

Safety Instrumented System **A Critical Barrier**

Presented by: Sujith Panikkar, CFSE

SIS_APCChe_Draft Copyright © Yokogawa Electric Corporation 15-Dec2-011

- 1 -

- *** The Safety Instrumented System
- ··· A review of Chemical Industry Accidents
- *** Evolution of Regulations and Standards
- *** Preventing Accidents: Risk Reduction
- ··· Concept of risk reduction
- Accidents and Causes: The Human Factor
- ··· Safety Instrumented Systems as a safety barrier
- → Design & Engineering SIS: IEC 61508/ 61511 & FSM
- Operation & Maintenance
- Safety Lifecycle expectation & expectations on users

••• Topic

*** The Safety Instrumented System

SIS_APCChe_Draft Copyright © Yokogawa Electric Corporation 15-Dec2-011

- 3 -

A Safety Instrumented System is a system that provides an independent and predetermined emergency shutdown path in case a process runs out of control

Safety System – "IPS", "ESD", "SGS" etc... = SIS

The clear path to operational excellence

Copyright © Yokogawa Electric Corporation 15-Dec2-011

- 4 -

SIS: The need for Protection

If something runs out of control a dangerous situation can arise ==> a demand for a protective action

Consequences

(how serious, how much money, how many injuries, how many fatalities)

Demand Rate

(frequency, how many times per how many year)

The clear path to operational excellence

SIS_APCChe_Draft Copyright © Yokogawa Electric Corporation 15-Dec2-011

- 6 -

••• Topic

···· Chemical Industry Accidents - History

SIS_APCChe_Draft Copyright © Yokogawa Electric Corporation 15-Dec2-011

- 7 -

Some of the major ones... •1974: Flixborough •1976: Seveso •1984: Bhopal •1988: Piper Alpha And many more... • 2010: BP Gulf of Mexico

the Consequences...

Piper Alpha platform, July 1988

SIS_APCChe_Draft Copyright © Yokogawa Electric Corporation 15-Dec2-011

- 9 -

•61 survivors, but many badly burnt

- •167 fatalities
- •Piper Alpha was producing about 125,000 bpd in 1988
- Insured losses of over US\$ 3.4 Billion

••• Topic

*** Evolution of Regulations and Standards

SIS_APCChe_Draft Copyright © Yokogawa Electric Corporation 15-Dec2-011

- 11 -

••• Topic

*** Preventing Accidents: Risk Reduction

SIS_APCChe_Draft Copyright © Yokogawa Electric Corporation -15-Dec2-011

- 13 -

RISK Assessment

Def. Risk

> "Combination of the frequency of occurrence of harm and the severity of that harm"

> > (IEC 61508 / IEC 61511)

<u>Risk= Impact X Frequency</u>

Impact = \$\$, Life, Environment

SIS_APCChe_Draft Copyright © Yokogawa Electric Corporation 15-Dec2-011

- 14 -

SIS_APCChe_Draft Copyright © Yokogawa Electric Corporation 15-Dec2-011

- 15 -

vigilantplant. S

SIS_APCChe_Draft Copyright © Yokogawa Electric Corporation - 17 -15-Dec2-011

Onion...Layer of Protection Analysis (LOPA)

The clear path to operational excellence

Copyright © Yokogawa Electric Corporation 15-Dec2-011

- 18 -

Topic

 Case Study: Reliability of Instrumentation : BP AMOCO Texas City Refinery: Isomerization Unit Explosion, March 2005

SIS_APCChe_Draft Copyright © Yokogawa Electric Corporation -15-Dec2-011 -

- 19 -

BP AMOCO EXPLOSION MARCH '05

Contraster of the second

The total cost of this incident for BP : over \$US 2 Billion

*** Failure of Raffinate Splitter Level Instrumentation

- DCS Level High Alarm was ignored
- Independent Level switch connected to alarm system did not work

Source: Fatal Accident investigation Report :

http://www.bp.com/liveassets/bp_internet/us/bp_us_english/STAGING/local_assets/downloads/t/final_report.pdf

