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Recent developments in technology and manufacturing of steel has led to a significant increase in
the strength of steel material while keeping the weight constant. These developments have resulted
in an increase in the application of high strength steel material in structural design and practice
which has consequently led to a rising demand in updated design guidelines for structures
consisting of these advanced materials. The present research covers the compression design of
different grades of cold-formed circular hollow sections (CHS) including high strength steel (fy
= 7700 MPa) and ultra-high strength steel material (fy =1250 MPa). Different section geometries
are modelled using the numerical finite element software and are validated against available
experimental tests. The validated result are then compared against available design guidelines in
AS4100. The compressive performance is studied considering two types of slenderness ratios,
namely the section slenderness and the member slenderness ratios. The results show that as the
member slenderness and yield strength of the sections increase, the differences between the
standard predictions becomes higher. Finally, these discrepancies are discussed and modifications
are suggested.
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1. Introduction

Various research has been conducted on High Strength Steel since the 1980s. The increasing
developments in steel manufacturing has consequently led to a rising demand to apply these
advances in structural engineering which requires updated design guidelines for structures
consisting of advanced steel materials. In terms of compressive design, there are different factors
which affect the performance of sections such as the section shape and the global and local
buckling behaviour. Experiments done by Trigopula et.al. (2006) stated that the type of
compressive force applied, ranging from instantaneous to long term also effects the compressive
strength behaviour of the section. The paper concluded that Top Hat section were superior for
the compression in short term impact but the square sections are more efficient in long run.
Furthermore, the compression behaviour of the section was predicted according to the Australian
standard i.e. AS4100:1998 and the results were analysed and compared against the experimental
observations. As buckling, mainly local and distortional buckling affects the overall strength of
high strength steel section, stress due to such types of buckling and their interaction plays vital
role in the section design. Distortional buckling can be defined as the buckling characterized by
rotation of flange at the junction of flange and web whereas in local buckling, plate like
deformation occurs without translating the line of adjoining plates. In the experiment carried out
by Hancock, G.J (1992), the buckling stress mainly due to distortional buckling was found to be
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smaller than that of yield stress for high strength steel samples. In mild steel samples from the
experiments done by G.J Hancock (1994) in Hat and Channel section with yield stress of 200 to
480 MPa, yield stress was found to be smaller than that of distortional buckling stress. Hancock,
G.J. et. al. (1994) gave some mathematical recommendations for the post buckling strength for
the sections according to the yield stress. A research done by Ramussen and Hancock (1994) for
columns with yield stress of 690 Mpa, the results were found to be conservative to Eurocode
rather than other codes.

The current paper focuses on the compressive strength prediction of high strength steel
circular tube sections according to the AS4100. Although the AS4100 standard provides design
guidelines for steel material with yield strength up to 690 MPa, the current paper aims to
investigate the compressive performance of steel columns with higher yield strength to propose
possible modifications to the current guidelines. The yield strength of the steel materials
considered for the tube sections are 770MPa and 1250MPa. Mild steel specimens have also been
considered for comparison purposes. A finite element model simulating the buckling performance
of high strength steel tubes is developed and validated against available experimental results. Non-
linear analysis (Riks) has been used prior to which a buckling analysis has been performed
introducing relevant imperfections to the model. The compressive strength of various geometries
are then investigated and compared against the member capacities obtained from the AS4100
standard. According to the results, the increase in member slenderness and steel grade both result
in higher discrepancies between the standard predictions, where some modifications are proposed
accordingly.

1.1 Geometrical specification

Six different columns have been modelled initially to be compared against available
experimental results. The labels, and geometrical specification and material types are
introduced in Table 1. Cold-formed steel with high strength (HST) tube and ultra-high strength
tube (UHST) sections are investigated. Mild tube (MT) has also been considered for
comparison purposes. Specimens are in Im or 2m lengths, which is specified at the end of the
each specimen label. The tubes were tested for all three grades of steel and the results were
analysed.

Table 1. Geometric specification

Specimen Length Outer diameter Thickness (mm) Steel types
Label (mm) (mm)
MT-1 1000 76.1 32 Mild steel
HST-1 1000 76.1 3.2 High Strength Steel
UHST-1 1000 76.1 3.2 Ultra High strength steel
MT-2 2000 76.1 32 Mild steel
HST-2 2000 76.1 3.2 High strength steel
UHST-2 2000 76.1 3.2 Ultra high strength steel

2. Numerical Modelling and Verification

Analysis was done using the Finite Element software, ABAQUS. The boundary conditions were
simulated according to the experimental test done by Javidan, F et. Al (2018) where the bottom
end was fully fixed and the top end was fixed in all degrees of freedom except the displacement
in the axial direction. Non-linear riks analysis has been performed. The numerical method consists
of various steps upon which the correctness and adequacy of result is dependent. For the
confirmation for mesh size for all the models, a mesh sensitivity analysis was performed
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considering various mesh sizes (30, 20, 15, 12 and 8mm). From the mesh sensitivity analysis it
was found that there were minor differences between the mesh sizes overall and the result started
converging from 15 mm mesh size and lower. The mesh type used was an 8-noded quadrilateral
element.

MESH SENSITIVITY ANALYSIS
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Figure 1. Mesh sensitivity analysis

Figure 2. Comparison between failure mechanism in experimental and abaqus results for MT-1, HST-1
and UHST-1
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The result from ABAQUS was compared with the experimental deformed shape and
presented in Figures 2 and 3. The numerical model predicted the tube deformation very closely as
it shows a reduction in the global buckling of tubes with higher yield strength values. The
compressive strength of each specimen was also validated by comparing the load-displacement
curves obtained from experiments. The model predicts the compressive capacity of specimens
with an error of less than 5%. The slight discrepancy between the experimental and numerical
results are understood to be due to the heat effects in the vicinity of the tube seem which is
predicted to reduce the strength of material in the heat-affected region and has been ignored in this
study.

