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Geotechnical property data obtained from in situ or laboratory tests are usually sparse. In 

engineering practice, however, high-resolution geotechnical property profiles (e.g., variation of 

soil property along depth) are often preferred for engineering analysis and design. How to 

interpret a high-resolution profile from sparse measurement data in an objective manner is a 

challenge in geotechnical practice. Moreover, because of sparsity of the measured data, the 

interpolated results contain significant statistical uncertainty, which unavoidably affects 

subsequent geotechnical design and analysis, especially reliability-based design or analysis. 

Therefore, quantification of the statistical uncertainty is of great importance. However, such 

quantification is also challenging due to the spatially varying nature and auto-correlated pattern 

of soil properties. To address these two challenges, a Bayesian Compressive Sampling (BCS) 

approach is presented in this paper. It not only provides a high-resolution geotechnical property 

profile from sparse measurement data, but also quantifies the uncertainty in the interpolated 

results. An example of cone penetration test (CPT) tip resistance qc profile is used for 

illustration. It shows that the BCS approach performs well and, as the number of measurement 

data points increases, the statistical uncertainty reduces quickly. 
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1 Introduction 

Geotechnical data obtained from in situ or laboratory tests are usually sparse and limited in 

engineering practice due to budget, time limit etc. However, interpolated geotechnical data 

profiles (e.g., soil property variation along depth) with high resolution are often preferred when 

implementing engineering analysis and design (e.g., Mayne et al. 2002). Rational interpolation 

of geotechnical data from available measurement is a critical issue especially when the number 

of measurement is too small. There are many interpolation techniques including polynomial 

interpolation, kriging interpolation etc (e.g., Barthelmann et al. 2000). However, determination 

of the most appropriate order for polynomial is non-trivial, and estimation of spatial auto-

correlation structure for kriging is difficult, when only sparse data are available (e.g., Wang et al. 

2017a). Moreover, the sparsity of available measurement data results in significant statistical 

uncertainty within interpolated geotechnical data profile. The statistical uncertainty unavoidably 

propagates to and affects the subsequent engineering analysis and design, particularly for 

probabilistic analysis and reliability-based design (e.g., Bathurst et al. 2008). Traditional 

geostatistics is capable of deriving the uncertainty of interpolated geotechnical data profile based 

on conventional statistics. While the case is challenging when the number of measurement data 
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is too small (e.g., Webster and Oliver 2007). Quantification of statistical uncertainty becomes 

even more complex when the spatially varying and auto-correlated pattern are considered. 

To address the above challenges, this paper develops a Bayesian approach to statistically 

interpolate geotechnical data profile from sparsely measured data, namely Bayesian compressive 

sampling (BCS). BCS method is able to not only provide interpolated geotechnical data with 

high resolution from limited measurement data but also quantify the associated statistical 

uncertainty. The quantified statistical uncertainty indicates the accuracy and reliability of 

interpolated geotechnical data profile and can be used to implement probability-based analysis 

(e.g., Wang et al. 2017b). It has also been suggested that BCS is more suitable for sparse 

measurements than the kriging method (e.g., Wang et al. 2017a). Moreover, the BCS method 

allows engineers to observe how the interpolated geotechnical data profile evolves when more 

and more measurement data are available as input. One set of cone penetration test (CPT) tip 

resistance profile collected from United States Geological Survey (USGS) database (Holzer et 

al. 2010) is adopted for illustration. This paper firstly covers the background of compressive 

sampling (CS), followed by the mathematical formulation of BCS. Then the real data example is 

presented. 

 

2 Brief Review of Compressive Sampling 

Compressive sampling is a novel sampling paradigm in signal processing (e.g., Candes and 

Wakin 2008; Donoho 2006). CS asserts that a signal can be completely recovered from partial 

samples based on the fact that many natural signals (e.g., the spatial variation of soil property 

along depth) are “compressible”. The term “compressible” means a signal can be concisely 

expressed by weighted summation of a few pre-specified convenient basis functions (e.g., 

discrete cosine function, discrete wavelet function). This transformation process can be 

expressed as: 