SIS_APCChe_Draft Copyright © Yokogawa Electric Corporation - 22 - 15-Dec2-011

••• Topic

*** Accidents and Causes: The Human Factor

SIS_APCChe_Draft Copyright © Yokogawa Electric Corporation 15-Dec2-011

- 23 -

Layers of protection

The clear path to operational excellence

Copyright © Yokogawa Electric Corporation 15-Dec2-011

- 24 -

Causes of Accidents

source: TNO investigations of 216 accidents

SIS_APCChe_Draft Copyright © Yokogawa Electric Corporation 15-Dec2-011

- 25 -

••• Topic

Safety Instrumented Systems as a Safety Barrier

SIS_APCChe_Draft Copyright © Yokogawa Electric Corporation 15-Dec2-011

- 26 -

SIS Function in the Process

Human influence

SIS_APCChe_Draft Copyright © Yokogawa Electric Corporation 15-Dec2-011

- 27 -

The position of SIS

SIS_APCChe_Draft Copyright © Yokogawa Electric Corporation 15-Dec2-011

- 28 -

••• Topic

→ Design & Engineering SIS: IEC 61508/ 61511 & FSM

SIS_APCChe_Draft Copyright © Yokogawa Electric Corporation 15-Dec2-011

- 29 -

The IEC 61508 / 61511 Standard

IEC 61508 : functional safety of electrical / electronic / programmable electronic safety-related systems.

IEC 61511 : functional safety for the process industry = identical to ISA-84.00.01 (except for grandfather clause)

SIS_APCChe_Draft Copyright © Yokogawa Electric Corporation -15-Dec2-011

- 30 -

- 31 -

••• Topic

SIS: Analysis and Design phase

SIS_APCChe_Draft Copyright © Yokogawa Electric Corporation 15-Dec2-011

- 32 -

Hazard and Risk Analysis, SIL Allocation

••• Topic

SIS: Realization Phase

SIS_APCChe_Draft Copyright © Yokogawa Electric Corporation 15-Dec2-011

- 34 -

Safety Integrity Level

Three basic requirements have to be fulfilled in order to claim any SIL:

- 1. Hardware fault tolerance for the claimed SIL to be justified.
- 2. PFD_{AVG} (of all elements within a SIF) shall be within the claimed SIL bandwidth

Hardware Safety Integrity

3. Systematic Capability shall comply with the requirements for the claimed SIL

Systematic Safety Integrity

Safety Integrity Level	Risk Reduction Factor (RRF)	Average Probability of failure on demand (PFD)
4	> 10 000	≥ 10 ⁻⁵ to < 10 ⁻⁴
3	1 000 - 10 000	$\geq 10^{-4}$ to < 10^{-3}
2	100 - 1 000	≥ 10 ⁻³ to < 10 ⁻²
1	10 - 100	≥ 10 ⁻² to < 10 ⁻¹
0		(No Safety Requirements)

For Low Demand rate (less than once per year)

IEC 61508-1, table 2

36

- 36 -

₩ PFD_{AVG}

Probability of a Failure on Demand, PFD derived from the safety parameters of the equipment. $PFD_{AVG} = \frac{1}{T_1} \int_{T_1}^{T_L} PFD(t) dt$ $PFD = 1 - e^{-\lambda} Du^{t}$ PFD $\mathsf{PFD}_{\mathsf{AVG}}$ 0 t 0 T_1 $(T_1 = life time)$ $PFD = \lambda_{DU} x t$

 $PFD_{AVG} = \frac{1}{2} \times \lambda_{DU} \times T_{U}$

SIS_APCChe_Draft Copyright © Yokogawa Electric Corporation 15-Dec2-011

- 37 -

Hardware Safety Integrity: Average PFD for SIF

The target SIL indicates the maximum PFDAVG but also depending on type and quality of the used device double / triple voting devices (1002, 1003) might be required

vigilantplant. The clear path to operational excellence SIS_APCChe_Draft Copyright © Yokogawa Electric Corporation -15-Dec2-011

- 39 -

Fault tolerance acc. IEC 61508-2

Table 2 — Hardware safety integrity: architectural constraints on type A safetyrelated subsystems

Safe failure fraction	Hardware fault tolerance (see note 2)		
	0	1	2
< 60 %	SIL1	SIL2	SIL3
60 % - < 90 %	SIL2	SIL3	SIL4
90 % - < 99 %	SIL3	SIL4	SIL4
> 99 %	SIL3	SIL4	SIL4

NOTF 1 See 7.4.3.1.1 to 7.4.3.1.4 for details on interpreting this table.

