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Due to the inherent spatial variability of the geotechnical properties and the limited number of 

site investigation data, the geotechnical parameters at a site are usually characterized as random 

fields. The stability of a slope will be scattered and uncertain in the face of the spatial variability 

of the geotechnical parameters. Thus, the stability of the slope has to be studied probabilistically; 

and, the influence of the spatial variability of the geotechnical parameters on the slope stability 

can be explicitly considered using random numerical analysis. In which, potential realizations of 

the random fields of the geotechnical parameters are generated with the Monte Carlo simulation 

(MCS); then, for each realization of the random fields, the stability of the slope can be evaluated 

deterministically with numerical solutions. However, the required number of realizations of the 

random fields, and thusly the number of deterministic evaluations of the slope stability, might be 

too large to be computationally efficient, especially for slopes of low failure probability. In such 

a situation, the recently developed subdomain sampling method (SSM), in lieu of the brute MCS, 

is employed in this paper for generating the realizations of the random fields. Further, the failure 

probability of the slope is estimated utilizing the total probability theorem. The effectiveness of 

this probabilistic slope stability analysis approach is illustrated through one illustrative example.  

Keywords: slope, spatial variability, failure probability, subdomain sampling method, random 

finite difference method. 

 

1 Introduction 

In that the geomaterials are natural materials, not artificial materials (e.g., concrete), the property 

of the geomaterials is dependent upon the natural deposit histories, which cannot be controlled 

by the engineer. However, due to the absence of the knowledge of the natural deposit histories, 

the geotechnical information at a site cannot be known prior to the site investigation; and, only a 

limited number of site investigation data can be acquired in a given project owing to the budget 

constraint. Thus, the geotechnical information can only be known at borehole locations; whereas, 

the geotechnical information at other positions cannot be known and has to be derived from that 

at borehole locations; and, the geotechnical parameters are oftentimes characterized as random 

variables or random fields (Phoon and Kulhawy 1999, Wang and Cao 2013, Gong et al. 2014, 

Tian et al. 2016). It is noted that the property of the geomaterials at various positions (at a site) is 

generally correlated to some extent in both horizontal and vertical directions, and this spatial 
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correlation tends to decrease with the lagged distance. This feature of the geotechnical properties 

can best be simulated with the random field theory (Fenton 1999, Jiang et al. 2014).  

With the random geotechnical parameters at the inputs, the stability of the slope will not be 

a fixed value; rather, it will be scattered and uncertain (Griffiths and Fenton 2004, Cho 2007). In 

the face of the uncertainty in the input parameters, the stability of the slope has to be studied in a 

probabilistic manner and the outcome of this probabilistic analysis will be a failure probability. 

Extensive studies have been undertaken on the probabilistic slope stability analysis, including 

probabilistic analysis of slope failure along a given slip surface (El-Ramly et al. 2002), searching 

for the most significant slip surface (Xue and Gavin 2007), system reliability analysis (Ching et 

al. 2009, Zhang et al. 2013), and probabilistic stability analysis with response surface methods 

(Li et al. 2015). Note that although these studies could be deemed meaningful and significant for 

the purposes of being practical applicable in real projects, the sampling-based probabilistic slope 

stability analysis, in terms of the random numerical analysis, is the most straightforward and 

which could yield an unbiased estimate of the failure probability, especially in situations where 

the inherent spatial variability of the geotechnical parameters must be considered (Griffiths and 

Fenton 2004, Xiao et al. 2016).  

In the context of the random numerical analysis of the slope stability, the spatial variability 

of the input geotechnical parameters is characterized using the random field theory, and potential 

realizations of the random fields of the geotechnical parameters are sampled with the sampling 

method of Monte Carlo simulation (MCS). Then, for each and every potential realization of the 

random fields, the stability of the slope is studied deterministically using the numerical methods. 

