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The application of interest in the paper is estimating the unknown dynamic input and state 

vector (displacements and velocities) by using partial noisy acceleration measurements for a 

structural system. A dual Kalman filter scheme is employed for state-parameter identification, 

but, in addition, we propose a sparse Bayesian learning framework to impose spatially-sparse 

input (e.g., impulse excitation), and also we would like our model to capture the evolution of the 

sparse input changes with shared “common sparseness”, i.e., the input changes between two 

successive time instants are also sparse. To this end, we present a hierarchical Bayesian state-

space model for computing the marginal posterior distributions of the state and input 

parameters, where the two sparseness constraints mentioned above are effectively incorporated 

for each time instant. The measurement and state prediction error parameters (noise parameters) 

are learned solely from the available data up to the current time, where Bayesian Ockham razor 

is automatically implemented. Finally, numerical investigation of the proposed algorithm is 

presented. It is shown that reasonable estimates of impulse and seismic input as well as 

structural state vector can be accomplished. It is also shown that the well-known drift problem 

in the estimated input commonly encountered by existing filter methods is effectively alleviated. 
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1 Introduction 

The advancement of filter theory (e.g., Kalman, 1960; Hoshiya and Saito,1984; Ching et al., 

2006; Asif and Romberg, 2010; Sejdinovic et al., 2010), which allows the estimation of 

unknown variables recursively from incoming measurements observed over time, by using 

Bayesian inference and state-space models, has received significant interest over the past few 

decades.  For Bayesian system identification (Beck, 2010) purposes, Bayes filters have been 

applied for simultaneous state (e.g., system displacements and velocities) and model parameter 

(e.g, structural input parameters) identification of a dynamical system  

(Ching et al., 2006), by finding the joint posterior probability distribution of hidden states and 

model parameters. In this paper, we investigate the dual Kalman filter for tracking the dynamic 

change of structural input, showing how our model of a dynamical system can be represented as 

two conditionally linear Gaussian state space models, leading to some interesting analytical 

properties, without linearization required. 
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In the Kalman filter formulation in the paper, we wish to incorporate sparse Bayesian 

learning (Tipping, 2001) to impose spatially-sparse input distribution. We would also like our 

model to capture the evolution of the sparse input changes with shared “common sparseness”, 

i.e., the input changes between two successive time instants are also sparse. One can reasonably 

expect significant potential gain from this, since it uses the estimate at the previous time instant 

to aid reconstruction of the new estimate at the current time instant. The exploring of the two 

sparseness constraints involves a dynamic sparse estimation problem and is a nontrivial task. 

This problem has recently captured the attention of various researchers, though mostly with 

application to tracking the dynamically changing sparse signals in compressive sensing (Asif 

and Romberg, 2010; Mota et al., 2015). However, to our knowledge, no Bayesian method with 

analytical solutions for online tracking of the dynamically changing sparse models has been 

presented.  

 

2 Dual Kalman filter algorithm for online tracking of time-varying spatially-sparse 

structural input 

2.1   Dynamic sparseness-inducing dual Kalman filter algorithm 

We define the system state vector as  where  and denote the 

structural displacement and velocity vectors, respectively, for the time instant 

. To track the structural input change over time, the unknown input parameters 

for each time instant are also introduced  that are influencing some degrees of freedom 

(DOFs) on the structure as indicated via the influence matrix  

   It is assumed that only the accelerations  of the structural response at each time 

instant are measured. We let  denote the selection matrix for the observed DOFs. 

According to the equation of motion for a linear dynamical system with the measurement and 

prediction errors taken into account, the measurements  can be expressed binearly with respect 

to either  or   

  (1) 

where:                

 and  stand for the mass, stiffness and damping matrix, respectively; 

 is introduced as a combination of the measurement noise and output prediction error, which 

is modeled as .  

From (1), one can derive a Gaussian likelihood function for  and  given the measurement 

: 

  (2) 

By using numerical integration of the equation of structural motion, we get the following 

discrete state evolution equation for  

      (3) 

where:   
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and  refers to the state prediction error for the system state vector, which is modeled 

as   The state transition PDF (probability density function) 

 is then given by: 

                      (4) 

Some of the structural inputs (e.g., impulse excitation) undergo only small changes at limited 

locations over short times, so we introduce a sparse vector  to model this temporal 

dependence as:  

          (5) 

Inspired by the idea of automatic relevance determination and sparse Bayesian learning 

(Tipping, 2001), the state transition PDF for  is defined as: 

       (6) 

where  To guarantee the spatial sparseness of structural input, we also 

want to induce sparseness in the accumulated input changes compared with an initial reference 

vector , that is,  should be sparse. We specify the reference vector as pseudo-

data and use the automatic relevance determination idea again to define another likelihood 

function for as: 

        (7) 

where  

 

2.2    Bayesian inference 

Because of the separate measurement and state prediction error parameters for  and , we 

employ the dual Kalman filter scheme to utilize the two coupled linear-in-the-parameter 

equations in Eq. (2) to perform Kalman filtering for  and  separately but with information 

exchange between them by each feeding its estimate to the other.  

