault trees can be developed iteratively and
in parallel. Due to the resulting decoupling of the
system, it does not need to be traversed entirely
during the fault tree generation. Moreover, in-
consistencies between system description and
safety analysis models as well as the effort re-
quired for fault tree analysis can be reduced due
to simplified information exchange [ZK16]. The
creation of CFTs allows an automated synchro-
nization between systems and safety engineering
[ZK16] and eases the reference of system com-
ponents in safety assessment. This approach
simplifies the development of systems as both
system and safety engineers can work simultane-
ously on individual components. However,
CFT’s are typically manually created for each
component. A procedure or tools to enable an
automatic generation are still missing.

3. Towards, a Generic Automatic Generation

For the generation of fault trees, component fault
trees are integrated into a lean system model and
used throughout the whole development process.

In our understanding a function or their imple-
menting system can be considered as a compo-
nent which may fail. By allocating system func-
tions to components the transformation from a
function-based CFT to a system-based CFT is
done. Thus, the allocation of functions enables
the full integration of our generation approach
out of components fault trees into the develop-
ment process (see Fig. 1).
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Fig. 1 Development process overview including automatic generation of Fault Trees

As shown in [AB16], a system description and a
failure model are required to generate fault trees.
The functional architecture and the system struc-
ture, after the functional allocation, can serve as
a component-based system description. In addi-
tion, by adding a failure model to each compo-
nent and using the component dependencies, a
generic procedure can be applied to generate
fault trees automatically.

3.1 Generalized Component System Descrip-
tion

The basis of the proposed approach is a safety
component graph. This graph can be generated
from a functional architecture (E3) or a technical
system description (E6). If both are available
then the resulting safety component graphs could
be merged into one graph (ES).

The directed graph (E1) defines the functional
architecture for the system functions, including
the functions (F) and their connections (V¢)
among them. Each function can be depicted as
safety component which can fail. Therefore, by
applying (E2) the safety component graph Ggc
can be initialized with Gg,, i.e., by replacing each
function with its associated component. To ena-
ble the automatic generation of fault trees Ggc
(E3) then needs to be transformed into a tree by
breaking any cycles.

Gpa= (F,Vz), Ve € F XF (E1)
g: F — C bijective (E2)
Gre = (C, V), Ve €CXC,Ve=g(Ve) (E3)

During design the technical system Gra (E4) is
specified, i.e. a set of system components will be

defined to fulfill the purpose of the system. If
just the technical system is available, the re-
placement function (E5) can be used to create the
safety component graph Gsc; (E6). During the
creation of Gscy, cycles have to be broken as
well.

Gra=(SVy), Vp©ESXS (E4)
j: S = C; bijective (E5)
Gsc1 = (C1, Ver), )

Ver €C X Cyy Ve =j(Vp) (E6)

If the functional architecture and a technical
system are available then system components are
allocated to functions (E7). Using the allocation
and the replacement (E2) the system component
graph (E8) can be created. Again, the cycles of
the system component graph have to be broken.

i:S — F surjective (E7)
Gscz = (Cz,ch) ’
Vea SC, % Cy , Ve = g(i(V) (E8)

If the graphs Ggc and Gra were designed inde-
pendently, it is possible to check if a system
fulfils all required functions. For this purpose,
the functions implemented by the system com-
ponents must be assignable to the system func-
tions. If the allocation (E5) was complete and
correct, it is verified that Ggc;= Ggcy, the single
responsibility principle is fulfilled. Otherwise
system components need to be decomposed.

3.2 Failure Model

In order to implement a resource saving Safety
Assessment, only safety-critical functions should
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be evaluated in detail. From the Functional Haz-
ard Analysis (FHA), which was already carried
out, a set of safety-critical functions can be iden-
tified by using the risk index RI (E9). The risk
index is usually defined in the domain specific
safety standard.

