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Multivariate descriptions of soil parameters are quite important for the design and risk 
assessment of geotechnical engineering problems. A reliable and realistic statistical multivariate 
model is essential to produce a representative estimate of the soil properties for evaluating the 
soil conditions. Therefore, an advanced modeling of soil parameters helps towards improving 
the geotechnical and civil engineering practices. In this paper, we introduce the concepts of 
asymmetric copulas for the modeling of geotechnical data. Several asymmetric copula functions, 
capable of modeling nonlinear asymmetric dependence structures, are tested and analyzed. To 
demonstrate the advantages of asymmetric copulas, the asymmetric copula concept is compared 
with the traditional copula approaches from the real collected site soil data. The performance of 
these asymmetric copulas is discussed and compared, based on data fitting and tail dependency 
characterizations.  
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1 Introduction 

Geotechnical engineering problems require frequently multivariate data analysis. Deficiencies in 
modeling their joint relationship may largely underestimate the failure probability of 
geotechnical structures, hence may lead to expensive engineering loss. In real practice, the soil 
parameters are often observed to be dependent. However, the question is about how to define 
this relationship between the soil data. The definition of “dependencies” in this context can have 

various meanings. When addressing different dependencies for the soil parameters, the typical 
concept of correlation is commonly used to construct the joint distribution models. The 
applicability of this concept may be problematic when the dependencies are not perfectly linear. 
Many former works have addressed this issue (L’Heureux & Long, 2017). In contrast to the 
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traditional joint model, the copula model has shown its advantage and attracted significant 
attention from many geotechnical engineering researchers (Tang et al., 2015). The key feature of 
a copula approach is its flexibility in modeling the dependence structure, which can be separated 
from the modeling of individual behavior. However, there are various types of complicated 
dependencies and potential biases that could affect the quality of a multivariate model. 
Specifically, the uncertainties related to asymmetric dependencies are one of the most 
influencing factors. Fortunately, asymmetric copulas, developed recently, provide a feasible 
solution to this problem (Kazianka & Pilz, 2010). The use of asymmetric copulas can 
significantly improve the functionality of traditional copula approaches in fitting the 
asymmetrically dependent variables. This is particularly useful for cases where physical limits 
force the asymmetry, which is quite common in geotechnical properties. Nevertheless, the 
modeling of soil data using the asymmetric copula has never been studied in detail. Therefore, 
this work aims to close this gap providing a real case study for demonstrating and highlighting 
the merits and limitations regarding the use of asymmetric copulas. 

This paper is divided into five sections. A general review of the fundamental copula theory 
as well as the procedures of constructing asymmetric copula models is presented in Section 2. 
Section 3 provides the detailed information of the collected soil data. A comparative study 
between symmetric and asymmetric copula approaches for modeling the collected soil data is 
presented in Section 4. The final concluding remarks are summarized in Section 5. 
 
2 Methodology 

2.1    Copula Theory 

Copula is a model which could connect univariate marginal distributions to a multivariate 
distribution (Nelsen, 2006). A copula function can be expressed as 
   (1) 
where H(·) is the cumulative joint distribution function and Fi(·) is the individual cumulative 
marginal distribution function for the ith variable. Specifically, copula C is a cumulative 
distribution function which connects the one-dimensional probability distributions F1(x1),…, 

Fn(xn) to a multivariate probability distribution H(·). A copula model can describe various kinds 
of dependencies which include association concepts such as concordance, linear correlation and 
the related dependence measures. However, the traditional copulas have many weaknesses (e.g. 
Archimedean copulas) when they are applied to model soil parameters. A key drawback is that 
most well established copulas can only model symmetric dependent variables whereas the soil 
data usually display non-symmetric dependencies.  
 
2.2    Asymmetric Copulas 

In order to have a more accurate modeling of asymmetrically dependent soil variables, several 
groups of asymmetric copulas are introduced herein. 

One of the most popular ways of constructing asymmetric copulas is by means of a product 
of copulas (Liebscher, 2008). The general form for constructing this type of asymmetric copula 
is given as following 
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where  are all copulas for the n-dimensional variables,  :  for i=1,…,m, 
j=1,…,n are the individual functions for describing the individual variable’s behavior which 

should be strictly increasing or identically equal to 1. As for the individual functions , many 
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candidate functions which are suitable for the copula construction have been proposed by 
Liebscher (2008). This is given in Table 1. 
 

