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A new method is developed for explicitly representing and synthesizing non-Gaussian and non-

stationary stochastic processes that have been specified by their covariance function and 

marginal cumulative distribution function. The target process is firstly represented in the 

Karhunen-Loeve (K-L) series form, the random coefficients in the K-L series is subsequently 

decomposed using one-dimensional polynomial chaos (PC) expansion. In this way, the target 

process is represented in an explicit form, which is particularly well suited for stochastic finite 

element analysis of structures as well as for general purpose simulation of realizations of these 

processes. The key feature of the proposed method is that the covariance of the resulting process 

automatically matches the target covariance, and one only needs to iterate the marginal 

distribution to match the target one. Example is used to demonstrate the proposed method. 
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1 Introduction 

Problems involving random processes are commonly encountered in various fields of 

engineering. The modelling of parameters of input and/or system itself by means of stochastic 

processes increases significantly the size and complexity of the analysis. This is why the 

application of random field theory to engineering problems has gained considerable interest. For 

computational purposes, an analytical representation of stochastic processes in forms that are 

suitable for further mathematical manipulation is particularly preferred. Therefore, the efficient 

simulation of a general stochastic processes is of practical and theoretical importance. 

        In the past twenty years, the simulation of non-Gaussian and non-stationary stochastic 

processes has spawned the development of methods rooted in two different basic simulation 

algorithms: the spectral representation (SR) method (discretization in the frequency domain) and 

Karhunen-Loeve (K-L) expansion (discretization in the physical domain, e.g., time or space). 

Among them, Phoon et. al extended the K-L expansion to simulate sample functions of non-

Gaussian process by iteratively updating the distribution of the underlying non-Gaussian K-L 

random variables [1]. This method has been further improved for simulating highly skewed non-

Gaussian marginal distributions and thus offering a unified framework for the simulation of 

multi-dimensional homogeneous and non-homogeneous random fields [2]. Other techniques 

have also been developed for simulation of non-Gaussian processes. One important group of 

such techniques are those utilizing polynomial chaos (PC) decomposition such as those by 

Sakamoto and Ghanem [3]. The method represents the process as a multidimensional Hermite 

polynomial in a set of normalized Gaussian variables. 
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       Based on the K-L and PC expansion, this paper presents a new method for explicitly 

simulating non-Gaussian and non-stationary stochastic process that has been specified by its 

covariance function and marginal non-Gaussian CDF. The basic idea is to firstly represent the 

target process in the K-L series form, and then expand the random coefficients in K-L series 

using one-dimensional PC expansion. In this way, the target process is represented in an explicit 

form, which is particularly well suited for SFE analysis of structures in the calculation of 

response variability as well as the simulation of realizations of stochastic processes.  

2 The new simulation method 

2.1    Polynomials chaos representation of random variables 

An arbitrary second-order random variable ( )u q can be represented in the form: 
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and jG  are Hermite polynomials in terms of the standard Gaussian variables g  with zero mean 

and unit variance. The multidimensional jG are generated by the formula of Rodriguez: 
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Correspondingly, the one-dimensional Hermite polynomials are generated as 
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where ( ) ( )jj g  is the j-th derivative of the normal density 
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the single-variable version. From Eq. (3), one can readily find { }2 3{ } 1, , 1, 3j g g g gG = - - ××× . 

The orthogonal polynomials iG  and standard Gaussian variable g  satisfy 
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where ×  denotes the inner product operator. For example, when using one-dimensional PC 

expansion, the random variable ( )u q  can be represented in a mean-square convergent series as 
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where the deterministic coefficients ia in the expansion can be determined by virtue of the 

orthogonality of the approximating polynomials with respect to the Gaussian measure as 
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        Generally, the less number of the standard Gaussian variables of the Hermite polynomials, 

the more efficient the PC expansion approximates the random variable. Therefore, it will be very 

efficient to use the one-dimensional PC expansion to approximate non-Gaussian random 

variables, although the approximation accuracy may not be guaranteed in some cases. However, 

the one-dimensional PC expansion can not accurately represent the 'strongly non-Gaussian' 

random variable although the order of the Hermite polynomial is adopted very high.  
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2.2    Proposed method with KL and PC expansions 

The basic idea of the proposed method is to firstly represent the target process in the K-L series 

form, and then expand the random coefficients in the K-L series with one-dimensional PC 

expansion. Consider a stochastic process ( , )w x q specified by its covariance function 1 2( , )C x x  

and marginal CDF ( , )F x y . The method first decomposes the process using K-L expansion as 
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where ( )xw  is the mean function of the process, and M is the number of the K-L series. For 

each random variable ( )ix q  in Eq. (7), the following one-dimensional PC expansion 
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is further used to simulate ( )ix q , resulting in the equation 
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where P is the order of the one-dimensional Hermite polynomials as given in Eq. (3). Obviously, 

the summation for i represents the K-L expansion of ( , )w x q  and summation for j represents the 

one-dimensional PC expansion of variable ( )ix q . With these two round of approximation, a 

new explicit representation of the stochastic process ( , )w x q is derived as shown in Eq. (9).  

