

Study of the structural and morphology features of Bi₂O₃ nanoparticles

M. Akhter and M.A.Shah*

Special Centre for Nano science, Department of Physics, National Institute of Technology Hazratbal Srinagar-190006 *Email: shah@nitsri.net

We have employed an improved and surfactant free approach for the synthesis of Bismuth oxide (Bi₂O₃) nanoparticles at very low temperature of 110 °C. This new approach is based on a reaction of bismuth powder and deionized (DI) water without the use of any additives or surfactants. The ontical. photoelectrical photoluminescence and properties of bismuth oxide films prepared by thermal oxidation of bismuth thin films has been studied [1].

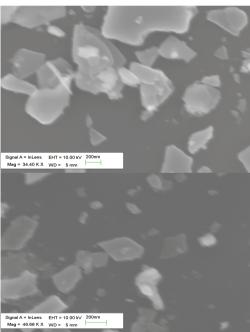


Figure 1: SEM images of Bi₂O₃ nanostructures

In the present study, various methods are introduced for the synthesis of the nanoscale Bi₂O₃ particles including sol-gel method [2]. Solvothermal synthesis of Bi₂O₃ nanoparticles

has been achieved in order to control phase structure and morphology [3]. XRD and SEM have been employed to characterize the $\mathrm{Bi}_2\mathrm{O}_3$ nanoparticles. By the morphological investigations using SEM, it was observed that the grown $\mathrm{Bi}_2\mathrm{O}_3$ products are having dimensions in the range of 3 nm to 25 nm (figure 1). The reported method besides being organics free is economical, fast and free of pollution, which will make it suitable for large-scale production.

The formation of Bi₂O₃ nanoparticles from the reagents of bismuth and de-ionized water can be explained with the help of facile reaction as follows:

$$2Bi(s) + 3H_2O(1) \rightarrow Bi_2O_3(s) + 3H_2(g)$$

It is observed that the grown product (Bi₂O₃ nanoparticles) has different shapes like triangular, rectangular, spherical, etc.

Keywords: nanoparticles, morphological studies, structural studies

References

- 1. Leontie, L., Caraman, M., Visinoiu, A., & Rusu, G. I. (2005). On the optical properties of bismuth oxide thin films prepared by pulsed laser deposition. *Thin Solid Films*, 473(2), 230-235.
- 2. M. Mallahi1, A. Shokuhfar2, M. R.Vaezi3, A. Esmaeilirad4, V. Mazinani, Synthesis and characterization of Bismuth oxide nanoparticles via sol-gel method, *American Journal of Engineering Research*, volume 3, pp.162-165, 2014.
- 3. Luan, X., Jiang, J., Yang, Q., Chen, M., Zhang, M., & Li, L. (2015). Facile synthesis of bismuth oxidenanoparticles by a hydrolysis solovothermal route and their visible light photo catalytic activity. *Environmental Engineering and Management Journal*, 14(3), 703-707.