A hardware fault tolerance of N means NOTE 2 that N+1 faults could cause a loss of the safety function.

NOTE 3 See annex C for details of how to calculate safe failure fraction.

Type A : simple devices where the failure modes can easily be understood (mechanical devices, simple electronic devices like zener barrier, isolator etc.)

Table 3 — Hardware safety integrity: architectural constraints on type B safetyrelated subsystems

Safe failure fraction	Hardware fault tolerance (see note 2)		
	0	1	2
< 60 %	not allowed	SIL1	SIL2
60 % - < 90 %	SIL1	SIL2	SIL3
90 % - < 99 %	SIL2	SIL3	SIL4
> 99 %	SIL3	SIL4	SIL4

See 7.4.3.1.1 to 7.4.3.1.4 for details on NOTE 1 interpreting this table.

NOTE 2 A hardware fault tolerance of N means that N+1 faults could cause a loss of the safety function.

NOTE 3 See annex C for details of how to calculate safe failure fraction.

Type B : everything that is not simple, not type A.

- 40 -

vigilant

** 1001D architecture

··· Other popular Architectures include:

- *** 2003
- ··· VMR 1001D

WMR 1001D

→ Single SIL3 with high SFF

Redundant configuration for High Availability

- 42 -

Systematic Safety Integrity

 Responsibility of: End-user, Contractor, SIS equipment suppliers/ integrators

Topic

SIS: Operation and Maintenance phase

- Proof Testing
- Management of Change

SIS_APCChe_Draft Copyright © Yokogawa Electric Corporation -15-Dec2-011 -

- 44 -

- A proof test means a complete test of the SIF, "pipe to pipe".
- The purpose of the test is to reveal all "dangerous undetected" failures that are present in the SIF
- After the proof test the elements in the SIF should be in their initial state
- Proof Test Coverage: The proof test of the system does not completely restore the initial state due to:
 - Imperfect testing
 - Imperfect repair
 - Ageing

vigilanto

The clear path to operational excellence

SIS_APCChe_Draft Copyright © Yokogawa Electric Corporation 15-Dec2-011

- 45 -

Impact of Proof testing on PFD_{AVG}

Without proof test \rightarrow PFD = 1 - e - λ_{Du} t Or approximated as, PFD = λ_{Du} x t and PFD_{AVG} = $\frac{1}{2}$ x λ_{Du} x T_L

With proof test \rightarrow PFD_{AVG} = $\frac{1}{2} \times PC \times \lambda_{Du} \times T + \frac{1}{2} \times (1 - PC) \times \lambda_{Du} \times T_{I}$

Prior to modifying the SIS functions on a running installation, a hazard and risk analysis needs to be carried out >> Management of Change procedure

Copyright © Yokogawa Electric Corporation - 47 -

Functional Safety Management

Who should have a documented and auditable functional safety management system?

SIS_APCChe_Draft Copyright © Yokogawa Electric Corporation - 4 15-Dec2-011

- 48 -

FSM Audits & Certification

	TŪVRheinland ®
ZERTIFIKAT CERTIFICAT	
The company	
Yokogawa Engineering Asia Pte Ltd Safety Systems Business Unit 5 Bedok South Road Singapore 469270 Republic of Singapore	
Has successfully demonstrati System) has been implemente	ed during an audit that a Functional Safety Management System (FSM-
Purpose of the audit is to obta the following aspects, Man Assessment and company based on the standards: IEC 6150	ain evidence of compliance with the organizational requirements related to agement of Functional Safety, Documentation, Functional Safety apecific Safety Lifecycle Phases according to the scope of certification 8: E/E/PE- safety related System Integration
	PE-safety related systems and safety instrumented systems for the ly to cover the activities configuration, application programming,
This certification does not re Integrations.	place approval or certification for specific E/E/PE-safety related System
Validity: until January 2014	
Cologne, 2011-03-11	TÜV Rheinland Industrie Service GmbH

Functional Safety Management System in accordance with IEC 61508/ 61511

SIS_APCChe_Draft Copyright © Yokogawa Electric Corporation 15-Dec2-011

- 49 -

Thanks For Your Kind Attention!

<Document Number> Copyright © Yokogawa Electric Corporation <date/time>

- 50 -

