
Proc. of the 6th Intl. Symposium on Reliability Engineering and Risk Management (6ISRERM)
31 May – 1 June 2018, Singapore
Editor(s) Xudong Qian, Sze Dai Pang, Ghim Ping Raymond Ong, Kok-Kwang Phoon

Copyright c© 2018 Author(s). All rights reserved.

ASSESSING SITE INVESTIGATION PROGRAM FOR 

SERVICEABILITY DESIGN OF SHALLOW 

FOUNDATIONS ON SPATIALLY VARIABLE SOIL 

J. Z. Hu1, J. Zhang2
 and L. Wang3 

1Department of Geotechnical Engineering, Tongji University, 1239 Siping Road, Shanghai, 

China.  

E-mail: tjcce_hujz@foxmail.com 
2Department of Geotechnical Engineering, Tongji University, 1239 Siping Road, Shanghai, 

China. 

E-mail: cezhangjie@gmail.com 
3Department of Civil Engineering, University of the District of Columbia, 4200 Connecticut 

Avenue NW, Washington, DC. 

E-mail: lei.wang@udc.edu 

The reliability of a shallow foundation may be tremendously dependent on the spatial variability 

of the underlying soil. The spatial variability can be modelled as random field. Site investigation 

can be done to obtain information to calibrate the random field model. The final influence of site 

investigation on shallow foundation design is seldom studied, which is focused in this paper. A 

reliability-based design method considering spatial variability is adopted. The effectiveness of a 

site investigation program is assessed through a series of Monte Carlo simulation. The effects of 

uncertainty of site investigation and random field parameters are studied. For the examples 

studied in this paper, there exists an optimal sampling spacing when the number of samples is 

constant.  It is found that, for different numbers of samples, the optimal sampling spacing is of 

little difference. The optimal sampling spacing is slightly smaller than half of the mean of 

distribution of scale of fluctuation. 
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1 Introduction 

Excessive or differential settlement may cause deformation and cracks of the super structures. 

When evaluating the serviceability of shallow foundations, settlement is often calculated as the 

summation of the compression of each stratum.  Due to the randomness in the natural deposit 

histories, soil properties are inherently spatially variable even within the same stratum (e.g., 

Phoon and Kulhawy 1999).  To characterize the spatial variability of soil properties, the random 

field model has been used by a number of researchers (e.g., Huang et al. 2010; Li et al. 2015; Hu 

et al. 2017).  The performance of shallow foundations may be tremendously affected by the 

spatial variability of the underlying soil (e.g., Kasama et al. 2012).  In the reliability-based 

design of shallow foundation, the spatial variability may be taken into consideration (e.g., 

Cherubini 2000). 

In geotechnical engineering, the random field model should be calibrated.  The fundamental 

parameters of a stationary random field model are mean, standard deviation and scale of 

fluctuation (SOF) (Vanmarcke 1983).  The calibration of random field model calls for statistical 

131



132 6th International Symposium on Reliability Engineering and Risk Management (6ISRERM)

 
inference based the observed data from site investigation.  The site investigation program may 

affect the accuracy of estimating random field calibration and hence the shallow foundation 

design.  It is essential to find an appropriate program that improve the shallow foundation design 

as much as possible. 

Studies of assessing site investigation program for statistical characterization of 

geotechnical uncertain property have been done by several researchers for waste-management 

facilities (e.g., Freeze et al. 1992), estimating tunneling-induced ground settlement (e.g., Gong et 

al. 2014) and so forth.  However, the influence of site investigation program on the serviceability 

design of shallow foundations has not been studied.  The goal of this paper is to assess the site 

investigation program that provides data for design of shallow foundations on spatially variable 

soil.  This paper is organized as follows.  First, an example is imported as a model of design of 

shallow foundations on spatially variable soil.  The random field model is used to describe the 

spatial variability.  Then, the effectiveness of site investigation programs is evaluated based on 

the result from the Monte Carlo simulation.  Finally, the optimal site investigation is discussed. 

 

2 Shallow Foundation on Spatially Variable Soil 

Shown in Fig. 1(a), consider the shallow foundation model referring to Fenton et al. (1996).  The 

foundation is founded on a soil layer that is ten meters thick.  It will support a load P = 

1000kN/m from the super structure.  The underlying soil is assumed to be elastic.  The Poisson 

ratio ν is 0.25.  The reliability index target is β = 2.0.  The allowable settlement slim is 0.08 m.  

