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Research of reliability of engineering structures has experienced a developing history for more than 90 years. 

However, the problem of how to resolve the global reliability of structural systems still remain open, especially the 

problem of the combinatorial explosion and the challenge of correlation between failure modes. Benefiting from the 

research of probability density evolution theory in recent years, the physics based system reliability researches open 

a new way for bypassing this dilemma. The present paper introduces the theoretical foundation of probability density 

evolution method in view of a broad background, whereby a probability density evolution equation for probability 

dissipative system is deduced. In conjunction of physical equations, a general engineering reliability analysis frame 

is then presented. For illustrative purposes, several cases are studied which proves the value of the proposed 

engineering reliability analysis method. 

 

1 Introduction 

Reliability based analysis and design of engineering structures and infrastructure systems underlies the safety of 

engineering systems. The pioneering investigations upon the uncertainty in the objective world and using the 

probability theory to deal with the engineering reliability assessment could be dated back to the early 20th century 

(Mayer, 1926; Rackwitz & Fiessler, 1978; Rackwitz, 2001). Owing to the outstanding contributions of 

Freudenthal (1947), Cornell (1969), Lind (1974) and Ang et al.(1975a), the engineering design paradigm based 

on the first-order second-moment (FOSM) method was built up during 1960’s to 1970’s. This paradigm was later 

developed rapidly and served as the foundations of worldwide national design provisions, which facilitated the 

establishment of the second-generation design theory of engineering structures (Li, 2016).  

In fact, the crucial point of the second-generation design theory of engineering structures is to implement the 

approximate reliability analysis and design on the level of structural components based on the decomposition 

methodologies. This treatment consequently brings forward the basic contradictions inherent in the structural 

design theory (Li, 2016). In order to resolve these contradictions, great efforts have been made, especially on the 

researches on structural global reliability which can be traced back to the middle of 1960’s. For example, in 1966, 

Freudenthal et al presented the upper bound of failure probability of series systems (Freudenthal et al., 1966). In 

1975, Ang et al developed the probabilistic network method for the analysis of structural system reliability (Ang 

et al., 1975b). In 1979, Ditlevesen proposed the formulation of narrow limit estimation method for structural 

system reliability (Ditlevesen, 1979). Almost at the same time, Thoft-Christensen and Murotsu proposed the -

branch method and branch limit method based on joint probability, respectively (Thoft-Christensen & Murotsu, 

1986). Although these methods prompted the wide formation of community consciousness on the research field 

of structural system reliability, the problem of combinatorial explosion and the challenge of failure probability 

correlation still remained open, resulting in the situation that the research of structural system reliability came into 

standstill since 1990’s. 

   Actually, the problem of combinatorial explosion and failure probability correlation comes from the 

methodology research thought in which the main concern is focused on the failure results of structures other than 

the physical process of failure. During the first decade of 21th century, the research of probability density 

evolution theory gained eye-catching progresses, which brought a new dawn for the settlement of analysis and 

design of engineering system reliability. The thought of physical stochastic system research established the 

ideological basis for integrating the physical equation of engineering systems and the generalized probability 

density evolution equation, and pioneered a new way to implement the analysis and design of global reliability of 

structural systems in practical sense. 
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In the present paper, the theoretical foundation of probability density evolution method is first introduced in view 

of a broad background. Then a probability density evolution equation for probability dissipative system is deduced. 

In conjunction of the physical equation defined by a specific problem, a general engineering reliability analysis 

frame is presented. In order to show the feasibility of the proposed method, several case studies, including fatigue 

reliability of bridge structural elements, global reliability of high-rise buildings and functional reliability of water 

supply network, are discussed as examples.  

 

2 Theoretical foundation of probability density evolution method 

For a stochastic system, the principle of preservation of probability supplies a theoretical foundation for deriving 

the basic probability density evolution equation. This principle states that: if the random factors involved in a 

stochastic system are retained, then the probability will be preserved in the state evolution process of the system 

(Li & Chen, 2008; 2009).  

In order to clarify the principle, we start with the investigation on a transform of a random function. Let  

be a basic random event and ( )X  be a continuous variable with probability density function (PDF) ( )Xp x , 

namely 

Pr{ ( ) ( , d )} dPr{ } ( )dXX x x x p x x                      (1) 

where Pr{}  is the probability measure. 

