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Complex systems, such as turbines, industrial plants and infrastructure networks are of paramount 

importance to modern communities.  However, these systems are subject to a plethora of different 

threats.  Therefore, novel developments are focused not only on increasing the robustness and 

reliability of systems but also on taking into account their recovery.  The concept of resilience 

encompasses these developments.  An essential aspect concerning the quantification of resilience 

is how it can help decision-makers to efficiently improve and construct the complex systems of 

our modern communities.  Consequently, it is necessary to develop comprehensive and widely 

adaptable, resilience-based decision-making tools.  In this paper, a numerically efficient method 

aiding decision-makers in balancing between different resilience-enhancing investments is 

presented.  Using an appropriate resilience metric, and moreover an adapted systemic risk 

measure, the approach allows direct comparison between failure prevention arrangements and 

recovery improvement arrangements, leading to an optimal tradeoff relative to the resilience of a 

system.  Additionally, the method is capable of incorporating monetary aspects into the decision-

making process. 
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1 Introduction 

Modern societies depend on a variety of complex systems, such as turbines, industrial plants or 

infrastructure networks.  These form complex capital goods whose construction, improvement and 

regeneration are of paramount importance for society.  However, these systems are subject to a 

plethora of different threats.  Evidence shows that a wide range of natural, technical and 

anthropogenic impacts at all scales can severely affect the functionality of these systems.  Due to 

the quickly growing complexity, it is extremely difficult to identify all possible criterial impacts 

and to prevent them accordingly.  Therefore, novel developments are required to focus not 
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exclusively on increasing the robustness and reliability of systems, but also on taking into account 

their recovery (Tran et al. 2017, Linkov & Palma-Oliveira 2017).  The concept of resilience 

encompasses these developments by considering and optimizing robustness, reliability and 

recovery of systems not only from technical, but also from economic perspectives (Cimellaro et 

al. 2010, Ayyub 2015).  This leads to a paradigm shift from a strategy that secures systems from 

failing to a strategy that makes systems effective also in the case of failure.  During the last two 

decades, a vast number of different approaches to quantify resilience were published (Bergström 

et al. 2015, Hosseini et al. 2016). 

An essential aspect introduced by this new approach is how the quantification of resilience can 

help decision-makers to efficiently design and improve the key complex systems present all over 

our modern communities (Hosseini et al. 2016, Tran et al. 2017).  It is obvious that without the 

consideration of monetary constraints, the resilience of a system can be vastly increased.  

However, neglecting monetary constraints does not reflect reality, and it is necessary to develop 

methods that help decision-makers balance between different resilience-enhancing investments.  

Therefore, in this work, the sophisticated resilience metric by Ouyang et al (2012) as well as an 

adapted systemic risk measure by Feinstein et al. (2016) are applied to an exemplary flow system 

to present an efficient method for determining the most cost-effective combination of different 

resilience-enhancing investments under a certain minimum-resilience condition. 

In the following, section 2 briefly describes the resilience metric by Ouyang et al (2012) and 

section 3 introduces the adaptation of the systemic risk measure by Feinstein et al. (2016).  Section 

4 provides an overview of the simulation procedures and the exemplary flow network.  The paper 

finishes with a discussion about the results in section 5 and conclusions in the final section. 

 

2 Resilience Metric 

The expected annual resilience metric Re  by Ouyang et al. (2012) is defined as the expectation 

of the ratio between the integral of the system performance ( )P t  over a target time interval [0, ]T  

and the integral of the target system performance ( )TP t  in the same interval.  According to 

Hosseini et al. (2016), it is categorized as a probabilistic and time-dependent resilience metric and 

is defined as: 
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( )P t  is a random quantity modeled by a stochastic process.  ( )TP t  is generally considered as 

a stochastic process as well, but it is assumed to be a non-random constant TP  in this work.  By 

introducing the discrete number of failure events in the target time ( )N T , Eq. (1) could be 

further written as 
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where nt  is the random time of the occurrence of the nth event.  Finally, ( )n nAIA t  is the impact 

area, i.e., the area between the reduced system performance curve caused by the nth failure event 

and the target system performance curve. 

Although this metric is capable of considering hazards of different types, for illustrative 

purposes, only one hazard type is taken into account.  The resilience metric takes values between 

0 and 1, where Re 1=  indicates a system performance corresponding to the target performance 
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over the regarded time period [0, ]T , and Re 0=  indicates that the system is not working over 

[0, ]T . 

 

3 Systemic Risk Measure 

The adaptation of the approach suggested by Feinstein et al. (2016) quantifies system inherent risk 

on the basis of descriptive input-output models and acceptance criterions representing the 

arbitration of a regulatory authority. 