From there, the failure probability of this slope is readily derived, through a statistical analysis 

of the results obtained from the deterministic analysis. In that no additional assumption is made, 

the random numerical analysis yields an unbiased estimate of the failure probability (Pf). Though 

conceptually sound, the required number of realizations of the random fields, and thusly that of 

deterministic evaluations of the slope stability, might be too large to be computationally efficient, 

especially for the slope of low failure probability. Thus, this paper presents a probabilistic slope 

stability analysis approach. In which, the recently developed subdomain sampling method (SSM) 

(Gong et al. 2016 & 2017, Juang et al. 2017), in lieu of the brute MCS, is adopted for sampling 

the realizations of the random fields of the input geotechnical parameters. A significant feature 

of this adopted SSM is that the realizations of the random fields can be “equally” sampled in the 

domain of the random fields, instead of being concentrated in the region of high joint probability 

density. Thus, a larger number of realizations of the random fields could be located in the failure 

domain and the failure probability can be estimated with higher efficiency. The rest of this paper 

is organized as follows. First, the sampling method of SSM is reviewed. Second, the framework 

for the probabilistic slope stability analysis is introduced. Third, an illustrative example, in terms 

of a one-layer earth slope problem, is studied, through which the effectiveness of the presented 

probabilistic slope stability analysis approach is demonstrated. 

 

2 Subdomain Sampling Method (SSM) 

The essence of the subdomain sampling method (SSM) (Gong et al. 2016 & 2017, Juang et al. 

2017) is to partition the possible domain of uncertain variables into a set of subdomains and then 

to generate samples of uncertain variables in each and every subdomain separately. As a result, 

the samples of uncertain variables could be “equally” distributed in the domain of the uncertain 

variables, instead of being concentrated in the region of high joint probability density. Hence, a 

larger number of samples could be located in the failure domain and the failure probability could 

be estimated with higher accuracy and efficiency. In the context of the SSM, a distance index (d), 

which is utilized to partition the domain of the uncertain variables, is formulated based upon the 

Hasofer-Lind reliability index (Low and Tang 2007):  
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where R is the correlation matrix among the equivalent standard normal variables n = [n1, n2, ¼, 

xnn ]T, where nx is the number of uncertain variables x; and, the component ni in n is related to 

the uncertain variable xi in x as follows. 

[ ]1 ( )i in F x-= F                                                          (2) 

where F(xi) is the cumulative distribution function (CDF) of the uncertain variable xi, and F(×) is 

the CDF of the standard normal variable. Note that d2 is distributed as a chi-square distribution 

with nx degrees of freedom (Gong et al. 2016 & 2017). With the distance index formulated in Eq. 

(1), the possible domain of the uncertain variables, denoted as [0, dmax), can be identified. 

2 2

max( )
xn dc e=                                                          (3) 

where 2 ( )
xnc ×  is the chi-square CDF with nx degrees of freedom, and e is a probability value that 

is relatively small (e.g., e = 1.0´10-6 is taken in this paper). The probability of the uncertain 

variables x being located in and outside this domain [0, dmax) are (1 - e) and e, respectively.  

                    
(a) Subdomain partition in standard normal space        (b) Soil samples generated by SSM and MCS 

Figure 1. Conceptual illustration of the subdomain sampling method (SSM) 

 

This possible domain of uncertain variables x, in terms of [0, dmax), is readily partitioned 

into a set of subdomains with the distance index d, such as [d0, d1), [d1, d2), [d2, d3), etc. For the 

purpose of being computationally efficient, the likelihoods of the uncertain variables x being 

located in the subdomains, denoted as (pd1, pd2, pd3, …), can be taken as a decreasing sequence. 

[ ] [ ] [ ]T 1 2 2 2 2 2 2 2
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where pdi is the likelihood of the uncertain variables being located in the ith subdomain [di-1, di). 

