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The recently introduced survival signature extends the concept of system signatures to multi-

component systems - hereby providing a computationally efficient framework for analyzing the 

reliability of complex systems.  However, for large systems the computation cost required is still 

large due to combinatoric effects, faster algorithms may depend on heuristic methods to prepare 

the network data, and Monte Carlo methods are required to be applied carefully due to the 

complex structure inherent to such systems.  The application of recursive decomposition 

algorithms, inspired by the reliability assessment of lifeline networks, is proposed in this paper 

for the approximation of the survival signature.  These algorithms not only provide a fast way to 

compute the 2-terminal reliability of a network, but also can be adjusted to provide proper 

upper and lower bounds for the entries in the survival signature. 
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1 Introduction 

To assess the reliability of coherent systems of different types of components with independent 

and identically distributed failure times, the system survival signature has been presented as a 

powerful extension of the Samaniego signature.  Usage of the survival signature allows analysis 

of systems with multiple types of components instead of only one in an intuitive way.  The 

survival signature is used to decompose the survival function of the system into two functions: 

The survival signature carries solely information about the system's structure and is combined 

with terms containing information about the reliability of the individual component types. 

Thus, for large systems, it can prove quite convienient to compute the survival signature 

beforehand as it does not change as long as the system's topology is untouched.  This way the 

analysis of complex networks can be executed in computationally efficient ways.  Additionally, 

this concept allows for dynamic testing of how different component reliabilities have on a 

system.  Expanding the concept of the survival signature has already been done, e.g. for the 

implementation of replacement components in a system. 
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However, the computation of said survival signature is easier than the application of the 

Samaniego signature to multiple components (if that is possible at all), but is challenging still.  

To compute the survival signature exactly, all possible configurations of the system need to be 

evaluated.  Despite the help of simplification techniques the combinatorical aspects of this 

problem tend to enlarge the computational effort.  Additionally, every type of components 

multiplies the size of the survival signature by adding a dimension to the problem's size, 

invoking the 'curse of dimensionality'.  In the case of the analysis using reliability block 

diagrams (RBD), the testing for working configurations boils down to the search of the 2-

terminal reliabity, which is NP-hard (Ball, 1980). 

The computational and combinatorical hurdles in the computation process are subject to 

current research and various algorithms and techniques were recently presented to obtain the 

survival signature.  In reference to Da et al. (2012), Coolen et al. (2014) introduce the seperation 

of the system into subsystems, hereby reducing computation cost for the overall system.  It is 

necessary to decompose the system in an efficient way to accomplish improvement in 

computation efficiency.  It is also highlighted that not all elements of the survival signature may 

be necessary, depending on the information needed and the goal of the individual analysis.  Reed 

(2017) presented a very fast algorithm to compute signatures that is based on ordered binary 

decision diagrams (OBDD).  However, this approach is dependent on the existence of a OBDD 

representation of the system.  This kind of data is not always available and may be obtained by 

heuristic methods and the approach may not be universally efficient. 

The application of Monte Carlo methods cancels out the combinatorical computation by 

replacing it with sampling measurements.  These can be improved up to a certain degree and 

offer further efficiency as the system's dimensions (i.e. component types) are coupled in 

reference to the system being functional or not.  Nonetheless this does not solve the problem of 

the survival signature's size growing very fast with every component type added. 

In this paper, two novel approaches to the survival signature are presented.  The first allows 

the segmentation of the survival signature in regimes of high or low reliability entries using 

percolation theory.  This can open up possibilities for dynamic simulation techniques, space 

fitting schemes or other methods relying on segmented partitions of a variable space.  The 

second approach uses recursive decomposition algorithms to calculate the survival signature of 

reliability block diagrams from the 2-terminal reliability between signal source and sink.  The 

algorithms presented by Wei Liu et al. (2009, 2012) not only provide efficient ways to 

accomplish these calculations, they can also be used to restrict computation time by introducing 

an error bound.  As imprecise probabilities have already been introduced to the methodology of 

the survival signature, this approach offers possibilities for future research on the subject. 

 

2   Methods 

The state of a system consisting of a total of m components can be represented by the state 

vector {0,1}mxÎ  with 0ix = denoting a dysfunctional and 1ix =  a functional component i.  

The global structure function :{0,1} {0,1}mf ®  yields information whether the system is in a 

working state ( 1f =  ) or not ( 0f =  ) for any possible x . 