Figure 3. Comparison between failure mechanism in experimental and ABAQUS results for MT-2,
HST-2 and UHST-2
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Figure 4. Graphical representation of model verification by comparing load-displacement
curves of a) 1m and b) 2m samples
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3. Results and Discussion

Further to the results obtained from the numerical model, the nominal member capacity in
axial compression (N;) of the tubes are also obtained from the AS4100 guidelines. The
parameters for design are calculated as per the AS4100 and presented in Table 1. The design
parameters are described as follows:

N¢ = acNg (D
where Ns is defined as the compressive nominal section capacity, a¢ is the compression
member slenderness reduction factor. The modified compression member slenderness is also
defined as follows:

Lo £,
Ao = TV ke 250
(2)

where r is the radius of gyration of the circular tube, k; is form factor which is calculated from
the ratio of gross area to the net area and is equal to 1. Due to the fixed boundary conditions
at both ends, the member effective length factor (k) is 0.7. The effective length (Le) is ke * 1
(AS 4100:1998). The section slenderness limit is given as:

—% ., fy
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where, d, is the outer diameter of the circular section and fy is the yield stress of the steel
material.

All section and slenderness values are calculated and presented in Table 2. Both the nominal
compression section and member capacities are also obtained and shown. The actual compressive
capacities obtained from the tests are also listed for further comparison. For better understanding
of differences between the AS4100 code predictions and the experimental values, the results are
compared visually in Figure 5.

Table 2. Design comparison of samples for 3.2mm diameter

Sample | effective fy As Oc Ns An Ne PEAK Peak/Afy
length (MPa) (kN) (kN) LOAD
MTI1 700 305 | 29.01 | 0.968 | 2332 | 2997 | 225.8 224.6 0.963
HSTI1 700 772 | 73.44 | 0.914 | 590.3 47.68 | 539.5 560.1 0.949
UHSTI1 700 1247 | 118.62 | 0.701 | 953.5 60.60 | 668.4 887.7 0.931
MT2 1400 305 | 29.01 | 0.862 | 233.2 59.94 | 201.0 208.1 0.892
HST2 1400 772 | 73.44 | 0.635 | 590.3 95.36 | 374.8 381.3 0.646
UHST2 1400 1247 | 118.62 | 0.456 | 953.5 | 121.20 | 434.8 591.1 0.620

Figure 5 shows the compressive capacity of steel tubes against the section slenderness. The
graph also includes the comparison of the section slenderness limit to the limiting width and
thickness ratio for circular hollow sections (CHS). The value is considered form table 5.2 AS 4100
in which the limit for circular hollow cold formed section is considered to be 50. The c/te for the
limiting slenderness is hence 50. It can be seen that in slenderness limit value of 29.9 which
corresponds to the MT section, the predicted compressive capacity of AS4100 matches to the
values obtained from the tests. This is expected as the Mild steel is within the code’s specified
yield strength limits. For the HST with a slenderness limit of 59.9, the predictions are close to the
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experimental observations as the yield strength of HST is only slightly above the specified yield
limits. However, it is obvious from the graph that the UHST exhibits a higher compressive strength
than what is predicted from the code. One important reason for this observation is the effect of
yield strength in increasing the member slenderness which has resulted in a significant reduction
in the predicted capacity. It can be concluded that there are modifications required for the nominal
capacity of this steel material.
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Figure 5. Comparison graph between Nc and Peak load

To further investigate the current code predictions in ultra-high strength tubes with various
slenderness values, analysis has been conducted for a range of other thicknesses while keeping the
diameter constant. These thicknesses are chosen according to the manufacturer’s tables. The
analysis is done for the peak load of HST and UHST which is compared to the values computed
from AS4100, presented in Table 3 in detail.

Further to Table 3, a graphical representation is also shown in Figure 6. The vertical axis
represents the ratio of peak load (compression capacity of tube section) to the nominal capacity
predicted from the code (AS4100). These values are plotted versus the member slenderness values.
The graph shows that with the increase in yield strength of sections, the ratio of the actual
compressive strength to the predicted compressive strength increases. This ratio reaches higher
values as the diameter to thickness ratio of the tube increases. Specifically, this ratio is equal to
1.66 for the UHST specimen with a thickness of 2.9mm and a length of 2 meters.
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Figure 6. Slenderness limit comparisons

4. Conclusion

A numerical analysis has been completed for the hollow tubes with two different lengths and three
types of steel material namely mild, high strength steel and ultra-high strength steel. The numerical
model is developed and validated against available experimental results. Apart from the load-
displacement curve and the predicated compressive capacity, the failure modes have also been
compared and show matching results against the experiments. To check the extent of closeness of
the available code prediction (AS4100) for steel grades higher than 690 MPa (which is specified
as the upper limit in this code) further analysis has been conducted. As expected, the results
showed a precise prediction of the compressive capacity of mild steel tubes. The high strength
steel tube results also showed close comparison, whereas, the difference between those of ultra-
high strength steel was significant. Further analysis was done for a wide range of thickness values
to study the effect of slenderness on the variations between code prediction and the compression
capacity. The code provisions were found to be underestimating the strength of UHST samples
which increases with the rise in diameter to thickness ratios. The reason for this difference is due
to the increase in member slenderness value with the increase in yield strength. Therefore, it can
be concluded from the analysis result that the code provisions require a modification of up to 10%
for HST section. This modification reaches 54-56% for UHST-2 specimens.
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