 Assume there exists a one to one mapping f from X to Y, that is 

: ( )f Y f X                                     (2) 

then the PDF of Y will be 

1 d
( ) [ ( )]

dY X

x
p y p f y

y
                               (3) 

Obviously, the above equation could be converted to 

d d( ) ( )Y Xp y y p x x                                  (4) 

Noticing that 

      d d dPr{ ( ) ( , )} Pr{ } ( )YY y y y p y y                      (5) 

it is evident that 

d d dPr{ ( ) ( , )} Pr{ ( ) ( , )} Pr{ }Y y y y X x x x               (6) 

This means that, in a mathematical transform, the probability measure will be preserved since the random events 

keep unchanged. This statement reveals the principle of preservation of probability. The principle is universally 

applicable to generic stochastic systems. 

Noticing that a physical system can be described by a mathematical operator, without loss of generality, there 

exist  

( )( , , , , , ) 0j x tY YL                             (7) 

where ( )L  denotes a general mathematical operator such as a differential operator or an integral operator; Y is 

a physical variable(s) which may be a vector, say in m dimensions, changing with spatial position and time;  

denotes a random vector which is actually a uncontrollable physical variables in the system; x and t are the spatial 

position variable and time variable, respectively;  is an general time evolution parameter denoting the 

evolution direction of the system.  

It is understood that, for a well-posed physical system described by Eq. (7), the solution Y( )t  is existent, 

unique and continuously dependent on . According to the principle of preservation of probability, it can be 

then deduced that the joint PDF of ( , )Y  is governed by the following probability density evolution equation 

(PDEE) (Li & Chen, 2008; Li, 2009)  
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                    (8) 

For a one-dimensional case, there exist 

( , , ) ( , , )
( , ) 0l l

Y l Y l

l

l

p y p y
Y

y
                     (9) 

This formulation provides a new understanding on the relationship between the physical world and the 

random world. Actually, if rewriting Eq. (9) as follows 

( , , ) ( , , )
( , )l l

Y l Y l

l

l

p y p y
Y

y
                       (10) 

we could realize such an important fact immediately: the evolution of probability density of a stochastic relies on 

the change of physical state of the system! It demonstrates in an elegant manner that the evolution of probability 

density obeys a rigorous physical law instead of being rule less. Obviously, this understanding comes up with a 

new perspective about the real world. 

 

3 PDEE for Probability Dissipative Systems 

For a stochastic system, the probability dissipation could take place at any time in evolutionary process. 

Concerning the first passage problems, for example, when the response of the system crosses a specified level, 

the adherent probability of the path will be dissipated, which results in a probability-dissipated system. Another 

example is the structural dynamic stability. Once the stability criterion is violated, the corresponding probability 

of the path will be dissipated, which also results in a probability-dissipated system. Obviously, the probability 

density evolution equation that governs such probability-dissipated systems is important for obtaining the 

response of such systems. 

Without loss of generality, we assume that the probability dissipation take place in the time interval

[ , ]t t t , the dissipated probability can be then denoted as
r

t P tY YH . Here 

 
0

1
D

D

t
t

t

Y
Y

Y
H                     (11) 

D
 is the probability dissipation domain; H  is the identity indicator of probability dissipation. It is indicated 

that when tY  reaches a critical state resulting in that the physical quantity of interest enters into the domain 

D
, the value of H  turns to be one from the time instant t. Therefore, the symbol H may be called as the 

screening operator.   

    Using the description of probability density, the dissipated probability can be then expressed as  

      
Y
, d

r
P t P t t p tY Y Y y yH H     (12) 

where P  is the dissipated probability. 

    It is noted that all the randomness involved in tY  comes from , and the joint PDF of augmented 

system ,tY  can be represented as , ,p t
Y
y . Alternatively, the dissipated probability in the form 

of the joint PDF , ,p t
Y
y  is  

                 , , , d d
t

P t p t
Y

Y y yH            (13) 

where 
t

 and  are the distribution domains of Y at time instant t  and of , respectively.  

    If the dissipated probability at time instant t  is taken as the average probability dissipated during the time 

interval ,t t t , we can define the average joint PDF as  
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, ,

, ,
p t

p t
t

Y

Y

y
y                      (14) 

Obviously, when 0t , the following relationship exists 

 , , , ,p t p t
Y Y
y y                         (15) 

which reveals that the average joint PDF dissipated during the interval t  is actually the joint PDF at the time 

instant t  when t  approaches to zero.  

