ABSTRACT
High-strength concrete (HSC) has been widely used in the column construction of tall buildings because of its larger strength-to-weight ratio. The current design of HSC columns focuses on providing adequate flexural strength but not on flexural ductility. From structural safety point of view, however, it is important to provide a minimum level of ductility to all structures even they are not subjected to earthquake attack. Currently, this minimum level of ductility in concrete columns is provided by some deemed-to-satisfy rules limiting the minimum size and maximum spacing of the confinement. However, these rules are concrete strength independent, and therefore the ductility level provided is not consistent for normal- and high-strength concrete columns – generally lower at higher concrete strength or higher axial load level. To overcome such shortcoming, an extensive parametric study based on nonlinear moment-curvature analysis that investigates the combined effects of concrete strength, axial load level, confining pressure and longitudinal steel ratio on the ductility of concrete columns is conducted in this paper. Based on the results, a design inequality and chart are developed, which ensures that a consistent level of ductility could be provided to all concrete columns by limiting the maximum axial load level and minimum confinement.
Keywords: Axial load, Columns, Confinement, Ductility, High-strength concrete.