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The accurate simulation of ductile fracture becomes a more important role in the simulation to 

improve the validity of predicting structural behavior of hollow section joints. Gurson-

Tvergaard-Needleman (GTN) damage model is used in this paper as a surrogate fracture 

simulation approach. The pressure dependency on the deviatoric stress is investigated based on 

computational homogenization methods. The inelastic deformations within the unit cell included 

with random spherical pores are analyzed for different types of loading conditions with respect 

to different stress triaxiality levels. The parameters q1, q2, and q3 in the GTN yield surface are 

fitted based on the two-scale homogenized results. The proposed parameters for based material, 

the critical value of the void volume fraction fc and the value of void volume fraction at which 

there is a complete loss of stress carrying resistance in the material ff are calibrated by the results 

of coupon tests from the literature. A good agreement is observed, indicating the model and 

fitted parameters in this paper could be effectively used in the finite element simulation of the 

hollow section joints. 
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1 Introduction 

The accurate predicting of ductile fracture becomes very important in predicting of the ultimate 

state of hollow section joints. Proper modelling of the weld material, the heat affected zone and 

the base material are crucial and a systematic approach is lacking in presently available 

literature. Properties for material modelling of each component will be addressed using the 

surrogate model for different steel grades in an on-going project at TUD, planned together with 

Tampere University of Technology, Finland. The localization of the plasticity in the necking 

zone is overestimated by traditional elastoplastic hardening model if material damage is not 

considered (Zhang 1994, Ling 2004). Traditional approach for material modelling was used for 

the joints of rectangular sections with high strength steel (ROUSTE 2016). If the damage 

evolution of the material is considered (Pavlovic 2015, Yan 2019), a good agreement of finite 

element analysis and the experimental results is obtained. In this paper, a preliminary study is 

performed on S355 specimens cut from plate, as reported in Tu (2016) to examine the concept 

for ductile fracture modelling. The failure mechanism of ductile steels is growth and coalescence 

of micro voids (Benzerga and Jean-Baptiste 2010) which nucleate at inclusions or second-phase 

particles by particle-matrix interface de-cohesion or particle cracking. A widely used model 

linking the macroscopic damage with an evolution of micro void volume fraction growth is 

proposed by Gurson (1977), which is further improved by Tvergaard (1982) and Needleman and 

Proceedings of the 17th International Symposium on Tubular Structures.

Editors: X.D. Qian and Y.S. Choo

Copyright c© ISTS2019 Editors. All rights reserved.

Published by Research Publishing, Singapore.

ISBN: 978-981-11-0745-0; doi:10.3850/978-981-11-0745-0 066-cd 582



Proceedings of the 17th International Symposium on Tubular Structures (ISTS 17) 583

 

Tvergaard (1987) to consider void nucleation and coalescence, known as Gurson-Tvergaard-

Needleman (GTN) Damage Model. 

 A variety of material specimens can be used to determine the fracture process such as 

smooth, notched bars or compact tension specimens where the experimental fracture properties 

and failure modes are varied to examine the effects of stress triaxiality and Lode Angles (Kiran 

and Khandelwal 2013). One test series including many samples need to be involved to identify 

the parameters of the damage model. In addition to experiments, numerical micromechanical 

analysis are useful in calibrating the parameters of ductile fracture models. Fritzen et al. (2012) 

calibrates the parameters for elastoplastic porous metals by using a three-dimensional (3D) 

porous volume elements. Xin et al. (2017) identifies the material parameters of orthotropic GTN 

model inferred from microstructures generated from the high-fidelity discrete element 

simulations.  Xin et al. (2019) calibrates the friction angle, the ratio of the yield stress in triaxial 

tension to the yield stress in triaxial compression and the dilation angle of the linear Drucker-

Prager plastic model based on experimental results and computational homogenization.   

In this paper, GTN damage model is used as a surrogate fracture simulation approach. The 

pressure dependency on the deviatoric stress is investigated based on computational 

homogenization methods. The inelastic deformations within the unit cell included with random 

spherical pores are analyzed for different types of loading conditions with respect to different 

stress triaxiality levels. The parameters q1, q2, and q3 in the GTN yield surface are fitted based 

on the two-scale homogenized results. The proposed parameters for base material, the critical 

value of the void volume fraction fc and the value of void volume fraction at which there is a 

complete loss of stress carrying resistance in the material ff is calibrated by the results of coupon 

tests from the literature (Tu 2016). Very good agreement of FEA and experiments is obtained. 

The same approach is applying in the on-going research project on tubular joints made of cold-

formed steel grades S355, S500 and S700. 