To proceed, we assume that the posterior PDFs for  and conditional on the data up to 

the  time instant are Gaussian PDFs: 

          (8a) 

     (8b) 

It will be demonstrated later that the derived posterior PDFs  and for the  

time instant have the same Gaussian form as in Eqs. (8a) and (8b) when using some 

approximations, and thus the Gaussian assumption in Eqs. (8a) and (8b) is self-consistent. 

In the following, recursive Bayesian estimation is employed to produce the posterior 

distribution of  conditioned on  and the measurements up to the current time step and the 

posterior for  conditional on and . Both the prediction and updating steps are written 

probabilistically.  

 

2.2.1 Kalman filter for model parameter vector  conditional on  

The predictive PDF for is expressed as: 
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        (9a) 

where:         (9b) 

When new data vector  is available at the time instant , the updated PDF 

 is obtained first by using Laplace’s asymptotic approximation (Beck and 

Katafygiotis, 1998) based on the assumption that the posterior  has a unique 

maximum at  and then employing sequential 

Bayesian updating by treating the posterior having observed data as the `prior' for the pseudo 

data  to compute the posterior PDF : 

   

    (10a) 

where:      (10b) 

   (10c) 

 

2.2.2 Kalman filter for system state vector  conditional on  

The predictive PDF  is given by: 

      (11) 

with mean and covariance matrix: 

  (12) 

When new data  is available, the update PDF  is computed as: 

          (13) 

where the Laplace’s asymptotic approximation (Beck and Katafygiotis, 1998)  is used based on 

the assumption that the posterior  has a unique maximum at: 

      (14a)             

  (14b) 

  (14c) 

             (14d) 

Note that the pseudo-data  is irrelevant to the system state vector  here. The authors can refer 

to Huang and Beck (2017) for detailed information for the computing of the maximum a 

posteriori values  and  by maximizing their corresponding posterior PDFs  

For online implementation, we can use the dual Klaman filter procedure presented in Wan and 

Nelson (2001). To impose the sparse constraint of , a pseudo-measurement stage 

should be further performed after the implementation of the dual Klaman filter for each time 

instant. A similar idea can be found in Asif and Romberg (2010), though it is a deterministic 

least-squares method regularized by using an -norm. 
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3  Illustrative examples 

Consider a 20-story shear building, which has uniformly spatially-distributed floor mass and 

inter-story stiffness. The mass per floor is taken to be 750 metric tons, while the inter-story 

stiffness is chosen to be 1000 MN/m. A Rayleigh damping model is adopted, so the damping 

matrix is given by , where and  (the 

damping ratios for the first two modes are 2%).   The acceleration structural responses are 

measured at the 3rd, 5th, 7th, 8th, 10th, 13th, 15th, 17th, 18th, and 20th floors with a sampling 

frequency of 200 Hz, and these measurements are contaminated by zero-mean Gaussian noises 

with a standard deviation taken as be 10% RMS of the corresponding noise-free quantities.  

The performance of the proposed method is first assessed for impulse excitation of the test 

structure. In reality, the initial reference vector  is a zero vector for all time instants. The 

estimation results for the impulse input time history, hyper-parameters  and , and the 

Zoom in of the input estimation at the period of 1.9s-2.4s for DOF 20 are presented in Figure 1 

(a)-(d), respectively.  The red dash lines are the means of the identified input parameters and the 

blue lines represent the plus and minus three standard derivation confidence intervals which 

yield a probability of 99.7%. The actual input time histories is also indicated by the green line. It 

is shown that the impulse excitation time history estimation can be identified with reasonable 

confidence intervals and the results are stable and consistent with the actual values. Regarding 

hyper-parameters estimation, the hyper-parameters  and  corresponding to nonzero input 

have much larger values, indicating less confidence for the closeness to the reference values.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 1. Identification of impulse input for DOF 20: (a) input estimation results; (b) zoom in at the period 

of 1.9s-2.4s for the input estimation. (c)  estimation results; (d)  estimation results;  

 

In the remainder of this section the seismic excitation will be assessed as well. Figure 3 

shows the estimated seismic acceleration time histories furnished by the proposed method. It is 
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seen that, the proposed method provides reasonable estimates of inputs. We also investigate the 

performance of the method if there is no sparseness constraints imposed and it is seen that the 

method suffers from the low frequency drift, which is due to low frequency components 

stemming from double integration errors, while this problem is effectively suppressed by the 

“sparseness” constraints. Though the identified seismic input is just one-dimensional, the trade-

off between data-fitting and model complexities is always present and the “sparseness” 

constraints are still useful to alleviate the drift problem.  

 
(a) 

 
(b) 

Figure 2. Identification of seismic excitation: (a) estimation with sparseness constraint (b) estimation 

results without sparseness constraint. 

 

4 Conclusion 

In the paper, we pursue a recursive Bayesian approach for sequential state and input estimations 

using a dual Kalman filter scheme, based on a series of incomplete noisy accelerations observed 

over time. The key contribution is to incorporate prior knowledge in a hierarchical Bayesian 

model that suggests sparse solutions for both the structural input relative to initial reference 

values and, especially, the change of input with time. In addition, the “noise” parameters in the 

dual Kalman filters are learned from the data.  
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