Usually the systems are restricted to coherent systems.  This refers to systems with structure 

functions that are not decreasing in any dimension of x .  This is reasonable as most systems are 

not becoming dysfunctional while gaining more functional components.  Two additional 

assumptions are (0) 0f =  and (1) 1f = .  These are intuitive, yet not necessary.  However, in this 

paper the monotonicity of the system is assumed and thus these two conditions and the 

coherency of the system are assumed. 
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The components consist of K  different types, while each set of components of type 

{1,2, , }k KÎ ¼  consists of km  elements and the sum of all km  equals the number of 

components
k k mm =å .  The amount of components of type k  functional in the system are 

denoted as kl .  This leads to ( , )k kC m l  combinations of component type k  under the 

assumption of independent failure of all components.  Then the set )(S l  is the collection of all 

state vectors x  that fullfill the condition that 1 2( , , , )kl l l l= ¼  components are working. 

The system's survival signature 1 2( , , , )kl l lF ¼  is now defined as the probability that the 

system functions if exactly kl  components of type k  are functional.  The survival signature is 

an array of K  dimensions with 1km +  entries in each dimension (including the case that none of 

the components of that type function).  For components with exchangeable random failure times 

the survival signature is given by 
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The survival signature can be applied to the computation of the survival function 

( ) ( )SS t P T t= >  of the system.  It yields the probability that a random failure time ST  of the 

system follows a specific point in time t .  Under the assumption of component type failure 

times independently and identically distributed (iid) with respect to a known CDF ( )kF t , the 

survival function of the system observed is found to be 
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Eq.  (2.1) and (2.2) clearly show that - for exact computation - many different states need to be 

evaluated and that the size of the survival signature itself is growing multilinearly. 

 

2.1    Partitioning the survival signature 

A common way to show how the functionality of a system depends on the component 

configuration is the reliability block diagram (RBD).  A RBD displays a working state if a 

signal path exists from a specified source block to a target (or sink) block.  Between these two 

blocks all components of the system are integrated in a block diagram.  These RBD can be 

interpreted as networks known from graph theory, with the components acting as nodes (or 

vertices) and the connections as the representive edges (also known as arches or links).   

 

 

 

 

 

 

 
 

Figure 1.  Critical threshold of a percolation process (left); partitioning of a survival signature into 

regimes using the critical percolation threshold (middle); partition of the Berlin Metro network, 78% of the 

probability mass is confined to 23% of the survival signature (right). 
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Percolation theory is describing the characteristics and behaviour of giant connected clusters 

in graphs.  Common objects of interest are the critical fraction cf  and the probability P
¥

 that a 

giant connected cluster exists.  Most networks tend to retain a giant connected cluster under 

random removal of a fraction of nodes.  However, once the fraction taken away exceeds a 

critical value, the giant connected cluster desintegrates into several smaller components (see 

figure 1). 

Usually the existence of a giant connected cluster is not of relevance for a RBD.  However, 

the existence of a giant connected cluster indicates a high probability for the existence of a path 

from one side of the network to the other.  Thus a connection from source to sink in the RBD is 

very likely to occur if less than the critical amount of components is taken as dysfunctional.  

Further inference from the percolation behaviour of a network is difficult, as the computation for 

percolation is highly influenced by the topology of the network.  This is true for analytical 

solutions as well as for computational results.  Nonetheless the critical fraction can easily be 

derived for any arbitrary network. 

The condition for a giant connected cluster to occur is the Molloy-Reed criterion: Each node 

inside the connected component must, on average, connect to two other nodes.  Starting from the 

conditional probability that a node i  with degree ik  (degree meaning here the number of 

connections of the node to other nodes) is connected to another node that is inside the cluster, 

one can obtain the Molloy-Reed criterion 
 

 
2

2
k

k
k

< >
< =

< >
 (2.3) 

 

as necessary condition for the existence of a giant connected cluster (Cohen, 2000).  Comparing 

the degree distributions (and their corresponding moments k< >  and 2k< >  before and after 

the removal of a fraction of nodes and applying eq (2.3) yields a functional description of the 

critical fraction that only depends on k  (Cohen, 2000), 
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This critical fraction can now be applied to the survival signature: The critical value 

1 2( , , , )c c kl f l l l= × ¼  and the monotonicity of the system guarantee that the regions above these 

values are more or equally likely to function than not.  The overall effectiveness of the 

partitioning can be quantified using 1

AE P A-
= × , the ratio of the percentage amount of 

probability mass inside the segment AP and the relative size of the high probability segment A .  

