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The dynamic analysis of a deepwater floating production systems has many complexities, which 
can be captured by fully coupled time domain analyses. However they require an enormous 
computational cost, especially for the evaluation of the extreme values, which are of great interest 
for practical reliability design purposes. In this paper the non-Gaussian probability density 
functions of the responses are evaluated through a novel moment-based approach, based on the 
Maximum Entropy principle, called Kernel Density Maximum Entropy Method (KDMEM). The 
proposed method has several attractive features: (i) it gives a good approximation of the target 
distribution, including its tails, from samples of small size, (ii) when the number of samples 
increase, it is capable to converge asymptotically to the target distribution, (iii) it implements the 
principle of Maximum Entropy, so that it provides the least biased distribution given the available 
information, (iv) it does not require any coupling with the marine software, so that any commercial 
tool can be used, (v) it provides credible bounds of the uncertain performances, which is beneficial 
for risk-informed decisions. The accuracy and efficiency of KDMEM is shown through the 
application to a marine riser. 
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1 Introduction 

Floating production systems (FPS) have become an integral part of deepwater development in 

oil and gas exploration and production. Marine risers, mooring system and floater represent an 

integrated dynamic system responding to environmental loading due to waves, current and 

wind in a complex way. Recent research efforts have shown that the mooring lines and risers 

can have a significant dynamic influence on the platform. Therefore, in full rigor, a “coupled 

analysis” of the vessel and of all the collected lines in the time domain should be adopted to 

take into account all the dynamic interactions within the system. Moreover, the environmental 

loads are random, hence the need of stochastic dynamic analysis. The aim is the evaluation of 

the response statistics of dynamic systems subjected to stochastic excitations. Most existing 

approaches adopt the Monte Carlo Simulation (MCS), which is a robust approach, but it is too 

demanding for practical engineering purposes. 

In this paper the stochastic dynamic analysis of the FPS is developed through the Kernel 

Density Maximum Entropy Method (KDMEM) recently proposed by the authors for a general 

dynamic system subjected to stochastic excitation (Alibrandi & Mosalam 2017). This is a 

statistical method providing a good reconstruction of the target Probability Density Function 
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(PDF), including its tails, from samples of small size. KDMEM is a data-driven approach, thus 

when the number of samples increases, it converges asymptotically to the target distribution. 

Moreover, it implements the principle of Maximum Entropy (Jaynes 1957) which provides the 

least biased distribution given the available information. KDMEM presents some attractive 

features with respect to many existing methods of structural reliability and stochastic dynamic 

analysis, since its performances are not affected by the number of random variables or degree 

of nonlinearity of the dynamic system. Moreover, it does not require any coupling with the 

structural analysis software. Thus, the results of any existing commercial software can be 

adopted. Also, when a reduced number of dynamic computations are considered, the joint 

adoption of KDMEM with the bootstrap technique, yields credible bounds of the uncertain 

parameters. 

The method has been already successfully used for the determination of seismic fragility 

curves of a Reinforced Concrete building subjected to earthquake ground motion, modelled as 

a non-stationary Gaussian stochastic process (Alibrandi and Mosalam 2018). In this paper 

KDMEM is applied to a simplified model of riser proposed by Low and Langley (2008). This 

includes the stochastic modelling of loads, represented by the first- and second-order wave 

forces on the vessel, drag forces and inertia forces on the lines. The example shows the good 

performances of KDMEM as a practical design tool also for the stochastic dynamic analysis 

of FPS.  

2 Kernel Density Maximum Entropy (KDMEM) 

Let us consider a random variable , whose PDF is  with support . The target PDF, is 

expressed as a linear superposition of Kernel Density Functions (KDFs) as follows: 

   (1) 

where the coefficients  satisfy the constraints , , while  is 

the th basis KDF, centered in  with bandwith . If the Gaussian distribution is chosen as 

KDF, then  

   (2) 

where  and  are the mean value and the standard deviation  of the Gaussian KDF, 

respectively. The centers , , are uniformly spaced with a constant step 

 in the range . The bandwidth is , which is shown to be a 

suitable value under uniform spacing of the centers (Alibrandi and Ricciardi 2008, Alibrandi 

and Mosalam 2017). It is noted that when , then , and Eq.(1) gives 

   (3) 

where  is the Dirac delta function. Therefore, the representation (1)-(3) can reconstruct any 

kind of distribution. Let us a consider now a set of  independent functions  of 

parameters , representing the available information. Multiplying both sides of Eq.(3) by 

, , and integrating over the domain, the following relationship holds:  

   (4) 
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where  is a vector of  unit entries, and  collects the  parameters , while 

 and  are defined as 

   (5) 

It is noted from Eq.(4) that  can be considered as the Probability Mass Function (PMF) of a 

discrete valued random variable , defined in the centers  and corresponding 

probabilities . The generalized moments of  are 

 and are assumed to coincide with the corresponding moments of , i.e. 

, see Eq.(5). According to Jaynes (1957) the Maximum 

Entropy (ME) probability distribution, , is the least biased distribution, given the 

satisfaction of the available information. It is obtained through the maximization of the 

Shannon’s entropy  as follows: 

   (6) 

The optimization problem (6) is convex, which implies the uniqueness of the ME distribution 

of , expressed as follows: 

   (7) 

where  collects the  Lagrange multipliers  of the dual optimization problem, 

while 

   (8) 

The Lagrange parameters  can be determined as a solution of a linear system of  equations 

(Alibrandi and Mosalam 2017)  

   (9) 

From Eqs.(7)-(9) the parameters  are determined, and substituted into Eq.(1), the Kernel 

Density Maximum Entropy (KDME) distribution is obtained, i.e. . 