Let ( ,, )PW, ),, ), )  be a probability space, lÎ  the entities number of a considered system and 
T n

ik Î

, ), )
T n

 a vector of control variables specifying to the ith entity.  For any scenario wÎW  and 

endowment k assume ( )kY w  to be the real number capturing the ratio in Eq. (2) applied to the 

investigated system which is assumed to be increasing in k.  In this case the underlying input-

output model is provided by ( ) .l nk k
Y Y ´Î
= .  

According to Feinstein et al. (2016), acceptance criterions ÍÍ  are sets of random variables 

meeting the requirements of a decision-maker, with  denoting a suitable vector space of random 

variables, e.g. the family of all bounded random variables noted ( , )L¥ W ) .  In the context of this 

work, for an acceptance threshold (0,1)lÎ , the acceptance criterion is defined as: 

 [ ]{ }|X E X l= Î ³[ ]{ |X E X[X E| l= Î ³]{X E X[X EX E| . (3) 

Once the input-output model and the acceptance criterion are determined the adapted, set-valued 

and multivariate risk measure is defined by: 

 ( ) { }; |l n

k mR Y k m Y´

+= Î Î; | k mY; | k mk mk m

l n Y; |; |; |l nl n; |; | k mY; |; |; | k mk mk m } . (4) 

These sets consist of all endowment-enhancing m added to k, with k being understood as basic 

equipment of the regarded system, leading to a resilience value greater or equal to l , see Eq. (2).  

Hereinafter the basic equipment k is set to zero and ( ;0)R Y  is written as ( )R Y .  Consequently, 

all elements a  of this set are denoted as endowments. 

In Feinstein et al. (2016) the authors present a grid search algorithm to efficiently approximate 

( ; )R Y k  with a chosen accuracy, cf. Audet & Hare (2017). 

 

4 Flow Network and Procedures to Simulate the System Performance 

Flow networks are generically applicable models used to represent complex systems, such as 

turbines, industrial plants or infrastructure networks.  In this application the flow network shown 

in Figure 1, with seven nodes and eight edges, is considered.  In this case, the edges are considered 

to be the essential network components, each of which is associated with one out of b component 

types.  Thereby the endowments of each edge {0,...,8}iÎ  is designated by * 1 2( , )j

i j ja c r ´= Î* 1 2* 1 2* 1 2   

with {1,..., }j bÎ , containing 2n =  properties capacity jc  and recovery improvement *

jr .  In 

addition to the edge grouping, further restrictions can be made, e.g. by setting the component 

property *r   to be constant.  Analogous to Feinstein et al. (2016), these constraints can be captured 

by narrowed elements ' pa Î p  and a monotonously increasing function : p l ng ´®p l np l np l n®p l np l n
, with p 

as the number of non-restricted entities of the native endowment matrix a .  The systemic risk 

measure results as: 
( )( ) { | }p

g mR Y m Y= Î Î( ){ | ( )g m( )( )( )( ){ |{ |{ |p{ |{ |{ |{ |{ |{ | ( ){ |{ |{ |{ | } .  Note that under these assumptions ( )R Y  is a 

discrete set and the abovementioned grid search algorithm by Feinstein et al. (2016) no longer 
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provides an approximation but determines ( )R Y  exactly.  The source node of the flow network is 

denoted by s with an initial flow w and the target node by t with a destination flow v, respectively.  

The considered time interval [0, ]T  is subdivided into u  time steps 
0 ,..., Tt t .  In each time step ,ht  

the system performance is determined by the ratio of the time-dependent destination flow v to the 

initial flow w, i.e. ( ) ( ) /hP t v t w=  with 
1[ , )h ht t t +Î . 

 

 

Figure 1.  Exemplary flow network for 2b =  component types. 

The flow for a given endowment a  is simulated as follows: In each time step, the allocation 

of the initial flow is determined node by node, based on a breadth-first search.  The procedure 

starts with the source node and takes into account the following rules: (i) the incoming flow is 

allocated to all subsequent edges in proportion to the respective capacities; (ii) if the capacity of a 

subsequent edge is exceeded, this edge is considered to be destroyed immediately and the flow is 

instead allocated to the remaining edges, taking into account (i); (iii) if a node has no subsequent 

edge, its current flow is lost. 

The failure probability of each edge depends on the respective utilization of the edge capacity 

caused by the flow as ( / )i i ip v cb= × , where iv  is the current flow and ic  is the capacity of the 

respective edge i.  The factor (0,1)b Î  mitigates the failure probability.  At the end of the time 

step, the failure probability of each edge is determined and according to this, failures are realized.  