SF ={f € F|assess(f) = RI} (E9)
If the criticality of a system is at least “major”
then the FHA and the Fault Tree Analysis (FTA)
must be performed [SA96]. During the FHA all
safety critical functions are identified and based
on the findings the decision whether to conduct
the FTA is made. It is also recommended to
conduct a Preliminary Hazard Analysis (PHA).
In the PHA the system and the environment are
analyzed to identify a list of “generally” valid
hazards. This list is called Preliminary Hazard
List (PHL) and may include hazards like “expo-
sure to fire” or “corrosion”. In regard to [DO12]
a hazard is “a real or potential condition that can
cause injury, illness, or death to personnel; dam-
age to or loss of a system, equipment or proper-
ty; or damage to the environment”. The PHL can
be defined as a set HP including all previous
identified hazards.

As mentioned in section 2, a failure model can
be described in different ways. For example,
AADL provides the error annex model, which
describes the failures of software components by
mathematical expressions. In SysML and Sim-
ulink, state machines can be used to describe a
failure model. As shown in [BK06], CFTs can
also be derived from event trees, which are de-
rived from state machines. To enable a wide-
spread usage of different system descriptions, we
recommend the use of state machines as a base
for a generalized failure model.

For the failure model the set (E10) is defined by
incorporating a list of hazards (E11) and the
failure conditions represented by a set of Boole-
an conditions B. Thus, the set FM describes the
system behavior in case of failures.

FM = (C,B) (E 10)
H=H,UH;UH, (EIl11)

To define a hazard, we propose to use state ma-
chines. This state machine includes the states
Normal and Failure as well as the transition
between them. Part of the transition is a guard
condition, which depicts the condition of the
hazardous event. Furthermore, the failure model
can be described as follows (E12). For each
component ¢ € C a failure is defined by a list of
hazards and a condition b € B. The hazards can
be taken from external hazards H E or safety
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component hazards H_I. A condition is the com-
bination of operators o € O (AND, OR, PAND,
...) and shows the dependency among hazards.
The condition can be constructed by using the
EBNF grammar (E12).

haz=h€H ,op=0€0
cond = expr op expr;
expr = haz | "(" cond ")"; (E 12)
As an example consider a component ¢; with
three hazards {h;, h,, h3}. The occurrence of h;
or the combination of h, and h; leads to the fail-
ure of ¢;. By applying (E12) the following failure
condition b, can be created (E13).
b1 = h1 \Y% (hz A h3) (E 13)
If it is possible to show that the graphs Ggcjand
Ggcs are isomorph and the related failure models
FM, and FM; are identical a consistent and com-
plete initial failure model exists.

4. Automatic Generation of CFTs

After the initial failure model was defined it is
possible to generate CFTs automatically at any
time. To show the initial generation of a CFT we
use the function F1. We assume the PHL con-
tains the two hazards {pl, p2}. Furthermore, F1
includes the two previous identified hazards {il,
i2} and depends on the function F2. The function
F2 can fail by the two external hazards {el, e2}
which are propagated. The construction of the
initial failure condition bl can be done as fol-
lows. In the worst case, all hazards are independ-
ent and may lead to the failure of function F1.
Thus, by using the OR gate the failure condition
by = p,Vp, Vi, Vi, Ve Ve, is automatically
constructed. By using b, the CFT shown in Fig.
2 can be generated automatically.

A\

Failure of
Y

CFTof F1

Fig. 2 Initial CFT of function F1
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The constructed text notation of b, can be trans-
formed into a tree using the shunting-yard algo-
rithm [ED61]. Furthermore, the graphical repre-
sentation can be generated out of this tree. With
the described procedure, it is possible to create
CFT’s fully automatically at any time during the
development life-cycle.

Without experience and manual improvements,
the effort required to assess safety-critical func-
tions is enormous. This is because the analysis is
carried out for all possible failures and hazard
and dependencies are considered as independent.
This can lead to the fact that no solution can be
found. To find a solution and to reduce the as-
sessment effort the refinement of component
failures, analysis of the failure conditions and
review of the generated component fault tree
needs to be done. After performing the three
following steps, the CFT shown in Fig. 3 is gen-
erated.

