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This study presents an outlier analysis to detect damage in highway bridges. A damage indicator 

automatically derived from a set of multivariate linear system models is proposed. The damage 

indicator evaluates a stochastic distance between a set of healthy bridge data and unknown data. 

Statistical hypothesis testing based on a probability distribution of the damage indicator was 

applied for damage detection. A damage experiment on an actual steel truss bridge was 

conducted to verify validity of the proposed outlier analysis for damage detection. Observations 

demonstrated that the proposed outlier analysis detected three damage patterns successfully, and 

even identified the sensors near the artificial damage. 
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1 Introduction 

Techniques of structural health monitoring (SHM) based on vibration measurements have been 

studied to reduce cost relevant to the visual inspection. Changes in structural integrity of bridges 

engender changes in their modal properties that are identifiable from vibration data (Zhang 

2007). For bridge health monitoring, the ambient vibration test appears to be a more convenient 

method than the forced vibration test because natural excitations require no traffic control. In 

ambient vibration tests conducted on actual bridges, however, identified modal properties can be 

contaminated by unknown noises. To avoid the noise on the identified properties, existing 

studies have developed a damage indicator that defined directly from a mechanical system 

model representing the bridge vibration. Nair et al. (2006) investigated damage sensitive-feature 

consisting of univariate autoregressive (UAR) coefficients for a model building. Kim et al. 

(2016) verified the validity of the damage-sensitive feature from a field experiment conducted 

on an actual steel truss bridge with artificial damage. To cope with difficulties in decision-

making for bridge maintenance, Goi and Kim (2016) have investigated a hypothesis-testing-

based damage detection using a vector autoregressive (VAR) model. However, the classical 

hypothesis testing based on the Neyman-Pearson decision rule tends to lead the type I error, i.e., 

incorrect rejection of the null hypothesis. This kind of errors is one of possible matters in 

decision-making. 

This study investigates a statistical damage detection method by means of Bayesian 

statistics. Firstly, the VAR model provides a likelihood function for observed bridge 

acceleration, and thus the Bayesian inference method for the VAR model provides the posterior 

distribution of the parameters of the VAR model. Accordingly, time series of acceleration 

acquired from a bridge under healthy condition provide a reference model of the bridge 

vibration. Secondly, based on the posterior distribution, damage-sensitive features from the 

parameters of the VAR model related to the structural properties of the bridge are extracted 
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utilizing singular value decomposition (SVD). Thirdly, Bayesian hypothesis test is formulated to 

distinguish whether a newly observed time series is acquired from healthy bridge or not. This 

study adopts ratio of marginal likelihood of two different hypotheses, called Bayes factor (BF) 

(Kass and Raftery 1995), as a damage indicator. Feasibility of the proposed method is discussed 

utilizing field experiment data in which three different levels of artificial damage are introduced 

to two tension members of an actual steel truss bridge. 

 

2 Bayesian Inference 

Let  denote a column vector of the discrete time series of measured acceleration 

whose components respectively correspond to m measurement points. The following VAR 

model approximately models the time series obtained from a linear structural system excited by 

the white noise with sufficient model order P (He and De Roeck 1997). 

                                               (1) 

where,  denotes the i-th AR coefficient matrix and  denotes the white 

noise vector. Focusing on j-th row in Eq. (1), the following regressive model is obtained. 

                                           (2) 

where,  and  respectively represent j-th element of  and , and 

 represents j-th row of . Assuming elements of  are statistically independent each 

other and following Gaussian distribution with expectation 0, then  also follows the 

Gaussian distribution with the expectation . Letting , 

 and  for simplicity, the 

probability distribution function (PDF) of t is given as follows. 

                                            (3) 

where,  denotes PDF of x following Gaussian distribution with expectation  and 

variance , and  denotes the precision parameter of the regression, which is the inverse of the 

variance of the noise term . Assuming n samples of  and  are observed, and letting 

 and , then the likelihood function for the 

parameters  and  is defined as follows. 

                                        (4) 

Bayesian theorem provides the posterior joint PDF for  and  as shown in Eq. (5). 

                                         (5) 

where,  is omitted from above Eq. (5) for simplicity. The  stands for a prior joint PDF 

for  and . The  is a constant in manner of Bayesian inference, and therefore the posterior 

PDF  is obtained only from the observed data  and the prior PDF . 

This study adopts the following prior that is conjugate to the likelihood function in Eq. (4). 