As the entries of the signature serve as linear coefficients in eq. (2.2), this area is of high interest.  

A high value for E  corresponds to high probabilities in a small subsection of the survival 

signature. 

 

2.2    Two-node lifeline reliability 

The analysis of networks consisting of lifeline networks (e.g. gas pipe networks, electricity grids 

or water supply networks) is usually concerned with the robustness of such networks under 

various types of failures.  Liu and Li (2012) provided an efficient set of algorithms to calculate 

the two-node reliability (between a source and a sink) of lifeline networks recursively.  Two of 

these methods are PRDA and CRDA (path-based and cut-based recursive decomposition 

algorithm).  They can easily be applied to node reliability as well as to connection reliability.   
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Each component i  (in this work, only node reliability will be analysed to stay in coherence 

with the example systems found in Coolen et al. (2014)) is assigned a reliability ip  under 

sudden environmental changes.  Further assumptions are mutual independent reliabilities of the 

components and the simultaneous failure of the components.  If every node of component type k  

is assigned the reliability of 1

i l kp l m-
×=  , this provides an analogy to the uniform sampling of kl  

out of km  components over multiple iterations.   

After the assignment of component reliabilities, both algorithms make use of the survival 

function as boolean representation.  They decompose the network into disjoint minimal cuts 

(DMC) and disjoint minimal paths (DMP).  Starting with one single DMP ( iA ) (or DMC iC ), 

more instances of DMC (or DMP) can be found by merging nodes into the source, reducing the 

network with each computation step and thus simplifiying computations.  As the two-node 

reliability R  can be expressed as functions of the probabilities of the DMC and DMP, 
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each iteration of the algorithm provides an upper and lower bound of the reliability (Fratta and 

Montanari, 1973).  Thus, R  can be approximated by a cR R R< <  and 0.5 ( )a cR R R» +× .   

 

3   Results 

The critical fraction partitioning was tested for two large sample networks (Berlin Metro system, 

Moreno High-School network (Coleman, 1964)).  The Berlin Metro sample network consists of 

52 nodes with the source and sink choosen from the networks periphery.  All nodes were 

randomly assigned a component type for each run.  The high probability region yields on 

average 96 ± 8 % of all probability mass, whereas it is on average only 56 ± 5 % the size of the 

whole array.  For the Moreno High-School network (treated the same way), an average of 

87 ± 10 % of probability mass was found in 77 ± 7 % of the signature.  

The PRDA and CRDA yield the same results if all DMC and DMP are evaluated.  For large 

networks however, the computational times vary heavily if an accuracy interval of size c aR R-  

is desired.  This is due to low or high probabilities being approximated faster from different 

directions depending on the chosen algorithm.  In this study all DMC and DMP were evaluated.  

The three example systems presented in Coolen and Coolen-Maturi (2014) were used to 

compare the results by the lifeline algorithms with exact solutions for survival signatures (see 

table 1). 

Table 1.  Computation times for the lifeline algorithms 

 

Network name CRDA computation 

time (s) 

PRDA computation 

time (s) 

Average abs. error 

[%] 

Coolen Example 1 

( K   = 2) 

0.012 0.022 5.7 

Coolen Example 2 

( K   = 3) 

0.023 0.031 7.0 

Coolen Example 3 

( K   = 3) 

0.013 0.048 5.6 
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4   Discussion 

Partitioning of the survival signature not only shows that the probability mass is concentrated in 

a small subsection.  It shows that with higher dimensionality the size of this subset shrinks 

relative to the overall size.  This clarifies whether different methods should be applied to the 

individual sections of the signature array.  The computation of the critical fraction is highly 

efficient, as it only demands summation over the adjacency matrix to obtain node degrees. 

Usage of the two-node lifeline reliability offers possibilities to signature computation.  

However, for larger signatures it is still suffering from the ‘curse of dimensionality’, as the 

algorithms are to be applied to each entry of the signature. For medium-sized networks the two-

node reliability is a possible and novel approach that can be fine-tuned to the computational 

needs, as the algorithm for each signature entry can be stopped as soon a desired accuracy of 

c aR R-  is reached.   
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