       Since the accuracy for simulating non-Gaussian processes when using Eq. (9) can not be 

guaranteed, Eq. (9) is reconsidered. The basic idea is to consider the product of ( ),i if xl  and 

( )j igG  as deterministic basis functions and ( )j igG  are the one-dimensional Hermite 

polynomials, and the only random coefficients need to be determined are ija . Obviously, the 

process ( , )w x q  can be explicitly synthesised as long as ija  are known. With the orthogonality 

of the Hermite polynomials as given in Eq. (4), the expectation of ( )ix q is derived as 
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and the covariance of the random variables ( )ix q  and ( )jx q  is computed as 
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Therefore, the random coefficients ija  have to be satisfied the following condition so that the 

covariance ( ) ( )i jx q x q  has the unit variance 
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With the condition in Eq. (12) holds, the covariance function of the simulated process ( ),xw q( ),w q( ,x  

can be readily derived as  
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Eq. (13) demonstrates the advantage of the proposed method, i.e., when using Eq. (9) to 

explicitly represent the target process, the covariance of the simulated process automatically 

matches that of the target one with the increase of K-L series terms M. From Eq. (9), we have 
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Since the eigenfunctions are orthogonal, Eq. (14) can be simplified as 

( ) ( ) ( ) ( )
1

1
,

P

i ij j i
D

ji

x x f x dx aw q w g
l =

- = Gé ùë û åò                              (15) 

By multiplying the one-dimensional Hermite polynomials ( )m ngG  and taking the inner product 

on both sides of Eq. (15), we have 
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Due to the orthogonal property of the Hermite polynomials, coefficients ija are then derived as 
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Thus, by analytically deriving the formula of the random coefficients ija , the original stochastic 

process can be explicitly represented using Eq. (9). In this way, the aforehand-mentioned issue 

about accuracy for simulating highly non-Gaussian variable existed in the one-dimensional PC 

expansion can be avoided. One can simulate target non-Gaussian stochastic process with high 

accuracy through developing iteration algorithm to obtain optimal coefficients ija . 

2.3    Simulation algorithm for non-Gaussian processes 

The proposed algorithm for simulating non-Gaussian processes is described as follows: 

Step 1: Decompose the covariance of the target process ( ),w x q into its eigenpairs il and 

( )if x . Generate N set of Gaussian random variables, a total of M variables for each set, and 

compute corresponding N set of one-dimensional Hermite polynomials of order P using Eq. (3).  

Step 2: Generate N sample functions of the non-Gaussian process using Eq. (9) as 
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where k is the iteration number, and m is the sample number. The initial value of random 

coefficients ija  is set based on Eq. (12). 

Step 3: Compute the simulated marginal CDF as 
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It should be noted that, one does not need to compute the simulated covariance since it 

automatically matches that of the target process according to Eq. (13). 

Step 4: Since the simulated marginal CDF ( ) ( )kG y x generally does not agree with the target 

one, the coefficients ija  need to be modified so that simulated process follows the target 

marginal CDF. This requires to firstly transform each sample function as 
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and then update the coefficients ija  

( ) ( ) ( ) ( ) ( ) ( ) ( )1

2

1
,

k k k

ij j i i
D

j i

a x x f x dxf q f g
l

+ é ù= - Gë ûG ò               (21) 

Step 5: Steps 2 through 4 are repeated until the maximum value of two successive iterations for 

the coefficients ija is limited within the tolerance 
( ) ( ){ }1

max
k k

ij ija a e+ - < . 

3. Simulation of non-stationary and strongly non-Gaussian process 

        Consider a zero-mean process ( ),w x q  with covariance function given by  

( ) ( ) ( )1 2 1 2 1 2, min , , , [0,1] [0,1]C x x x x x x= Î ´                               (22) 

Since the covariance is of the type of Wiener process, this example can be used to investigate the 

capacity of the proposed method for simulating non-stationary stochastic processes. According 

to [4], the eigenvalues and eigenfunctions can be solved analytically. Therefore, the covariance 

of the simulated process can be computed based on Eq. (13) as 
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According to [4], the simulated covariance in Eq. (23) approaches to the target covariance with 

the number of K-L series terms M large enough. In this example, M is adopted as 10. Thus, the 

simulated covariance using the proposed method automatically match the exact covariance as 

given in Eq. (22). The marginal non-Gaussian CDF is shifted log-normal distributed, with the 

CDF given by 
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where the scaling parameter m and the position parameter d  are functions of x. In this example, 

all distribution parameters are chosen the same as in [1], i.e., the shape parameter s  is chosen to 

be one, the scaling parameter and the position parameter are respectively chosen as 

( ) 0.5ln 0.7707x xm = -  and ( ) 0.582x xd = , so that the target mean of the distribution is zero. In 

this example, the order of the one-dimensional Hermite polynomials P is still adopted as 10. Fig. 

1 shows the exact and the simulated marginal CDF of the target process. It is seen that, besides 

the small difference in the tail distribution, the simulated marginal CDF is in good accordance 

with the exact one, demonstrating the high accuracy of the proposed method for simulating non-

Gaussian and nonstationary stochastic processes. 
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Fig.1 Exact and simulated marginal CDF of Winner process 

 

4. Conclusions 

A novel methodology is presented for explicitly simulating non-Gaussian and non-stationary 

stochastic processes. The method analytically represents the target process through combination 

of the K-L and PC expansion. By virtue of the orthogonal property of the Hermite polynomials 

with respect to the Gaussian measure, the covariance of the resulting process automatically 

matches the target covariance, and one only needs to iterate the marginal CDF to match the 

target one. Thus, the new method offers an explicit and unified framework for simulation of 

non-Gaussian processes with arbitrary covariance function. Numerical example is finally used to 

demonstrate the effectiveness and range of applicability of the proposed method.  
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