    Then, the dissipated probability could be rewritten as   

, , , d d
t

P t p t t
Y

Y y z             (16) 

    Let 

 t ty y                          (17) 

Then the following equation holds for a probability dissipated system in the time interval [ , ]t t t  according 

to the principle of preservation of probability  

, , d , , d , , , dp t t p t t p t t
Y Y Y
y y y y Y y yH  (18) 

where 

 d dJy y                            (19) 

Here J is the Jacobian and it can be verified that 1J  (Xu, 2014) . 

    Noticing that 

1

, ,

, , , ,
, , ,

, , , ,
, , y ,

m

l
l l

p t t t t

p t p t
p t t t

t

p t p t
p t t t

t y

Y

Y Y

Y

Y Y

Y

y

y y
y y

y

y y
y

   (20) 

Substituting Eq. (19) and (20) into Eq. (18) will yields 

1

, , , ,
, , ,y ,

y

m

l
l l

p t p t
t t p t

t

Y Y

Y

y y
Y yH   (21) 

where the relationship in Eq.(15) is introduced. 

Eq. (21) is called the generalized probability density evolution equation for probability dissipated system 

(GDEE-PD). Specifically, when 1m , the Eq. (21) reduces to be 

 
Y

, , , ,
, , ,Y ,l l

l
l

l Y l

Y l

l

p y t p y t
t t p y t

t y
YH    (22) 

which can be called as the one-dimensional generalized density evolution equation for probability dissipated 

system. 

Under the initial condition, 

 
0

0
, ,

Y t t
p y t y y p                  (23) 

the partial differential equation Eq. (22) can be solved cooperating with the physical equation such as Eq. (7). In 

Eq. (23), 
0
y is the deterministic initial condition. 

    When the system variable ( )tY  is considered in different domain, Eq. (22) has different solution, there 

exist 
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(i). When ,
D

tY , ( , ) 0tYH , Eq. (22) then turns to be the generalized density 

evolution equation for probability preserved system 

 
Y

, , , ,
,Y 0l l

Y

l

l l

l

p y t p y t
t

t y
             (24) 

where the non-zero solution , ,
l
Y l
p y t  can be obtained. 

(2). When ,
D

tY , indicating that ,tY  arrives at its criticality, ( , ) 1tYH , 

Eq.(22) becomes 

Y
, , , ,

, , ,Yl l

l

l Y l

Y ll

l

p y t p y t
t p y t

t y
       (25) 

which indicates that increments of the joint PDF is a negative joint PDF, on the other words, it means probability 

dissipation. Therefore, Eq. (25) has a zero solution, i.e. , , =0
l
Y l
p y t . 

4 Structural System Reliability Analysis 

The above-mentioned theoretical background actually supplies a broad possibility to solve engineering reliability 

problem. In fact, the screening operator H  may be defined in a more general form as follows     

0 ,
,

1 ,

S

D

f t
f t

f t

Y

Y

Y

H                 (26) 

where ,tY  is structural response ; f  is a general function which relies upon the specific failure criteria 

of structures; 
S

 is the safety domain of structures and 
D

 is the failure domain of structures. Obviously, 

=
DS

. 

On the other hand, for general engineering systems, when the mechanical behavior is concerned, Eq. (7) can 

be expressed as a set of solid mechanics equation as follows 

1

2

( )

T

G

b u u

u u                          (27) 

where  is the partial differential operator,  is the stress tensor,  is the body force,  is the density of 

material,  is the viscous damping coefficient,  is the strain tensor,  is the displacement vector, the over 

dot denotes differentiation in terms of time. ( )G  denotes a general function or operator.  

    Then, taking a representative physical quantity (for example, the displacement of a specified element of the 

structure, ( )pU t ) as the observed variable, a set of structural reliability equations could be established: 

0 0

1

2

( )

, , , ,
, ( ( , )) , ,

, ,

p p

p

p

U p U p

U p

p

U p t t p p

T

p

p u t p u t
U t f t p u t

t u

p u t u u p

G

b u u

u u

uH

   (28) 
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Solving these equations will derive the joint PDF , ,
p
U p
p u t  and the PDF of ( )pU t  can then be 

obtained by 

 , , , d
p pU p U pp u t p u t                   (29) 

While the reliability of the structure corresponding to the specified failure criteria will be 

R(t) d,
u

p

p

U p pp u t u                        (30) 

In order to verify the applicability of the proposed method, several typical cases will be studied in the 

following sections. 