 

2 Material models 

2.1    GTN model 

The yield surface of GTN model is shown in Eq. 1 (Needleman and Tvergaard 1987): 
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Where: q1, q2, and q3 are the constitutive parameters, σeq, σm and σy are the von Mises equivalent 

stress, the hydrostatic pressure and the flow stress of the undamaged material matrix 

respectively.  σeq  and σm can be calculated by following equations: 
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f* is a function of the critical volume fraction fc and final void volume fraction ff, and is 

expressed as following (Needleman and Tvergaard 1987): 
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The change in void volume fraction during an increment of deformation process contains 

two parts: one due to the growth of existing voids and the other due to the nucleation of new 

voids (Needleman and Tvergaard 1987): 

g nf f f= +f f ff                                                         (5) 

Growth of existing voids is based on the law of conservation of mass and is expressed as: 

( )1 pl

g kkf f e= -(g kkf f(1g kkg kk(1(1g kkg kk(1 pl

g kkeg kkg kk                                                     (6) 

Nucleation of voids may occur due to microcracking and/or decohesion of the particle-

matrix interface: 
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where: fn is the void volume fraction of the nucleated void; ne  is the mean value of the normal 

distribution of the nucleation strain; Sn is the standard deviation. 

 

2.2 Periodic Boundary Condition  

The micro-scale and macro-scale behavior could be associated by Hill-Mandel Computational 

Homogenization.  The Cauchy stress σij in macro-scale level could be calculated by averaging 

the Cauchy stress 
ijs ijs  in the unit cell domain (Fish 2013).  

1
ij ijd

Q

= Q
Q òij ijd= Qij ijds s                                  (9) 

The displacement in micro-scale level ( , )f

iu x y  could be given by leading order translation-

free micro-scale displacement which depends on the stain tensors in the macro-scale domain 
c

ije , perturbation displacement of the micro-scale 
(1) ( , )iu x y , position vector in macro-scale x  

and macro-scale level y, expressed as below (Fish 2013): 
(1)( , ) ( , )f c

i ij j iu x y y u x ye= +               (10) 

Periodic boundary conditions could apply the same perturbation displacement to a pair of 

Master and Slave nodes located at the opposite faces. Thus, the following relation which could 

be realized by constraint equations between a Master node and a Slave node as follows: 

( )( , ) ( , )f M f S c M S

i j i j ij j ju x y u x y y ye- = -              (11) 
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2.3 Uniaxial stress-strain relationship  

The non-linear isotropic hardening model presented in the ABAQUS software(2014) is used to 

consider the plasticity of steel. A linear combination of a power and an exponential law (Roth 

2016) is employed to model uniaxial stress-strain relationship of the structural steel S355.  

( )S V1p p pes e as e a s eé ù é ù é ù= + -ë û ë û ë û                 (12) 

Where: a  is the weighting factor. The power law (Swift, 1952) 

( )S 0

n
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Where: 0,  ,  A ne  are the Swift parameters. The exponential law (Voce, 1948) 
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Where: 0 ,  ,  k Q b  are the Voce parameters. 

 

3 Finite element model 

3.1    Material Property 

The material property of matrix is reproduced from the literature (Tu 2016) where tensile tests 

are performed based on EN 10002-1(2001) at room temperature. The Young’s modulus is 

207.75GPa and the Poisson ratio is 0.3. A linear combination of a power law and an exponential 

law is used to treat the material’s strain hardening behavior after necking for matching the micro 

homogenization results to macro material properties. The fitted and calibrated parameters are 

given in Table 1 and the true stress-plastic strain curve is shown in Figure 1 where the 

experimental data only includes data before the ultimate stress.  

 
Table 1.  Plasticity model parameters for S355 

 

α A[MPa] ε0 n k0 [MPa] Q [MPa] β 

0.6 935.9 0 0.2075 302 328 19.9 

 

 
Figure 1.  True stress- plastic strain curve 

 



586 Proceedings of the 17th International Symposium on Tubular Structures (ISTS 17)

 

3.2    Unit Cell Generation 

Six finite element unit cell models with different void volume fractions f varifying from 

0.0663% to 25% are built to identify the parameters in the yield surface of GTN model.  Typical 

unit cell with random voids is shown in Fig. 2. The number of the random non-overlapping 

voids with constant radius N within the unit cell are varying from 10 to 80 depending on the size 

of the voids.  The void volume fraction f of the unit cell is calculated by following equations:  

                                             34 / / 3totf NRp= W               (15) 

Where: 
totW is the total volume of the unit cell. Since the side length of the cubic unit cell is 

1mm, the volume of the unit cell is 1mm3 in this paper. The details including voids number, 

radius and porosity of unit cell are listed in Table 2. 
 