 ωf B=  (1) 

where f is a discrete real-valued signal, expressed as a column vector with a length of N; B is a 

pre-specified basis function matrix with dimension N×N (i.e., each column of B is a basis 

function); ω is weight coefficients vector with a length of N while each component 

corresponding to the a basis function in B. For a compressible signal, note that most elements in 

weight vector ω are almost zeros, and just a few non-trivial elements possess significant or 

relatively large magnitude. Therefore, the underlying signal f can be approximated if those non-

trivial coefficients in ω can be identified by limited measurement from f, namely, measurement 

data y, which is expressed as: 

 ωωfy AΨBΨ ===  (2) 

where Ψ is measurement matrix with dimension M×N (M<N), reflecting the positions of 

measurement data y; Ψ can be easily constructed from an identity matrix with dimension N×N 

according to the positions of measurement data y in f. Since M<N, the above Eq. (2) is 

underdetermined, it cannot be solved directly. It can be solved by some other algorithms such as 

orthogonal matching pursuit (e.g., Cai and Wang 2011; Wang and Zhao 2016). If the non-trivial 

coefficients in ω can be properly estimated as ωs by measurement data y, the underlying signal f 

can be approximated as f', which is expressed as: 

 sωf'f B=»  (3) 
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where ωs is the estimated non-trivial approximation coefficients with the same length as ω, 

while the trivial part are set to zeros. When measurement data y are sparse and limited from the 

underlying signal, the estimated approximation coefficients involves statistical uncertainty 

which can propagate to the recovered signal. To quantify the associated statistical uncertainty, 

the approximation coefficients are formulated as random variables under Bayesian framework 

(e.g., Wang and Zhao 2017), which is discussed in the following section. 

 

3 Bayesian compressive sampling  

3.1    Bayesian framework 

Based on Bayes’ theorem, the posterior PDF of ωs is expressed as: 
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where )|( yωsp  is the posterior PDF of ωs given measurement data y; )|( sωyp  is the 

likelihood of observing measurement data y given non-trivial approximation coefficients ωs; 

)( sωp  is the prior PDF of non-trivial approximation coefficients ωs; )( yp  is a constant to 

guarantee the integration of posterior PDF is unity. 

The likelihood function )|( sωyp  is formulated based on the residuals between 

measurement data y and recovered complete signal at corresponding locations. Suppose the 

residual follows a normal distribution with zero mean and unknown standard deviation σ. To 

facilitate the derivation of the Bayesian framework, a random variable α0 is defined as the 

reciprocal of variance of the residual, i.e., α0=σ-2. The likelihood function 0( , )p a
s

y ω  

considering effect of variance of residual is formulated as a multivariate normal distribution 

assuming that the residuals at all measurement locations are independent of each other.  

To be consistent with the likelihood formulation, the prior distribution ),( 0asωp  

considering the effect of α0 is formulated rather than )( sωp . To facilitate the derivation of prior 

distribution, ),( 0asωp  is taken to follow a multivariate normal-gamma distribution since 

normal likelihood and normal-gamma prior is a frequently used conjugate pair in Bayesian 

formulation (e.g., Murphy 2007) which provides analytical derivation for posterior distribution. 

Given the conjugate pair of likelihood function 0( , )p a
s

y ω  and joint prior distribution 

),( 0asωp , the posterior distribution )|,( 0 yωs ap  considering α0 can be derived based on 

Bayes’ theorem in Eq. (4). According to the features of conjugate pair, the posterior distribution 

)|,( 0 yωs ap  also follows a multivariate normal-gamma distribution. Since the α0 is of little 

interest in this study, it will be removed after marginalization which is discussed in the following 

subsection. 

 

3.2    Marginalization 

Given the posterior distribution )|,( 0 yωs ap , the marginal posterior distribution )|( yωsp  can 

be derived by marginalization which is expressed as the following integration (e.g., Sivia and 

Skilling 2006): 
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The posterior PDF of ωs given measurement data y is found to follow a multivariate Student’s t 

distribution, with mean vector 
sω

μ  and covariance matrix 
sω

COV  expressed as follow: 
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where D is a N×N diagonal matrix with diagonal elements Di,i=αi (i=1, 2, 3,…, N). αi is 

parameter related to variance of the i-th approximation coefficient. cn =M/2+c; dn 

=d+ 2/)( 1TT

sωsω
μμyy

-- H . c and d shall be taken as small values (e.g., c=d=10-4) to achieve an 

uninformative prior distribution of α0, which is of little interest in this study. Note that, the 

statistics of ωs in Eq. (6) determine the distribution of approximation coefficients once the 

variance parameters αi are determined, which are discussed in the next subsection. 