4.1  Fatigue Reliability of Bridge Structures 

Most structures are subjected to cyclic loads during their service life, such as bridge decks, wind-turbine blades, 

pavements of high way and airport etc. In many circumstances, fatigue or time-delayed damage will occur in these 

structures. A number of investigations show that, especially for bridge structures, the fatigue life has a significant 

variation. Therefore, the fatigue life prediction is very important for such kind of structures. 

From a viewpoint of multiscale physical mechanics, a stochastic damage constitutive model has been developed 

(Ding & Li, 2017), in which the basic constitutive equation of concrete materials is given by 

( ) : : ( )D D p
I P P C -                   (31) 

where  is a fourth order unit tensor,  are the tensile and compressive damage variables, respectively, 

 are the fourth positive and negative projection tensor,  is the plastic stress tensor,  is the fourth 

tensor of initial modulus of elasticity. 

The damage variable is defined as 

1

0

0
0

2

0

1 ( )

( ( )) d

1
( )

2

s f s

p
t

d

f

s

D H E E H E Y x

Y
E C e Y Y t

e

E E x

d

             (32) 

where  is Heavide’s function,  denotes the inherent energy of the representative volume element,  

is the total energy dissipation at mesoscale,  is a material constant,  denotes the damage energy release rate 

conjugated with damage variable in function of Helmholtz free energy,  is an equivalent accumulation strain, 

 are constant coefficients,  is the modified surface energy,  is the representative volumetric 

homogenized surface energy,  is a critical exponent, 0E  denotes the initial elastic modulus and  denotes 

the denotes one-dimensional random fracture strain field. 

Integrating the constitutive equation with equilibrium equation and geometric equation will give the basic 

physical equation such as Eq. (7). While the screening operator H  may be defined in a damage criteria form 

as following    

max

max
max

0 ( , ) [ ]
( , )

1 ( , ) [ ]

D t d
D t

D t d
H                 (33) 

where [d] is the permitted damage. 

Then the basic fatigue reliability equation of concrete structures is summarized as follows 
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, ,
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U p U p

U p

p

T

U p t t p p

p

p u t p u t
U t D t p u t

t u

p u t u u p

D D
p

b u u

u u

I P P C -

uH

   (34) 

After obtaining the joint PDF , ,

p
U p
p u t , the fatigue reliability of the structures can be derived by Eqs. (27) 

and (28). 

For illustrative purposes, the fatigue life analyses of high-speed and heavy-load railway bridges are addressed 

as numerical examples. In China, the axial load of train increases from 23 tons to 30 tons after the ordinary railway 

changed to the heavy-load train. For this reason, the fatigue performance of existing prestressed concrete bridges 

distributed along the railway needs to be evaluated. Here the simply-supported beams commonly used in the 

railway lines are addressed, of which the fatigue damage evolution of the concrete in the compression zone is 

investigated. The average damage of the concrete in the compression zone of the beam is taken as basic damage 

variable and the threshold of fatigue damage is taken as the damage level corresponding to the compressive 

residual strain which is 0.4 times of the axial compression strength. Using the above-mentioned principles, the 

fatigue reliability and service life prediction of the heavy-load railway bridge element are carried out. Some results 

are shown in Figures 1 and 2. 

 

Figure 1 Probability density of fatigue damage under different cycles of loadings. 
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Figure 2 Contour of probability density of fatigue damage. 

 

Figure 3 Fatigue reliability of the concrete beam. 

The quantitative results of fatigue reliability are listed in Tables 1 and 2. It is seen that integrated with physical 

equation and GDEE-PD, the life-cycle fatigue analysis of structures could implement the elegant assessment of 

fatigue reliability and accurate prediction of life-cycle period. 