                                         (6) 

Therein, the parameters  are hyperparameters of the prior PDF, which determine 

the functional properties of the PDF.  denotes PDF following Gamma distribution 

defined in Eq. (7) in which denotes the Gamma function. 

                                            (7) 
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In general, a conjugate prior provides a posterior distribution that has the same functional 

form as the prior (Bishop, 2006); thus Eqs. (4)–(6) lead to the following posterior distribution 

with hyperparameters, m', L', a' and b'. 

                                           (8) 

where, , , , and 

. 

If any information related to the prior distribution is given beforehand, we can utilize non-

informative prior to avoid arbitrary assumptions (Jeffreys 1946). Numerically, the posterior PDF 

complying with the non-informative prior is obtained by substituting [L]ij=0 (i, j = 1… mP), a=0 

and b=0 to the hyperparameters in Eq. (8). Once the posterior PDF is obtained from the non-

informative prior, the posterior PDF is used as the prior PDF for the newly observed time series. 

Therefore, m', L', a' and b' of the posterior PDF are updated once a new data is obtained. 

 

3 Feature Extraction 

Let Dref denote a reference dataset from acceleration time series of a healthy bridge, then the 

hyperparameters, mref, Lref, aref and bref, representing the posterior distribution  are 

estimated by hyperparameters, m', L', a' and b'. Updated L' produces real, symmetric and 

positive definite matrix Lref ; thus the SVD of the hyperparameter Lref is given as follows. 

                                            (9) 

where,  is the diagonal matrix of the singular values and  is the 

orthogonal matrix of the singular vectors.  and  respectively represent the 

q largest singular values and the corresponding singular vectors;  and  represent remaining 

singular values and singular vectors. 

Let  denote the orthogonal transformation of  such that ; and  

and . Then Eq. (8) leads to the following posterior distribution of  and  

utilizing the relationship, . 

(10) 

where, ,  and . In the posterior distribution, the 

parameter  has less variations compared to the , hence the  represents the parametric 

subspace that is certainly inferable from the observation. 

This study presumes that the  is related to modal properties of the bridge, and conducts 

the hypothesis testing to detect changes in the . Let Dtest denote a newly observed test dataset 

for the hypothesis testing, the BF for a null hypothesis  and an alternative hypothesis  is 

defined as a ratio of their marginal likelihoods as follows (Kass and Raftery, 1995). 

                                        (11) 

where, the parametric vector  is consists of  and . The null and alternative hypotheses 

respectively provide stochastic models representing healthy and damaged conditions of the 

bridge. The BF is a summary of the evidence provided by the observed dataset Dtest in favor of a 
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statistically modelled hypothesis as opposed to another. Kass and Raftery (1995) suggested 

interpreting the BF on the natural logarithm scale. For example, if  is over 10, then the 

evidence against the null hypothesis  is interpreted to be ‘very strong’. This study adopts the 

likelihood function  given in Eq. (4), which is independent of the hypotheses. The 

hypotheses are thus modeled in the parametric distribution prior to observing dataset Dtest, i.e., 

 and  in Eq. (11). 

The null hypothesis representing the healthy condition is modeled as shown in Eq. (12) 

using the posterior PDF to the reference dataset Dref, which is given in Eq. (10). 

                                (12) 

The alternative hypothesis represents that  somehow changes due to damage in the 

bridge. However, an exact PDF for  is undefinable because of uncertainty of damage itself. 

Kass and Raftery (1995) have mentioned that the Schwarz criterion (Schwarz, 1978) can be 

applied as a standard procedure when the priors are hard to set precisely. This study adopts the 

Schwarz criterion presuming only the  is uncertain and the other parameters follow the PDF 

posterior to the Dref. The Schwarz criterion produces following approximation of the marginal 

likelihood under the alternative hypothesis in the log scale. 

       (13) 

where, ntest denotes number of data samples contained in the Dtest. Let m', L', a' and b' 

respectively denote hyperparameters comprising the PDF posterior to both of Dref and Dtest, i.e., 

, and re-arranging Eqs. (11)–(13) 

provides the following BF in the log scale. 

                             (14) 

                        (15) 

 

4 Application to Real Bridge 

4.1    Damage experiment on real truss bridge 

Field experiments were conducted with a moving vehicle on an actual bridge. The target bridge 

for the field experiment is a single lane simply supported through-type steel Warren truss bridge 

as shown in Figure 1. The bridge has 59.2 m span length, 8 m maximum height, and 3.6 m 

width. The vehicle used for the experiment is a two-axle recreation vehicle with total weight of 

about 21 kN. During the experiment, all traffic was blocked except the load vehicle. Eight 

uniaxial accelerometers were installed on the deck of the bridge to measure vertical vibrations as 

presented in Figure 1b. The sampling rate of each sensor was set as 200 Hz. 