The width of the shallow foundation, denoted as B, is evaluated based on reliability design. 
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Figure 1.   Shallow foundation on spatially variable soil 

 

2.1 Modelling of spatial variability 

A stationary random field is adopted to model the spatial variability of the elastic modulus.  The 

elastic modulus E is modelled as lognormal random field.  The mean and standard deviation of 

elastic modulus E are denoted as μE and σE, respectively.  The correlation structure of a 

stationary random field is often described autocorrelation coefficient function (ACF).  The 

isotropic exponential ACF is adopted (e.g., Fenton et al. 1996; Gong et al. 2014): 

                    ( ) exp( 2 / )r t t d= -                      (1) 

where τ is the distance between the two points, δ is the SOF, and ρ is the correlation coefficient 

between the soil properties of two points, also named autocorrelation coefficient.  The 

correlation coefficient between lnE is assumed to follow the ACF as Eq.(1).  As an example, 

Fig. 1(b) illustrates the spatial variability of elastic modulus E along the vertical direction from a 

lognormal random field where μE = 35.0MPa, σE = 10.0MPa and δ = 2.0m. 
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2.2 Modelling of site investigation 

For simplicity, the samples are assumed to be uniformly taken at a nearby location and the 

site investigation program can be characterized by the number of samples N and sampling 

spacing d, as shown in Fig. 1(b).  Based on the observed data from site investigation, the 

maximum likelihood method can be used to obtain the predicted parameters: mean μEp, standard 

deviation σEp and SOF δp of elastic modulus and calibrate the random field model (Fenton 1999; 

Juang et al. 2015). 

 

2.3 Serviceability design 

For the shallow foundation in Fig.1, the empirical method proposed by Fenton et al. (1996) can 

be adopted as the design equations.  This method is based on random elastic finite element 

analysis.  In this method, the settlement are assumed to be lognormally distributed.  The 

statistical property of settlement can be estimated by the empirical formula: 

                    ( ) 2

ln det 2 lnlns ssm a s= +                      (2) 

where s is the settlement of shallow foundation; sdet is the settlement computed from 

deterministic analysis where the soil is homogenous with E ≡ μE, which can be approximated via 

an empirical formula; μlns and σlns are the mean and standard deviation of the logarithm of s, 

respectively; α2 is an empirical coefficient.  σlns can be computed by: 

                     ( )ln ln, ;s EB Hs g d s=                    (3) 

where γ(·) is the variance reduction function; B and H are the width of the foundation and 

thickness of the soil layer, respectively; δ is the aforementioned SOF in Eq. (1).  The 

computation of sdet, α2 and γ(·) refers to Eq.(7), Eq.(8), Eq.(10) and Eq.(11) in Fenton et al. 

(1996).  Given a shallow foundation width B, the distribution of settlement can be estimated 

based on the above empirical method.  Then, the reliability index can be computed.  Otherwise, 

the shallow foundation width B can be obtained with a given reliability index or probability that 

the settlement exceeds the allowable settlement.  Hence, the reliability-based design can be 

carried out. 

 

3 Measurement of Effectiveness of Site Investigation 

The site information can be characterized with μE, σE and δ. For given μE, σE and δ, an actual 

demand value of shallow foundation width Bd can be computed via the above method. 

Otherwise, the designed shallow foundation width Bp can be computed based on μEp, σEp and δp.  

The difference between the design and the actual demand may be used to assess the 

effectiveness of site investigation:  

                    
p dB B BD = -                          (4) 

It can be seen that ΔB > 0 indicates overdesign while ΔB < 0 indicates unsatisfied reliability 

index. 

For ease of illustration, an example is presented here.  Assume the random field parameters 

are μE =35.0MPa, σE = 15.0MPa and δ = 2.0m, respectively, the actual demand value of shallow 
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foundation width is calculated Bd = 1.20m.  Then, with a given program that N = 30 and d = 

0.2m, the observed data can be generated artificially from the random field to simulate the site 

investigation, as shown in Fig. 1(b).  Afterwards, using data obtained from site investigation μEp, 

σEp and δp can be estimated: μEp =34.8MPa, σE = 12.8MPa and δ = 1.8m.  The designed shallow 

foundation width Bp = 1.18m can be computed with μEp, σEp and δp.  Finally, we can get ΔB = -

0.02m. 

For the observed data from site investigation is uncertain, μEp, σEp, and δp are all random 

variables.  Hence, the design width is also uncertain.  Through Monte Carlo simulation, the 

samples of Bp and ΔB can be obtained and the distribution of ΔB can be estimated. Fig. 2 shows 

the histogram of ΔB when N = 30 and d = 0.2m.  In Fig. 2(a), the random field parameters are 

known: μE = 35.0MPa, σE = 15.0MPa and δ = 2.0m.  
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Figure 2.   Histogram of ΔB: (a) the random field parameters is known; (b) the random field 

parameters is unknown 

 

In the above case it is assumed that the random field parameters μE, σE and δ is known.  

