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Evaluation of consolidation characteristics of cohesive soils has been a critical issue for 

settlement-related issues in geotechnical engineering. This study presents an investigation on the 

multivariate correlations among the consolidation and CPTU parameters for the Jiangsu soft 

clays using the method of multivariate distribution model. A database containing two 

consolidation parameters (ch and kh) and four CPTU indices (Ic, Bq, Δu2/σ'v0, t50) was compiled 

and portioned into a calibration dataset and a validation dataset. The analyses of the calibration 

data showed that all these four CPTU indices could be useful to predict ch and kh. A comparison 

between the correlations developed for the Jiangsu soft clays and the validation data, data points 

and existing correlations collected from the literature demonstrated the rationality of the 

multivariate distribution model. Moreover, the accuracy of the multivariate correlations can be 

significantly improved by incorporating the four complete CPTU indices with increasing the 

unbiasedness and precision of the predicted ch and kh values. 
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1 Introduction 

The consolidation characteristics are main considerations in geotechnical settlement-related 

designs in clayey soils. The piezocone penetration test (CPTU) has been shown a powerful tool 

to access these properties and its accuracy has been acknowledged in the literature (Teh and 

Houlsby 1991, Robertson et al. 1992, Lunne et al. 1997). In most studies, only one CPTU 

parameter such as the time for 50% dissipation (t50) is utilized to predict the consolidation 

parameters. However, it has been demonstrated that more than one CPTU index can be related to 

this behavior. For example, the CPTU soil behavior type index, Ic, is shown to be an effective 

indictor of the soil type and fines content, and it hence has been correlated to the hydraulic 

conductivity (Robertson 2010). The CPTU pore pressure parameter ratio (Bq) and normalized 

excess pore water pressure (Δu2/σ'v0) are also related to the consolidation properties based on 

theoretical solutions and experience (Schneider et al. 2008, Chai et al. 2011). Notwithstanding 

the presence of the multi-dependency of these soil parameters, the prediction of the 

consolidation properties using multiple CPTU indices has been insufficiently studied. 

The multivariate distribution model has been shown an effective tool to capture the 

multivariate dependency among different soil parameters (Liu et al. 2016; Ching et al. 2017). In 

this study, this method is used to develop the multivariate correlations among the consolidation 

and CPTU parameters for the Jiangsu soft clay. The involved consolidation parameters include 
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the horizontal coefficient of consolidation (ch) and horizontal hydraulic conductivity (kh). The 

CPTU parameters include Ic, Bq, Δu2/σ'v0, and t50. To achieve this objective, a database 

containing these six soil parameters is presented. Based on this database, bivariate and 

multivariate correlations for ch and kh are derived and validated. The model errors, defined as the 

ratios of measurements over predictions, of the multivariate correlations for the Jiangsu soft 

clays are also discussed. 

 

2 Consolidation and CPTU Data of Jiangsu Soft Clay 

More than 200 CPTU soundings have been performed in the Jiangsu soft clays. The detailed 

schematic of the equipment and representative CPTU profiles are available in the literature (e.g., 

Cai et al. 2010). Only the horizontal consolidation characteristics are considered as they 

primarily dominate the behavior of the CPTU indices. Three principal methods for obtaining ch 

and kh are used, including: (a) back analyses of field settlement data; (b) laboratory horizontal 

permeability tests; and (c) laboratory oedometer tests. In the first method, only the settlement 

observations of soils with vertical wick drains are analyzed to ensure that the drainage paths 

mainly occur in the horizontal direction. The second method only provides kh data. In this case, 

ch is estimated using ch = khEs/γw, where Es and γw are the constrained modulus and unit weight 

of water, respectively. The Es is firstly determined from the laboratory tests. When laboratory 

data are not available, it is then evaluated using Es = 3.53qt, as suggested by Cai et al. (2010) for 

Jiangsu clays. The third method provides the vertical coefficient of consolidation (cv) and 

vertical hydraulic conductivity (kv). Then ch = cv·kh/kv and kh are estimated with a given ratio of 

kh/kv. This ratio is also firstly determined from laboratory tests, and when laboratory data are 

absent it is chosen to be kh/kv = 2, which is approximately the mean kh/kv value for the Jiangsu 

clays. This ratio of kh/kv = 2 corresponds to no evidence of layering to slightly layering for clays 

according to Robertson et al. (1992). 