Next, the samples of uncertain variables could be generated in the subdomains with the sampling 

algorithm advanced in Gong et al. (2016); and, to include the cross correlation between different 

geotechnical parameters, the procedures outlined in Fenton and Griffiths (2003) are employed to 

update the geotechnical parameters generated by the SSM. For simplicity, same target number of 

samples, denoted as t1, is adopted in all these subdomains and this target number is taken as: t1 = 

10 pdi / pd(i-1). A parametric study indicates that the parameters setting of pd1 = 1/3, pd2 = 1/32, pd3 

= 1/33, … yields the minimum total number of samples. Figure 1(a) depicts the partitioned 

subdomains in the standard normal space. Figure 1(b) depicts a comparison between the soil 
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samples generated by the SSM and those by the MCS, in which the number of the soil samples 

is taken as 390. Here, the samples generated by the SSM are “equally” distributed in the possible 

domain while those by the MCS are concentrated in the region of high joint probability density. 

In that the sample domain is not partitioned into equally probable subdomains and the samples 

in each subdomain are sampled with the new sampling algorithm advanced in Gong et al. (2016), 

the SSM presented in this paper is different from the existing Latin hypercube sampling method.  

With the generated samples of uncertain variables, the deterministic analysis of the system 

performance is readily conducted. Then, the conditional failure probability in the subdomain [di-1, 

di), denoted as pfi, could be derived by counting the number of failure samples (tfi). 

1

f i

fi

t
p

t
=                                                          (5) 

In that the contribution of the ith subdomain [di-1, di) to the failure probability estimate Pf is only 

(pdi ×pfi), the failure probability estimate Pf of the studied system can be approximated using the 

total probability theorem. 
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where ns is the number of subdomains.  

         
(a) Cohesion of the soil                                             (b) Friction angle of the soil 

Figure 2. One realization of the random fields of the soil parameters in slope stability analysis 

 

3 Framework for Probabilistic Slope Stability Analysis 

In the numerical modelling of a slope, the geometrical domain of the slope is discretized into a 

set of smaller elements, thus different geotechnical parameters can be easily assigned to different 

elements. That is to say, the spatial variability of the geotechnical parameters might be directly 

simulated using the numerical modelling. To consider the spatial variability of the geotechnical 

parameters in the slope stability analysis, the random numerical analysis (Griffiths and Fenton 

2004, Jiang et al. 2014, Xiao et al. 2016) could be applied.  

In the probabilistic slope stability analysis approach presented in this paper, the framework 

of the existing random numerical analysis (Griffiths and Fenton 2004, Jiang et al. 2014, Xiao et 

al. 2016) will be followed; however, potential realizations of the random fields are sampled with 

the SSM, not the MCS. Further, the failure probability of the slope is estimated utilizing the total 

probability theorem (see Eq. 6). The 2-D explicit finite difference program FLAC version 7.0 

(2011) is adopted as the deterministic solution model for evaluating the stability of the slope (in 

terms of the factor of safety, FS), in which the strength reduction method is utilized. It is noted 

that the geotechnical parameters within a given element, in the FLAC analysis, are captured by 

fixed parameters and no variation can be allowed. For example, Figure 2 depicts one realization 

of the random fields of the soil parameters in the slope stability analysis. Thus, the geotechnical 
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parameters that are averaged over the element domain, rather than those at mesh grids, should be 

sampled (in the generation of the realizations of the random fields) and taken as the inputs to the 

deterministic numerical analysis. The statistics of the geotechnical parameters that are averaged 

over each element domain and the correlation coefficients between the averaged parameters may 

be derived with the equations in Xiao et al. (2016) and Gong et al. (2018), the derived statistics 

are then adopted in the generation of the input geotechnical parameters for the FLAC analysis.  

 

4 Illustrative Example 

A one-layer earth slope underlain by a rock layer, shown in Figure 3, is adopted as an illustrative 

example to demonstrate the presented probabilistic slope stability analysis approach. The width 

and height of the slope are 20.0 m and 14.0 m, respectively, and the depth of the underlying rock 

layer is taken as an infinitely large value. The surcharge on the top of the slope is not considered 

and the groundwater level is assumed to be far below the slope. The soil parameters are given in 

Figure 3. Here, the strength parameters of the cohesion and friction angle are treated as uncertain 

parameters, and the autocorrelation structure of the spatially varied soil strength is simulated by 

an anisotropic exponential model (Cho 2007, Xiao et al. 2016).  