Five scenarios were considered in this study as shown in Figure 1c. Initially, the INT 

scenario represents the intact bridge with no damage. For the DMG1 scenario, a half-cut damage 

was applied to the vertical truss member at the mid-span (see Figure 1b), and for the DMG2 

scenario, a full cut damage was applied to the same member. After examining the DMG2 

scenario, the damaged member was repaired, which is denoted as the RCV scenario. Finally, for 

the DMG3 scenario, full cut was applied in a vertical member at 5/8th-span (see Figure 1b) after 

examining the RCV scenario. Each experiment was conducted under the vehicle running at 

about 40 km/h.  
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a)  b)  c)  

Figure 1. The target bridge: a) photo; b) sensor deplyment; c) damage scenarios. 

  

Figure 2. Outlier analysis with global BFs. Figure 3. Outlier analysis with local BFs (P =150). 

 

The vehicle was accelerated before entering to the bridge and the passing speed was kept to 

40 km/h as possible by the speedometer. Considering variation in the passing speed, however, 

the bridge vibration under the passing vehicle was measured ten times for each of the scenarios. 

It is noteworthy that the proposed method is for utilizing ambient vibrations of bridges under 

varying vehicles with varying speeds, and is expected to detect the outliers from the sets of 

ambient vibration data although quality of the outlier analysis might be varied. 

 

4.2    Outlier analysis for damage detection 

The VAR order P and the number of the damage sensitive features q are predefined. The orders 

are determined by following steps. Firstly, assuming all of the parameters are uncertain, the 

Schwarz criterions evaluates the relevant VAR orders using the reference dataset; the VAR order 

providing highest Schwarz criterion is applied as the P for the hypothesis testing. Secondly, 

using the hyperparameters reproduced by the VAR model with P order, the q is determined by 

finding distinct singular values provided in the . P=150 and q=10 were adopted in this study. 

The time series acquired from the INT scenario were adopted as the reference dataset for 

DMG1 and DMG2 scenarios. For DMG3, the time series from RCV scenario was adopted as the 

reference dataset because the modal characteristics of the bridge might be changed after 

repairing the damaged member. BFs are calculated for each of the time series. In this study, the 

leave-one-out cross validation (CV) technique (Bishop, 2006) is applied to assess the validity of 

the BF; for the INT and RCV scenarios, the CV samples are evaluated using each of the time 

series as a test dataset and the remaining nine time-series under the same scenario as a reference 

dataset.  was adopted as a test statistic, and a pre-defined threshold for the hypothesis 

testing is fixed to , where the model evidences for the null and the alternative 

hypotheses are equivalent.  
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From a pair of the reference and test datasets, mBFs are obtainable as each of the 

measurement points provides its regressive model. Assuming each of the BFs is independent, the 

product of those BFs represents the BF for the whole observation (hereafter, global BF). In 

Figure 2 the global BFs for P =20 and P =150 are shown, which shows higher P resulted in more 

sensitive outlier analysis. Figure 2 also shows that all of the damage scenarios resulted in higher 

BFs than the threshold such as higher than , which represents ‘very strong’ evidence 

against the null hypothesis. Apparently, Figure 2 also indicates severity of damage of the 

member. Figure 3 that describes the BFs for each of the measurement points (called local BF) for 

P = 150 suggests possibility of damage localization for DMG2 and DMG3 scenario, since the A3 

and A4 sensors provide much higher local BFs compared to the others. 

 

5 Conclusions 

This study proposes a Bayesian hypothesis testing to detect subtle changes in modal properties 

caused by damage. A time series of actually observed accelerations of a bridge provides a 

likelihood function of the VAR model. The BF is formulated to detect anomalies in the extracted 

features. Bayesian hypothesis test for the BF is conducted. To investigate feasibility of the 

proposed approach for damage detection, this study examined a field experiment data on an 

actual steel truss bridge whose truss members were artificially severed. The VAR order is 

statistically determined using the Schwarz criterion.  

The proposed method detected three different damage levels successfully. The global BF 

utilizing whole observations possibly indicates severity of damage. For the damage scenarios, 

where the truss members were totally cut, the measurement points close to the damaged 

members provide much higher local BFs than the others do. It even suggests possibility of 

damage localization for severely damaged members. 
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