 

3.3    Determination of hyper-parameters 

Note that the statistics of ωs in Eq. (6) are conditional to αi, which are hyper-parameters since αi 

also depend on other parameters. The hyper-parameters can be estimated by maximum 

likelihood method (e.g., Bishop 2006). The idea of maximum likelihood is that the most 

probable αi should be the ones that maximize the likelihood of measurement data y, or 

equivalently its logarithm (e.g., Ji et al. 2009): 

 ( ) ( ) ( )( )[ ] constdcMpL T ++++-== -
CC detln2ln2

2

1
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where C=IM×M+AD-1AT and IM×M is an identity matrix with dimension M×M. The most probable 

αi can be derived by differentiating the above Eq. (7) with respect to αi. Setting the derivative to 

zero gives: 
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where 
i

m is the i-th element in 
sω

μ ; iiH ,  is the i-th diagonal in matrix H. Note that the statistics 

of ωs in Eq. (6) depend on αi while αi also depend on statistics of ωs in Eq. (6). This suggests 

that iterations should be conducted between Eq. (6) and (8). By setting an initial set of αi (i=1, 2, 

3,…, N), Eq. (6) can be determined. Then updated αi can be obtained according to Eq. (8). This 

process can be repeated until the likelihood function (7) reaches its maximum. After that, the 

most probable statistics of ωs can be derived. Therefore the best estimate of signal of interest 
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f'
μ  can be reconstructed using 

sω
μ , and the associated statistical uncertainty can be quantified 

easily by covariance matrix COV
f'

 , expressed as follow: 
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4    Real data example 

To illustrate the performance of BCS for interpolating spatially varying but sparsely measured 

geotechnical data, BCS is applied to a cone penetration test (CPT) tip resistance profile collected 

from United States Geological Survey (USGS) database (Holzer et al. 2010). The test was 

conducted within a sand layer in Mississippi river valley, Poinsett County, Arkansas. For 

illustration, a profile with length 256 ranging from 7.75m to 20.5m with sampling interval 0.05m 

is considered as original profile represented by solid line in Figure 1. Limited data points from 

that profile are selected as measurement data input to implement BCS shown by open circle. The 

whole CPT tip resistance profile can be interpolated by BCS using only M=12 measurement data 

points shown by red dash line in Figure 1 (a) with quantified statistical uncertainty expressed as 

confidence interval (95%). The confidence interval of 95% which indicates the reliability of 

interpolated CPT profile covers most of variation of the original CPT profile.  
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Figure 1. Comparison between original profile and statistically interpolated profile under 

different measurement scenarios: (a) M=12; (b) M=25; (c) M=80; (d) M=256 

Moreover, complete profile interpolated by BCS converges to the original profile as the 

number of measurement data increases. Three more measurement scenarios, i.e., M=25, M=80 

and M=256 are provided as shown in subplot (b)-(d) in Figure 1. It shows that the interpolated 

profile becomes more and more similar to the original profile as more and more measurement 
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data involved. Note that the quantified uncertainty also becomes narrower as the number of 

measurement data increases. When all data points are selected as measurement input as shown in 

Figure 1 (d), the interpolated profile are almost identical to the original one and the quantified 

statistical uncertainty reduces to almost zero. 

 

5    Conclusion 

Bayesian compressive sampling (BCS) method is presented to statistically interpolate spatially 

varying but sparsely measured data. This method is applied to a set of real engineering data. It 

shows that BCS can not only rationally interpolate a complete geotechnical profile from limited 

measurement but also quantify the statistical uncertainty. The quantified uncertainty indicates 

the accuracy and reliability of the interpolated profile. Moreover, the interpolated profile 

converges to the original profile and the uncertainty region reduces to almost zero when the 

number of measurement data increases. The BCS method is robust and can be applied to 

different geotechnical data. 
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