2.1 KDME distribution for given sample of data 

It is assumed that a set of  data  drawn independently from the true but 

unknown target PDF  is available. The KDME distribution can be interpreted as a 

probabilistic model of parameters  as follows: 

  (10) 

The model selection is pursued through the Maximum Likelihood Estimation (MLE) of  
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  (11) 

where  is the th sample of . The substitution of  in Eq.(10) gives the required KDME 

PDF, i.e. . When the number of data is small enough to yield 

overfitting, a strategy of regularization may be used. 

In the model selection, an important issue is represented by the choice of the generalized 

functions  yielding the generalized moments . In Alibrandi and Ricciardi (2008) 

it is chosen , which provides the classical power moments . This 

choice is reasonable when the central part of the distribution is required. If conversely there is 

interest in the prediction of the extreme responses a good choice is , providing 

the fractional moments . Indeed, recent research has shown that a reduced 

number of fractional moments (  may provide a good description of the tails (Zhang 

and Pandey 2013, Xu 2016, Xu and Zhang 2016, Alibrandi and Mosalam 2017, 2018) 

2.2 Credible bounds of the KDME  

It is of interest to investigate the incurred error when the number  of analysis is reduced. To 

this aim, credible bounds of the KDME distribution are determined through the bootstrap 

resampling. Assume that a sample of size  of a chosen quantity has been determined 

such that , which are drawn from the unknown distribution 

. It is assumed that the sample represents the bootstrap population, whose distribution is 

modeled through a uniform discrete-valued distribution. Thus, each value of the sample has a 

probability of occurrence , , i.e. 

.  From the bootstrap discrete distribution , the bootstrap CDF 

 is determined. Bootstrap samples  of size  can be so drawn from 

. The elements of  are the same as those of the original data set, but 

repetitions may occur, i.e. some elements may appear only once, some may appear two or 

more times, and others may not appear. For illustration, two possible bootstrap samples are 

 and . For the th 

bootstrap sample, , , the KDME CDF is evaluated as 

. It is noted that . Therefore,  

bootstrap samples provide  different values of . Therefore, the corresponding 

bootstrap distribution  is determined. If the mean value of  is considered, 

then the KDME solution of Eq.(10) is obtained. Moreover, from , the bootstrap 

confidence intervals can be determined by choosing two percentiles  and  of .  

3 Numerical application 

The KDMEM has been applied to a simplified FPS, presented in (Low and Langley 2008, 

Alibrandi and Koh 2017). It is composed of two lumped masses, of the vessel  and of the 

lines , with generalized diplacements  and . The effective masses include added 

masses contributions. Without loss of generality,  and  can be seen as the surge 

motion of the vessel, and the first mode of vibration of the lines, respectively. The restoring 

force given by the lines is in general nonlinear due to the geometrical changes of the lines, and 

it is well approximated through a geometric nonlinearity . The lines are 
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connected to a fixed boundary with an identical spring. The equations of the motion of the 

system are 

  (12) 

where ,  and  are the damping of the vessel and lines respectively, 

 and  are the linear and non-linear contribution of the stiffnesses,  and  are the 

loads acting on the vessel and the lines, respectively. The structural damping of the lines is 

assumed equal to zero,  while the viscous damping is given by the drag term 

in the wave force. The damping of the vessel  comes from several sources, such as viscous 

drag, radiation, aerodynamic, and so on. The random sea state is modelled through a discrete 

Fourier series 

  (13) 

where  is the number of harmonic components,  and  are normal 

standard random variables. The correlation structure of  is given in terms of the 

underlying one-sided JONSWAP spectrum , through the deterministic shape functions 

 and , collected in the vector . The time dependent force on the vessel 

 is the sum of the following components: 

  (14) 

where  and  represent the time-varying first- and second-order wave force, 

respectively,  is the wind force, and  is the force of the currents. Wind and current 

are assumed constant and collinear. The time dependent force on the lines  is the sum of 

the following components: 

  (15) 

where  and  are the drag and inertia forces. All the data of this numerical 

application are reported in (Alibrandi & Koh 2017).  

 

 

 

 

 
 
 
 
 

Figure 1.  Tail probability of the extreme responses of the lines using: (left) 100 and (right) 1000 samples 
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Figure 1 shows the tail probability of the extreme response of the lines in semilogarithmic 

scale. Here we compare MCS with 50,000 samples (circle markers) and KDMEM (thick 

continuous line) together with its credible bounds (dashed lines), trained using respectively 

100 and 1,000 samples. For sake of comparison it is noted that crude MCS would require 

approximately 1,000,000 analyses for estimating a tail probability of . Conversely, 

KDMEM provides an excellent approximation with only 100 dynamic analyses, and it can 

therefore be adopted for practical design engineering. It is also noted that when the number of 

samples increase, the credible bounds become narrower, as expected. 

3 Concluding Remarks 

The dynamic analysis of deepwater floating production systems is a very complicated task to 

be accomplished, because of uncertainties in environmental loads, several sources of coupling 

between the vessel and the lines, and of nonlinearities. All these nonlinearities and couplings 

can be captured only through fully coupled time domain analyses. However they require a 

tremendous computational cost, especially for reliability design purposes. To reduce the 

computations, we applied to a simplified model of a floating production system a novel 

moment-based approach for the evaluation of the probability density function of the responses, 

called Kernel Density Maximum Entropy Method. It gives very good approximations of the 

PDFs of the quantities of interest, including the tails, from a very reduced number of samples. 

Thus, it can be used for practical design purposes.  
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