 
Figure 3. Schematic diagram of the illustrative example and essential soil parameters 

     
(a) SSM (total number of samples = 390)             (b) MCS (total number of samples = 1,000) 

Figure 4. Obtained distributions of the FS of the example slope 

 

With the aforementioned probabilistic slope stability analysis approach, the stability of this 

example slope is readily studied. The parameters setting of the adopted SSM is set up as: 1) pd1 = 

1/3, pd2 = 1/32, pd3 = 1/33, … and the target number of samples in the subdomain is t1 = 30; and 2) 

the number of subdomains is ns = 13 and e = 1.0´10-6. In short, a total of 390 realizations of the 

random fields of soil strength parameters will be generated and studied. Plotted in Figure 4(a) is 

the distribution of the FS of this example slope obtained with the SSM, and plotted in Figure 4(b) 

is that obtained with the MCS in which the number of realizations of the random fields is 1,000. 
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In Figure 4(a), FS ranges from 0.97 to 1.16 and the ratio of the number of failure samples (i.e., 

FS < 1.0) over the total number of samples is 0.054. In Figure 4(b), FS also ranges from 0.97 to 

1.16 while the ratio of the number of failure samples over the total number of samples is 0.039. 

The plots in Figure 4 can be interpreted with the following fact. The samples generated by the 

SSM are “uniformly” distributed in the identified possible domain; whereas, those generated by 

the MCS are drawn directly from the joint probability density function (PDF), thus most samples 

are located in the region of high density values. It is known that a higher ratio of the number of 

failure samples over the total number of samples signals a lower COV of the failure probability 

estimate and thusly higher efficiency in estimating the failure probability. As such, the SSM can 

be more computationally efficient than the MCS. Here, the failure probability of this example 

slope estimated by the SSM and the MCS are 0.070 and 0.039, respectively. The comparison of 

the failure probability estimate demonstrated that the accuracy of the SSM and the effectiveness 

of the presented probabilistic slope stability analysis approach.  

In a typical geotechnical practice, site-specific data is oftentimes quite limited due to budget 

constraints for site investigation; as such, it could be difficult to derive the statistical information 

of the intended geotechnical property with certainty. However, the failure probability obtained 

by the probabilistic analysis could be strongly affected by the input statistical information (Juang 

et al. 2013). Thus, the influence of the COVs of the soil strength parameters is further studied 

and the results are depicted in Figure 5. As expected, the performance of the slope degrades, as 

indicated by the increase of the failure probability (Pf), with the increase of the COVs of the soil 

strength parameters. That is to say, the significance of the statistical characterization of the input 

soil parameters on the probabilistic analysis is depicted.  

 
Figure 5. Influences of the COVs of soil strength parameters on the failure probability of the slope 

 

5 Concluding Remarks 

This paper presented a probabilistic slope stability analysis approach. Different from the current 

random numerical analysis methods, the recently developed subdomain sampling method (SSM), 

in lieu of the Monte Carlo simulation (MCS), was utilized for sampling the realizations of the 

random fields (of the geotechnical parameters), and then the failure probability was estimated 

with the total probability theorem. The effectiveness of the presented probabilistic slope stability 

analysis approach was demonstrated through a one-layer earth slope problem. The SSM and the 

MCS yielded a consistent failure probability estimate; however, less realizations of the random 

fields, and thusly the number of deterministic evaluations of slope stability, were needed with 

the SSM. Further, the parametric study indicated that the probabilistic analysis results (i.e., the 

failure probability) could be strongly influenced by the statistical characterization of the input 

geotechnical parameters; thus, the significance of the statistical characterization of the input soil 

parameters on the probabilistic analysis is demonstrated.  
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