Using the above methods, 156 sets of {Ic, Bq, Δu2/σ'v0, t50, ch, kh} data are compiled. These 

data are portioned into two datasets, one calibration dataset for constructing the multivariate 

distribution model and developing the correlations for ch and kh and one validation dataset for 

validating the model and correlations. The validation dataset are formed by extracting one to 

four sets of {Ic, Bq, Δu2/σ'v0, t50, ch, kh} data from each site. Some extreme values which are 

considered nonrepresentative of the soft clays have been discarded. The sample sizes of the 

calibration and validation datasets are 124 and 32, respectively. Fig. 1 illustrates the locations of 

the two datasets on the Robertson (1990) and Schneider et al. (2008) soil classification charts. 

All the data are identified to be clayey soils according to these two charts. Besides, the 

calibration and validation data show similar range and trend. Therefore, they are considered 

representative for the Jiangsu soft clays. 
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Figure 1. Compiled datasets on the Robertson (1990) and Schneider et al. (2008) charts 
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3 Construction of Multivariate Distribution Model for Jiangsu Soft Clay 

The construction of the multivariate distribution model involves a data transformation to 

individually convert the non-Gaussian soil parameters to Gaussian variables and a calculation of 

the Pearson correlation coefficients among the transformed variables. In this study, the method 

of Box-Cox transformation is used due to its simplicity (Liu et al. 2016, Zou et al. 2017). In this 

method, a soil parameter (Yi) is raised to a power (λ) to approximate a Gaussian variable and 

then it is standardized with a shifting parameter (a) and a scaling parameter (b) to produce a 

standard normal variable (Xi). More details are available in the literature (Liu et al. 2016, Zou et 

al. 2017), and therefore they are not presented here. Table 1 lists the Box-Cox transformation 

parameters for the Yi variables. In this study, Y1 = Ic, Y2 = Bq and Y3 = Δu2/σ'v0 are the direct 

physical CPTU parameters, whereas Y4 = lgt50 (t50 in s), Y5 = -lgch (ch in m2/s), and Y6 = -lgkh (kh 

in m/s) are the logarithmic soil parameters to reduce the data scatter. Table 1 also shows the 

results (P values) of the Kolmogorov-Smirnov (KS) test on the transformed variables. All the 

KS P values are larger than 0.05. Therefore, there is no strong evidence to reject the hypothesis 

that each transformed variable individually follows a standard normal distribution. 

 
Table 1. Box-Cox transformation parameters for Y variables 

 

Parameters λ a b KS P value 

Y1 = Ic -2.455 0.382 0.004 0.428 

Y2 = Bq 0.238 -0.641 0.326 0.875 

Y3 = Δu2/σ'v0 0.515 1.371 0.476 0.749 

Y4 = lgt50 s 2.163 4.456 1.384 0.950 

Y5 = -lgch m2/s 2.916 74.813 14.207 0.924 

Y6 = -lgkh m/s 1.706 22.196 2.525 0.794 

 

The Pearson correlation coefficients among the transformed Xi variables are presented in 

Table 2. From Table 2, the following findings are summarized: 

n t50 is the best index to predict ch and kh, as their correlation coefficients are all larger than 0.75. 

This is reasonable since t50 directly evaluates the rate of soil consolidation. 

n Ic is deemed effective to predict kh as their correlation coefficient is larger than 0.70. This is 

perhaps due to the fact that Ic implies the change of fines content, which impacts kh. 

n Bq and Δu2/σ'v0 also provide useful information on ch and kh, as their correlation coefficients are 

around 0.60. It is justified that the generation of the excess pore water pressure depends on the 

drainage conditions of the surrounding soils, and hence varies with ch and kh. 

 
Table 2. Pearson correlation coefficients among X variables 

 

Variables X1 X2 X3 X4 X5 X6 

X1 1.00 0.50 0.23 0.46 0.65 0.74 

X2 0.50 1.00 0.77 0.49 0.60 0.66 

X3 0.23 0.77 1.00 0.43 0.58 0.61 

X4 0.46 0.49 0.43 1.00 0.82 0.75 

X5 0.65 0.60 0.58 0.82 1.00 0.77 

X6 0.74 0.66 0.61 0.75 0.77 1.00 

 

4 Bivariate Correlation Analyses for Jiangsu Soft Clay 
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Using a Bayesian updating and a back transformation, the correlations among {ch, kh} and {Ic, Bq, 

Δu2/σ'v0, t50} can be derived with the hypothesis that the transformed X variables jointly follow a 

multivariate normal distribution (Liu et al. 2016). Fig. 2 illustrates the bivariate ch-t50, kh-t50, kh-Ic, 

and kh-Δu2/σ'v0 correlations in terms of median and 95% confidence interval (CI). The compiled 

calibration data categorized by the sources of ch and kh data are also shown in Fig. 2. It is evident 

that the derived median correlations fit the data well and the 95% CIs also agree with the scatter 

of the data. The calculated coefficients of determination (R2) are 0.65, 0.57, 0.54 and 0.37 for the 

median-based ch-t50, kh-t50, kh-Ic, and kh-Δu2/σ'v0 correlations, respectively. Among the three 

