Design and synthesis of heterometallic [Cu^{II}-Dy^{III}] compounds: single molecule magnet (SMM) properties

Shabana Noor, 1* Sarvendra Kumar^{2#} and Suhail Sabir¹

¹Department of Chemistry, Aligarh Muslim University, Aligarh 202002(U.P.) India ²Department of Pharmaceutical Science, Tokyo University of Science, Noda, Japan Email: * shabanachem0711@gmail.com, # s.kumar@msn.com

Molecular nano magnets are a wide area, which includes antiferromagnetic wheels, single molecule magnets (SMMs) to sing chain magnets (SCMs). The paramagnetic molecules which exhibits a magnetic behavior of intrinsic molecular origin in the absence of a magnetic termed as single molecule magnets(SMMs). They have potential application in high density information storage devices to solid states O-bits in quantum computing, magnetic refrigerant, and in spintronics [1]. Heterometallic complexes are important as magnetic materials which offer the possibility of testing fundamental questions in physics such as slow relaxation magnetization, quantum tunneling etc. [2]. In this work, new heterometallic Cu^{II}-Dy^{III} complexes containing Schiff base ligand H₅L= N,N'-bis(2,3-dihydroxysalicylene) aminoethyl)-ethane are designed and synthesized. These heterometallic complexes are synthesized form a Schiff base ligand H₅L= N,N'-bis(2,3-dihydroxysalicylene) aminoethyl)-ethane, which is obtained by the condensation of 2, 3-dihydroxybenzaldehyde with diethylenetriamine in the ratio 2:1(Figure 1).

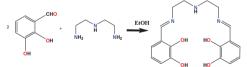


Figure 1: Scheme for ligand H₄L

The heterometallic Cu^{II} - Dy^{III} metal complexes, $[Cu^{II}Dy^{III}(HL)(NO_3)_2]$ (1) and $[\{Cu(HL)\}_2Dy]\cdot 2DMF$ (2) obtained as single crystalline material by reacting Schiff base ligand with $Cu(OAc)_2\cdot H_2O$, $Dy(NO_3)_3\cdot xH_2O$ in different solvents (Figure 2).

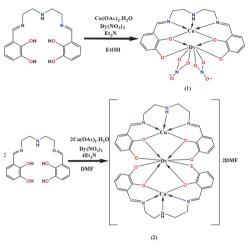


Figure 2: Synthesis of complex (1) and (2)

The ligand and its complexes were characterized by various spectral techniques viz., FT-IR, ¹H-NMR, ESI/MS, UV-Visible, X-ray crystallography etc. Mass spectrometric ion signals related to complexes were detected both in positive and negative in mode *via* electrospray ionization mass spectrometry ascertain the stoichiometry which supports the single X-ray analysis. The magnetic studies shows that the complex (2) behave as single molecular magnet and can manipulate information using the orientation of their molecular spin.

References

- 1. R. Sessoli, D. Gatteschi, A. Caneschi, M. A. Novak, *Nature*, 365(1993) 141.
- 2. D. Gatteschi, A. Caneschi, L.Pardi, R. Sessoli, *Science*, 284(1999)133.