Table 1.  Examples of individual functions. 
Individual function Parameters Value range 
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Another way of constructing an asymmetric copula could be through the linear convex 

combinations of copulas. One may use the following copula to model asymmetric properties in 
multiple variables: 

 ( ) ( )1 1
0

, . . . , , . . . ,
n

a d d itio n n h h n
h

C u u p C u u
=

= å  (3) 

where  is a weighting factor satisfying the conditions  and , and 
 is the flipped copula in the h dimension. In other words, this developed copula is 

in fact linear convex combinations of copulas. With such combination, the copula can model 
different individual tail dependencies based on the same base copula. 

Despite the algebraic construction methods, another convenient way of constructing 
asymmetric copulas is by means of the skewed copula. The idea of this approach is from the 
skewed multivariate Guassian distribution which allows non-zero skewness. A general 
n-dimensional skew Gaussian copula can be written as: 

 ( ) ( ) ( )( )1 , 1 ,
1 1

1 , 1 1 1, . . . , ; , , ; ,1, , . . . , ; ,1, ; , ,sk e w sk e ws k e w G a u s s ia n n n s k e w n n nC u u F F u F um b m b m b m- -
- S = S b  (4) 

where  is the n-dimensional skew normal distribution with mean parameter μ,  
 is the inverse of the univariate skew normal distribution SN(μi, 1, βi), β are the shape 

parameters and  ∑ is the covariance matrix. There are no previous works done on its application 
for modeling real collected soil data. The following will provide a case study to demonstrate the 
key advantages of using the asymmetric copulas in modeling soil data.  
 
3 Case Study – Site Soil Data 

The soil data used in this paper results from tests performed in a residual soil from Porto granite. 
This material is defined as a sandy silt with clay and gravel, presenting also a certain degree of 
cementation. Pinheiro Branco et al. (2014) completed an extensive characterization of a residual 
soil, deriving index properties, stiffness and strength parameters, nut also focusing attention on 
the variability of the parameters. The authors collected 40 samples, all carefully collected in situ 
by cutting the residual soil around the sampler (0.1×0.1×0.03 m3), isolated and transported them 
to the geotechnical laboratory. The samples were subjected to direct shear tests and it was 
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determined its unit weight, g, the saturated unit weight, gg , the dry unit weight, gd, the void 
ratio, e, the peak shear strength, f , and the constant volume friction angle, f .  

 
4 Analysis and Discussion 

A total sample size of 10000 soil data is selected for the analysis in this study. All of these data 
are obtained from the same site and therefore are believed to have the same statistical 
characteristics. In this study, we are focusing on the modeling of (tan( f ), tan( f )), 
corresponding f  to the secant friction angle and f  to the constant volume friction angle. A 
general scatter plot of the data set (tan(f ), tan(f )) is shown in Fig. 1 and Fig. 2. 
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Figure 1.  Scatter plot of (tan(f ), tan(f )).                 Figure 2.  Empirical probability density of   (tan(f ), 
tan(f )) in the copula domain. 

 
Several asymmetric copulas, as introduced in Section 2, are utilized here to model the soil data. 
These include: 
1. Symmetric copulas: The original symmetric Archimedean copulas are considered herein. 

They are parametric copulas, Gumbel, Clayton and Frank copulas. 
2. Asymmetric copulas constructed by products: We adopt the Khoudraji’s device for the 

construction of the asymmetric copulas. Three combinations Gumbel-Clayton, 
Gumbel-Frank and Clayton-Frank with type I individual functions are selected.  

3. Asymmetric copulas constructed by linear convex combinations: This group of asymmetric 
copulas is constructed by the rules introduced in Section 2. The selected base copulas for 
constructing this asymmetric copula are Gumbel, Clayton and Frank copulas. 

4. Skew Gaussian copula: The last asymmetric copula has its exact formulation as given in 
Section 2.  
The results for the parameter estimates, log-likelihood and AIC statistics for all the 

considered models fitting to (tan(f ), tan(f )) are reported in Table 2. The model parameters 
are estimated by the method of minimization of Cramer-von Mises statistic. The best models 
among all the candidate models are marked in the table. The results show that the best copula 
models for (tan(f ), tan(f )) is Gumbel-Frank Type I asymmetric copula. Generally, all the 
asymmetric copulas show an AIC value lower than the symmetric copula. However, it does not 
show a better performance when the data exhibit symmetric dependences. The quality of 
asymmetric copulas highly relies on the utilized base copulas. On the other hand, Gumbel and 
Frank copulas give better representations in the data dependences. Therefore, when combining 
the Gumbel and Frank copula in the asymmetric copula, it shows much better features than the 
remaining combinations. The asymmetric copula could utilize the features from both copulas. 
Despite the selection of base copulas, the construction rules are also a dominant factor for the 
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quality of asymmetric copulas. It is observed the asymmetric copulas constructed by products 
can generally fit the data very well in all the cases. The AIC values show that the overall 
performance of asymmetric copulas constructed by Khoudraji’s device is quite prominent. 