CPTU indices, t50 is the best one to predict ch and kh, whereas the performance of Δu2/σ'v0 is not 

satisfactory. This conclusion is consistent with the previous findings arrived in the analysis of 

the correlation coefficients among these parameters. 
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Figure 2. Bivariate ch and kh correlations for the calibration data of Jiangsu soft clays 

 

Another conclusion drawn from Fig. 2 is that the sources of ch and kh data may impact the 

derived correlations. Most (approximately 80%) ch and kh data from the settlement analysis are 

above the median-based correlations. On the contrary, most (about 80%) data from the 

oedometer tests are below the median-based correlations. According to the complied data, the ch 

and kh results from the settlement analysis are approximately 2 to 3 times those from the 

oedometer tests. This is perhaps due to the impact of the small size of sample in the oedometer 

tests and the unknown influence of soil fabric such as layering in the in situ condition. The ch 

and kh values provided by the settlement observations shall provide a better evaluation of the in 

situ consolidation behavior of the soils. 

Fig. 3 presents the comparison between the above four bivariate correlations and the 

corresponding validation data of Jiangsu soft clays. Data points provided by a comprehensive 

literature review in Robertson et al. (1992) and some existing correlations published in the 

literature are also illustrated in Fig. 3. Fig. 3 shows that the median-based correlations for the 

Jiangsu soft clay agree well with the validation data in both trend and range. These correlations 

are also consistent with the trends indicated by the existing correlations. However, the lower 

bounds of the 95% CIs for the Jiangsu clays are slightly beneath those given by the theoretical 

solutions. This is perhaps because large amounts of ch and kh data are obtained from the results 

of oedometer tests and they are considered less than the actual values. In fact, a comparison 

between Fig. 2 and Fig. 3 shows that these theoretical solutions agree well with the ch and kh 

data obtained from the settlement analysis as they are lying within comparable ranges, i.e., 

between the medians and upper bounds of the 95% CIs. Therefore, these bivariate correlations 

are deemed reasonable with respect to the existing experience in the geotechnical practice. 
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Figure 3. Validation of the bivariate ch and kh correlations for Jiangsu soft clays 

 

5 Median-based Multivariate Correlations for Jiangsu Soft Clay 

Based on the multivariate distribution model, multivariate correlations for ch and kh are derived: 
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Fig. 4 shows a comparison between the ch and kh measurements against their predicted 

medians using the above four formulas. The predicted medians are uniformly scattered around 

the reference line, indicating that the predictions are almost unbiased, regardless of the sources 

of ch and kh data. However, obtaining a continuous ch profile using {Ic, Bq, Δu2/σ'v0} may not be 

satisfactory as the scatter between the predictions and the actual measurements is significant (R2 

< 0.70). Nonetheless, it is still possible to achieve a relatively accurate kh profile based on {Ic, Bq, 

Δu2/σ'v0} since the R2 value can reach 0.74. The best case is to perform a CPTU dissipation test 

and then use t50 in the predictions. When t50 is involved, the R2 values can reach more than 0.80. 
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Figure 4. Multivariate ch and kh correlations for Jiangsu soft clays 
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A more rational evaluation of the performance of the correlations is to use a model error (ε), 

defined as the ratio of measurement over the predicted median. Fig. 4 also presents the mean 

values and coefficients of variation of ε (COVε) for the above four multivariate correlations. It is 

evident that the inclusion of t50 increases the unbiasedness of the multivariate correlations with 

E[ε] closer to 1.0 and simultaneously improves the precision with the reduction of COVε. 

Therefore, the multivariate distribution model is an effective tool to capture the multi-

dependency of the consolidation and CPTU parameters for the Jiangsu soft clays. 

 

Conclusions 

In this study, the multivariate correlations among the consolidation and CPTU parameters of 

Jiangsu soft clays were analyzed. A database containing two consolidation parameters (ch and kh) 

and four CPTU indices (Ic, Bq, Δu2/σ'v0, and t50) was compiled. It was shown that all these four 

CPTU indices provide valuable information on ch and kh and rational bivariate correlations for 

these two parameters can be derived. Moreover, the uncertainties associated with ch and kh can 

be significantly reduced by incorporating the four complete CPTU indices with the increasing of 

R2 value and decreasing of model scatter between the measurements and predictions. 
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