A
CFTof F1
Failure of
¥

Fig. 3 Redefined CFT of function F1

Refinement of component failures: The identi-
fication of failures which may lead to the system
component failure starts with the evaluation of
the hazards initially added by the PHL and ex-
ternal hazards. For each failure, it is discussed
whether the failure could occur or not. If hazards
can be removed, it must be documented includ-
ing the reasoning. The analysis of internal haz-
ards then starts by identifying new hazards and
reviewing existing ones. Such an analysis must
be performed very thoroughly, as it contributes
to a better understanding of system behavior. In
addition, it can be described how the system
should react in the event of failure. If common
hazards can be identified, they should be includ-
ed in a component hazard list. This enables the
reuse of hazards for components.

Analysis of failure conditions: In the next step,
the dependencies of the hazards are checked.
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Initially, the identified hazards are newly com-
bined with the OR expression. Then, the hazards
are analyzed separately. If hazards occur only in
combination or depending on each other, then
intermediate hazards are defined and combined
with the corresponding logical expression. This
step is complete when all hazards have been
examined and documented properly.

For function F1, the list of hazards can be
adapted as follows: The analysis showed that the
hazard pl did not apply and the hazards propa-
gated from function F2 are combined into one
hazard. Also the internal hazard il and i2 are
independent of each other and this can be ex-
pressed by an AND operator.

Review of the CFT: The graphical representa-
tions of the CFTs are generated as previously
described and can be evaluated qualitatively or
quantitatively. It is recommended that systems as
well as safety engineers review the generated
trees together. The CFTs are checked for com-
pleteness, correctness and logical consistency.
By committing the trees after the review, it is
assumed that a common understanding exists and
the quantitative analysis can be performed.

5. Case Study

As an example, we use the Wheel Brake System
shown in Fig. 4 from [SA96]. Because, a func-
tional architecture is missing, no functions were
specified. But the system behavior can be de-
scribed by system components.

Green Pump Blue Pump Yelow Pump
@

Wheel Brake System

Ei

( Selector Valve )

T Brake System
Annunciation

Power Supply
)

=2

=
T —

Fig. 4 Wheel Brake System example

Pedal
Meter Valve

Lt
5| AS/ShutOff
. Valve

Pedals Position

Each system component is colored to ease a later
identification of related component failures in
the generated fault tree. We assume that a PHL
exists filled with the common hazards such as
corrosion, erosion and fire.
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Fig. 5 Excerpt of the generated colored FTA

During the creation of the system model, stand-
ard hazards were automatically assigned to each
component. Hence, the CFTs could be created
automatically as described in section 4. After all
connections among the system components were
added, automatic fault tree generation was exe-
cuted and the refinement of CFTs started as
described. As shown in the example, three
pumps and six valves are used. By using a gener-
ic CFT for the pumps, the effort to create a fault
tree can be reduced. Several internal hazards of
the pumps were added like cavitation, erosion
and corrosion. In addition, generic hazards were
also added to the six valves. In Fig. 5 a part of
the automatically generated fault tree is shown.
By manually extending the failure model, the
generated CFT can be refined at any time.

6. Conclusion

By describing the creation of CT’s in a generic
way from a functional architecture, we enable a
preliminary safety analysis in an early design
phase and close the identified gap. Furthermore,
by creating CT’s from a technical system, we
enable the automatic generation of FT’s for the
whole development cycle. Also the automatic
generation allows an incremental, parallel and
continuous creation and maintenance of a fault
tree during design process. Hence, automated
synchronization between systems and safety

engineering is possible which enables the safety
engineering in a controlled way.

In contrast to existing approaches which require
specific system description including their own
failure model, our approach is based on a graph
and a failure model using logical expressions to
describe the failure behavior. This description
can be derived from any existing system model-
ing approach using model transformation. More-
over, the consistency and completeness of safety
analyses can be increased while the effort needed
to perform a FTA is decreased. By applying our
approach, the analyst can concentrate on the
important issues like hazards identification and
dependencies, removing cycles etc. The “me-
chanical” part of the FT creation can be automat-
ed.

In addition, the validation of failure models is
possible, by checking whether failures are as-
signed to functions or system components. Also
the failure conditions can be checked for logical
consistency from a system perspective. Further-
more, the integration of hazard taxonomies can
be considered during generation of CFT’s. In
taxonomies hazards are pre-defined and classi-
fied. Out of general hazards, also domain specif-
ic hazards can be included. These hazards can
then be assigned to the function or the imple-
menting item.
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