However, the asymmetric copulas constructed by linear convex combinations present poorer 
results. In most of the cases, the AIC values for this type of asymmetric copulas are even higher 
than the symmetric Archimedean copulas. This indicates the way of constructing the asymmetric 
copulas by addition is not adequate for modeling the soil data dependences in this case. 
Compared to these combined asymmetric copulas, skewed Gaussian copula gives moderate 
performance. However, the key feature of using skewed Gaussian copula is that no base copulas 
are needed. It does not need to consider the selections of base copulas which might not be 
appropriate for the data. 

 
Table 2.  Parameter estimates and likelihood values for fitted soil data. 

Copula type  Parameter estimate Total log-
likelihood 

No. of 
parameters 

AIC 

1. One 
parameter 
copula 

Gumbel θ=1.555 35978 5 -71946 
Clayton θ=0.6239 34957 5 -69904 
Frank θ=3.769 35752 5 -71494 

2. Asymmetric 
copulas 
constructed by 
products 

Gumbel-
Clayton Type 
I 

γ1=2.346, γ2=9.296, 
θ11=0.237, θ12=0.758,  
θ21=0.763, θ22=0.242 

36070 8 -72124 

Gumbel-
Frank Type I 

γ1=2.566, γ2=11.718, 
θ11=0.206, θ12=0.734,  
θ21=0.794, θ22=0.266 

36165 8 -72314* 

Frank-
Clayton Type 
I 

γ1=4.046, γ2=5.491, 
θ11=0.999, θ12=0.924,  
θ21=0.001, θ22=0.076 

35745 8 -71474 

3. Asymmetric 
copulas 
constructed by 
linear convex 
combinations 

Gumbel-LCC γ=1.619,  
p0=0.998, p1=0.001, 
p2=0.001 

35929 7 -71844 

Clayton-LCC γ=1.170,  
p0=0.998, p1=0.001, 
p2=0.001 

34465 7 -68916 

Frank-LCC γ=3.761,  
p0=0.998, p1=0.001, 
p2=0.001 

35715 7 -71416 

4. Skewed 
copula 

Skew-
Gaussian 

β1=0.333,  
β2=-0.517, 
β=[0.755, -0.980] 

35867 8 -71718 

*Minimum AIC value indicates the best model in each type. 
 

To further check the quality of fitted asymmetric copulas, a comparison is made between 
the empirical data and the simulated data from the established models. Based on the best copula 
model in Table 2, the simulated data for (tan(f ), tan(f )) are plotted in Fig. 3. It can be seen 
the simulated data and the original data can fit each other very well in the scatter plot. The 
concentrations of the simulated data generally overlap the concentrations of original data in all 
the plots. Even the nonlinear dependences between the variables are also well handled by the 
asymmetric copula. A clearer view of the fitting quality can be seen from the contour plots of the 
probability densities of the empirical data and the simulated data. Figure 4 shows four levels of 
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the probability density function values for both the original data and the simulated data in all the 
bivariate soil data. As expected, the quality of the model fitting to the empirical data is 
decreasing with the drop of contour level values. Nevertheless, the similarities of the contour 
lines are still quite high in all the cases.  

 
 

Figure 3.  Scatterplot of simulated (tan(f ), tan(f )       Figure 4.  Contour plot of   (tan(f ), tan(f )) 
 

5 Conclusion 

In this paper, soil data had been analyzed by means of the asymmetric copulas in a multivariate 
setting. The fundamental formulation and theoretical basics of asymmetric copulas have been 
reviewed in detail regarding the modeling of soil parameters. The asymmetric copulas were then 
compared with traditional symmetric copulas on the modeling of soil parameters collected from 
a site located in Portugal. The copula models were constructed for the soil data group and 
compared based on the goodness-of-fit statistics. The results showed that the asymmetric copula 
can provide more appropriate characterizations of the asymmetric dependences and tail 
dependences in the soil data. It was found the asymmetric copula can also provide accurate 
predictions of extreme values from the empirical data. Future works seems necessary to 
investigate the ways of selecting base copulas and individual functions in the construction of 
asymmetric copulas.  
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