However, they are usually unknown.  To consider the uncertainty of μE, σE and δ, they can be 

modelled as random.  The distribution of these random variables represents the experience from 

similar engineering project or database.  In this paper, μE, σE and δ are assumed to be uniformly 

distributed.  They are statistically independent, which is modelled as μE ~U(30.0,40.0)MPa, σE 

~U(10.0,20.0)MPa and δ ~U(1.0,3.0)m, respectively.  

The actual demand value of shallow foundation width Bd also becomes a random variable.  

By generating μE, σE and δ sampled from these distributions and repeating the calculation 

mentioned above, the distribution of Bd and conditional distribution of Bp can be estimated.  

After that, the marginal distribution of ΔB can be obtained based on total probability theory.  

Fig. 2(b) shows the histogram of ΔB when the random field parameters are unknown. It can be 

seen that the distribution is single-peak and more symmetric, which is quite different from Fig. 

2(a). As it is preferred that ΔB is closer to zero, the root-mean-square error (RMSE) of ΔB may 

be employed as a criterion to assess site investigation program. 

                 ( )( )2
RMSE 0iE B= D -                     (5) 

 

4 Results and Discussions 

4.1 Effects of uncertainty of site investigation 

First, the random field parameters are assumed to be known: μE = 35.0MPa, σE = 15.0MPa and δ 

= 2.0m, i.e. the uncertainty of random field parameters is eliminated and the uncertainty of site 

investigation is mainly focused. 

(a) (b) 
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The RMSE as a function of sampling spacing is illustrated in Fig. 3(a).  As expected, when 

N is larger, the RMSE is generally smaller.  When N = 10, the RMSE value is minimized when d 

= 0.75m.  When N is larger, the optimal point is similar.  If N is the same, too large or too small 

sampling spacing is not the best choice.  According to Eq. (1), if the sampling spacing is too 

large, the correlation may be too weak to extract appropriate information to calibrate the random 

field.  Otherwise, too small sampling spacing may lead to insufficient domain of site 

investigation.  The optimal sampling spacing seems not sensitive to the number of samples.   

The RMSE of different pre-known SOF δ values is shown in Fig. 3(b).  The marker of each 

optimal point is filled with solid color.  It can be seen that the optimal sampling spacing varies 

with different pre-known SOF.  The effectiveness of site investigation may be highly dependent 

on the SOF.  For instance, if a program with N = 50 and d = 0.4m is decided, this program is the 

best one when δ = 1m, where RMSE = 0.36 m.  However it will lead to RMSE = 0.59 m when δ 

= 3m.  Hence, the uncertainty of random field parameters should not be neglected. 
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Figure 3.  RMSE of ΔB: (a) δ = 2m; (b) N = 50 

 

4.2 Effects of uncertainty of random field parameters 

Then the joint distribution of μE, σE and δ is imported to model the uncertainty of random field 

parameters. The RMSE as a function of sampling spacing is illustrated in Fig. 4(a).  From N = 

10 to 50, the shape of each curve is similar.  The RMSE is generally larger than the result in 4.1.  

There is one optimal point that minimize RMSE between d = 0.75 and d = 1m, similar to the 

result in 4.1. 
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Figure 4.  RMSE of ΔB: (a) δ ~U(1, 3)m; (b) δ ~U(δ1, δ2)m, N = 50 

 

As is discussed above, the optimal point is related to the value of SOF.  Here the 

distribution of SOF is assumed to be δ ~U(δ1 = 1m, δ2).  As is shown in Fig. 4(b), N is 50 

(b) 

(a) (b) 

(a) 
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constantly and the horizontal axis is scaled with normalized spacing dnorm=d/δm (where δm = (δ1+ 

δ2)/2 is the mean of prior SOF distribution).  It can be found that the optimal points of different 

δ2 stand quite close.  The minimum value of RMSE appears while the normalized spacing is 

equal to or slightly smaller than 0.5, i.e. the half of the mean of distribution of δ. 

 

5 Concluding Remarks 

This paper assesses the site investigation program for shallow foundations on spatially variable 

soil via Monte Carlo simulation.  For the examples studied in this paper, there exists an optimal 

sampling spacing when the number of samples is constant.  The optimal sampling spacing is not 

sensitive to the number of samples.  It is generally slightly smaller than half of the mean value of 

the distribution that models the uncertainty of scale of fluctuation. 
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