Table 1 Fatigue reliability of different fatigue life 

Fatigue cycles 2000000 2500000 3000000 3500000 4000000 4500000 5000000 

Fatigue reliability 0.9932 0.9342 0.8788 0.7744 0.6500 0.4057 0.2405 

Table 2 Fatigue life of different fatigue reliability 

Fatigue 

reliability 
0.99 0.95 0.90 0.80 0.70 0.60 0.50 

Fatigue cycles 2,046,644 2,301,441 2,857,590 3,400,167 3,845,917 4,139,996 4,315,190 
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4.2 Global reliability of high-rise buildings 

As discussed in the section ‘Introduction’, global reliability assessment of structures has been a challenging issue 

in the past 40 years. Taking high-rise buildings as studied object, a series of researches were carried out in recent 

years. In the research, an energy-based structural collapse criterion is proposed for the collapse assessment of 

structures. Meanwhile, to address the uncertainty propagation in a complex nonlinear dynamic system, the PDEM 

is adopted as a feasible solution (Li, Zhou & Ding, 2017).  

In fact, for general structures, there are different levels of structural failure criteria, each of them correspond 

its own screening operator H . For example, for the beam or column failure of structure, H  can be defined 

in a moment criteria form as follows     

max

max
max

0 ( , ) [ ]
( , )

1 ( , ) [ ]
u

u

M t M
M t

M t M
H                 (35) 

where 
max
M  is the maximum moment in a beam or column; 

u
M  is the limit moment of a beam or column.  

     In this level, structural reliability assessment is focused on the structural elements. Appling for the 

equivalent extreme-value principle (Li, Chen & Fan, 2007), the global reliability can be evaluated. On the other 

hand, when considering the seismic collapse probability analysis for large complex reinforced concrete structures, 

an energy-based structural collapse criterion may be introduced, and H  can be defined based on an energy-

based structural collapse criterion as follows     

0 ( , , ) 0
( , , )

1 ( , , ) 0

S t
S t

S t

u

u

u

H                  (36) 

where 

eff_inp eff_intr( , ) ( , ) ( , )S u t E u t E u t                    (37) 

T T

eff_inp p
0 0 0

( , ) ( )d ( ) ( ) ( )d ( : d )d
t t t

V
E u t t t t t t V tF u u Cu    (38) 

 
T

eff_intr e( , ) ( , ) ( ) : d
V

E u t t t Vf u u             (39) 

where eff_inp ( , )E u t  is the effective external work to the system at any time t ;  is the stress tensor; 
e
 is 

the elastic strain rate tensor; V denotes the solution domain; 
eff_intr ( , )E u t  denotes the absorbing energy that 

belongs to the structural system induced by the vibration of the system at time t; 
p

 is the plastic strain rate 

tensor. 

    Then by employing the above analytical principle, the basic governing equation for analyzing the global 

reliability will be as follows 

0 0

, , , ,
, ( , , ) , ,

,

1

2

( ) : : ( )

,

p p

p

p

U p U p

U p

p

U p t t p

T

p

p

p u t p u t
U t S t p u t

D

t u

p u t u u p

D
p

b u u

u u

I P P C -

uH

    (40) 

 

Obviously, after solve above equations, the global reliability of structures can be derived by Eqs. (27) and 

(28). 
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For illustrative purposes, an 18-storey high-rise RC frame-shear wall building which is located in Shanghai 

is taken as an example. The finite element model of the structure is shown in Figure 4, and totally 53,372 elements 

are involved. The stochastic dynamic analysis herein is only in terms of the random seismic input while taking no 

account of the uncertainty from structural properties. In this regard, the mean values of all the material properties 

are adopted in the analysis. 

 

Figure 4 The finite element model of an 18-storey building. 

Based on the numerical platform developed for stochastic analysis of structures, the nonlinear seismic 

responses of the structure under stochastic ground motions are attained manifesting with quite different failure 

paths and patterns. Two typical structural collapse processes and modes are depicted in Figure 5. It can be seen 

that, because of coupling effect of developing process of nonlinearity and stochastic input, the initial damage 

locations and occurrence time as well as the subsequent damage evolutions of the structure will be a typical 

random process, and therefore providing different structural collapse modes. 
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t=21.8 s t=24.9 s t=28.3 s t=29.7 s 

(a) Sample 1 

t=13.4 s t=21.6 s t=28.1 s t=32.6 s 

(d) Sample 2 

Figure 5 Typical collapse processes and failure modes of the high-rise building. 