Table 2.  Details of microstructures 

f (%) 0.0663 1.5 3 5 10 25 

N 10 40 40 40 80 80 

R (mm) 0.0251 0.0447 0.0564 0.0668 0.0668 0.0907 
 

  
a) N=40, f=3% 

  
b) N=80, f=10% 

 

Figure 2.  Typical unit cell model with random voids 

 

3.3    Boundary Conditions 

The parameters q1, q2, and q3 in the GTN model, which reflect the hydrostatic pressure 

dependency of the macroscopic yield surface, are generally investigated by varying macroscopic 

stress triaxiality. A total of 14 loading conditions, listed in Table 3, are used to varying stress 

triaxiality by changing two parameters α and β proposed by Fritzen et al. (2012).  The strain-

driven boundary conditions are shown below:   
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Table 3.  Parameters for different load conditions 

 

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

α 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

β 0.05 0.1 0.2 0.3 0.5 0.7 0.9 1.2 1.4 1.6 1.8 2.0 3.0 5.0 

 

4 Simulation results 

4.1    Parameters identification of yield surface 

An example of the Mises stress- hydrostatic pressure curves extracted from the model with 5% 

volume void fraction under load conditions 3,5,7,9,12 and 14 in Table 3 are given in Figure 3.  

The results show that a larger β leads to a smaller Mises stress, and the Mises stress increases in 

the beginning and decreases later with the increasing of hydrostatic pressure. Fig.4 shows the 

relationship between the yield strength and the hydrostatic pressure with the same porosity.  The 

parameters of the yield surface are fitted per each porosity, and the results are listed in Table 4.  

In addition, q1=1.62 and q2=0.97 are proposed by applying the least square method considering 

different void volume fractions. 

 
Figure 3.  Typical Mises stress- hydrostatic pressure relationship (f=5%, α=1) 
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Figure 4.  Relationship between yield strength and hydrostatic pressure with same porosity 

   
Table 4.  Parameters of yield surface for different porosity 

 

fnominal (%) 0.0663 1.5 3 5 10 25 

fEVOL (%) 0.0656 1.46 2.95 4.98 9.71 24.8 

q1 1.00±0.78 1.70±0.16 1.73±0.10 1.51±0.13 1.54±0.19 1.44±0.04 

q2 1.01±0.11 1.01±0.03 1.03±0.02 1.13±0.03 1.10±0.07 1.07±0.03 

R2 0.961 0.994 0.995 0.991 0.965 0.987 

 

4.2   Parameters calibration of damage evolution 

The damage evolution parameters fc and ff are calibrated through test results of the notched round 

bars reported by Tu (2016) as shown in Figure 6.  Note that the void nucleation parameters εn, fn 

and sn is based on Tu (2016).  The initial void volume fraction f0 is obtained according to 

Franklin’s formula (1969) as 0.063%.  The calibration process is proceeded by comparing load 

versus elongation (ΔL) curves and load versus cross section diameters reduction (ΔD) curves. 

After the parametric study, the FE results with parameters fc=0.04 and ff=0.25 show a good 

agreement with experimental results. Three critical points are marked and the maximum voids 

volume fractions (VVF) are shown in Fig. 7.  Point A corresponds to the maximum stress, and 

the maximum VVF is around 0.44%.  At the Point B, obvious degradation is observed and the 

VVF (4.0%) at point B generally equals to fc. The point C corresponds to fracture point, and the 

VVF (25.0 %) is the value of ff.  The values of parameters in GTN model for S355 are proposed 

in Table 5. 

 
Figure 6.  Geometry of the notched bar (Tu 2016) 
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(a) Load-ΔL curve 

 

(b) Load-ΔD curve 

Figure 7. Comparison between FE and test results 

Table 5.  Proposed parameters for the GTN model 

 

q1 q2 q3 f0 fc ff εn fn sn 

1.62 0.97 2.62 6.63E-4 0.04 0.25 0.2 0.01 0.1 

 

5 Conclusions 

In this paper, Gurson-Tvergaard-Needleman (GTN) damage model is used in this paper as a 

surrogate fracture simulation approach.  The parameters q1, q2, and q3 of the yield surface is 

identified via computational homogenization methods.  The damage evolution parameters fc and 

ff are calibrated by the experimental results of notched round bars.  The value of fc corresponds to 

the VVF at obvious degradation (Point B in Fig. 7) and the value ff equals to the VVF at failure 

point (Point C in Fig. 7).  The values of parameters in GTN model for S355, tested by Tu (2016) 

are proposed.  A good agreement is observed between the results of simulation and experiments 

in the tensile tests of the notched round bars.  