Figure 6 shows three typical PDFs of the inter-story drift ratio (ISDR) at certain instants of time. It is seen 

that the PDFs are quite different from those widely used regular probability distributions. These results indicate 

that the structural response process is a complex stochastic damage evolution process and should be investigated 

from the development process of nonlinearity. 

 

Figure 6 Typical PDFs of the ISDR responses at certain instants of time. 

The global reliabilities against collapse of the structure are pictured in Figure 7. It can be seen that the 

reliability is changing with time along the seismic process. 
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Figure 7 Global reliability of structures by energy criterion. 

4.3 Functional reliability of water supply network 

The water supply network is a kind of infrastructure system for modern cities, which include buried pipes, pumps, 

and valves, etc., to deliver water from sources to customer. Many previous earthquake investigations showed that 

the seismic performance of water supply network is very fragile. Applying above principle to the serviceability 

analysis of water supply network under earthquakes, the service reliability (also known as functional reliability) 

under and after an earthquake could be derived quantitatively. 

For a water supply system, the basic physical equation is the transient flow analysis equations which are 

constructed by a momentum equation and a continuity equation 

 
11 ( ) ( ) ( )

( ) ( ) ( ) 0
mQ t Q t H t

V t fQ t Q t
gA t x x

  (41) 

 

2( ) ( ) ( )
( ) 0

H t H t a Q t
V t

t x gA x
  (42) 

where g is the acceleration of gravity; A is the cross sectional area of the pipe; Q is the flow rate in pipeline; V is 

the fluid velocity; H is the pressure head; f and m are two coefficients of friction resistance, which depend on 

different hydraulic loss models; a is the propagation velocity of small disturbances in a pipe. 

Using the characteristic line method, the flow rate in pipeline and the flow pressure of each node can be 

derived from the above differential equations. However, since the seismic ground motion is a stochastic process, 

the pipeline damage and leakage after an earthquake are both random events. Taking the critical random variables 

associated with ground motions and pipe systems as , and taking flow pressure at each node of water supply 

network as an analytical variable, the functional reliability of water supply network can be then derived by solving 

the following equations 
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where 

0 ( , ) [ ]
( , )

1 ( , ) [ ]
l l

l

l l

H t h
H t

H t h
H                       (44) 

where [h] is demand water pressure at the node No. l. 

Different from the structural global reliability analysis, the functional reliability analysis of water supply 

network requires solving the probability density evolution equation for each node of the network. Miao et al 

presented a case study for a small-size network shown in Figure 8 (Miao, Liu & Li, 2018). In this network, all 

pipes are grey cast iron pipes. The length of pipe segments is 6 m. The network is located in type-II site and the 

soil is soft clay with the undrained shear strength of 22.93 kPa. The stiffness of axial and lateral soil springs can 

be gained according to the ALA seismic guidelines. Then based on the above analytical equations, the PDFs of 

the dynamic water head can be derived. Figure 9 shows the probability density surface and the probability density 

contour of the water pressure at a specific node. Figure 10 shows the cumulative probability density (CDF) of the 

water pressure at the node, where the comparative curves between physical equations invoked by non-steady flow 

(dynamic) and by steady flow (steady) are included, which prove the value of physical equations in the probability 

density evolution of stochastic systems. 

 

Figure 8. Schematic of a small-size pipe network. 

 

 

(a) probability density surface              (b) probability density contour 

Figure 9. Probability density evolution of water head at the node No. 7. 
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Figure 10. Cumulative probability density (CDF) of the water pressure at the node No. 7. 

5 Conclusions and remarks 

The research on the reliability of engineering structures has experienced a developing history for more than 90 

years. A series of excellent scientific supposes, innovations and explorations were born in this process. Physically 

based system reliability research, as a new approach, will serve as a new link in this historical process. Connecting 

different types of physical equations with general probability density evolution equation, to give a set of basic 

governing equation for stochastic systems, provides a broad possibility for exploring the analysis, design and 

control of stochastic systems in different research fields. The cases provided in this paper could be viewed as 

several starting points associated with the new developing path invoked by the principle. We believe without any 

doubts that following this path, not only the third-generation design theory of engineering structures can be 

established, but also the initiative and academic self-consciousness can be gained in the process of scientifically 

recognizing and reflecting the objective world. 
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