A failed node is considered to be destroyed.  Note that the failure process in this work is assumed 

to be immediate and other failure profiles or aging effects, as e.g. introduced by Ayyub (2014), 

are not taken into account for reasons of simplification.  The same applies to the recovery profiles.  

Each destroyed edge is assumed to be immediately recovered after 
*

maxr r r= -   time steps, with 
*

maxr r< , where maxr  is the maximum number of time steps for recovery.  This corresponds to the 

one step recovery profile, introduced by Ayyub (2015). 

The described simulation procedure is performed u  times, once for each time step, resulting 

in a staircase-shaped system performance over [0, ]T .  Furthermore, this procedure is repeated 

1000 times so that the arithmetic mean of the ratio between the system performance ( )P t  and the 

target performance ( )TP t  shown in Eq. (1) converges to the expected value, that is the resilience.  

This scheme is repeated according to the grid search algorithm mentioned in section 3, providing 

the set of all accepted endowments ( )R Y .  In the subsequent section, two different system 

scenarios will be presented and discussed. 

 

5 Scenarios and Decision-Making 

The method described in the previous sections, is applied to two scenarios of the system shown in 

Figure 1.  The values of the decisive parameters for both scenarios are assumed to be: acceptance 

threshold 0.8l = , mitigation factor 0.025b = , number of time steps 100u = .  Note that all 
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parameter values in this section are chosen arbitrarily for illustrative purposes and that the costs 

for the endowments properties, in both scenarios, are assumed to be linearly increasing. 

 

5.1    Scenario 1 

In the first scenario, the recovery improvements of both component types are assumed to be 

constant with * *

1 2, 11r r = .  This leads, with an assumed maximum recovery time 
max 21r = , to a 

constant recovery duration for each destroyed edge of 10r =  time steps.  The capacities of both 

edge types are explored over 
1 2, {1,..., 20}c c Î  and the.  From this, and with an initial flow 3,w =  

the set of all accepted endowments ( )R Y  results as shown in Figure 2a), where the filled dots 

represent the elements of ( )R Y . 

 

 
  a)  b)  c) 

Figure 2.  a) Accepted endowments of scenario 1 (filled dots); b) accepted endowments of scenario 2 

(filled dots); c) staircase-shaped system performance ( )P t  over [0, ]T  of scenario 2 for endowment 
1

1 (9,10)a = . 

 

5.2    Scenario 2 

In the second scenario, all eight edges are assumed to be assigned to one component type.  As in 

scenario one, the maximum recovery time is set to max 21r = , and the recovery-improvement is 

explored over 
*

1 {1,..., 20}r Î .  In addition, the capacity is explored over 1 {1,...,20}c Î , as well.  

This leads, with an initial flow 5w = , to a set of all accepted endowments ( )R Y  as shown in 

Figure 2b).  Figure 2c) shows the staircase-shaped system performance ( )P t  over the time interval 

[0, ]T  for an exemplary endowment 
1 *

1 1 1( , ) (9,10)a c r= = . 

 

5.3    Decision-Making 

In resilience-enhancing decision-making, the monetary conditions must be considered.  Therefore, 

it is necessary to find the most cost-effective endowment â .  Under the assumption of linear 

increasing endowment properties costs, â  is an element of ( ) ( )R Y R YÍ , with ( )R Y  representing 

the set of all endowments located at the upper frontier graph as identified in Figure 2a) and 2b).  

Note that due to the monetary linearity condition, this endowment in ( )R Y  can only correspond 

to a non-dominated point in the upper front graph, cf. efficient allocation rules (EAR) by Feinstein 

et al. (2016).  The consideration of these conclusions and the application of the grid search 

algorithm lead to a high efficiency in terms of the computational effort. 
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Considering endowment properties costs of 1,cost 250€c = , 2,cost 180€c = , *

1,cost 170€r = , the 

most cost-effective endowment for the first scenario results as 
1 *

1 1 1( , ) (4,11)a c r= =  , 
2 *

2 2 2( , ) (6,11)a c r= = , with a total cost of 23360€ .  For the second scenario, with endowment 

properties costs of 1,cost 200€c = , *

1,cost 170€r = , the most cost-effective endowment results as 
1 *

1 1 1( , ) (9,10)a c r= = , and a total cost of 28000€ . 

 

6 Conclusion 

In this paper, a decision-making procedure was introduced that allows to identify optimal tradeoffs 

between resilience-enhancing endowments in complex systems.  It is based on an appropriate 

systemic risk measure.  Using a suitable resilience metric, the paper demonstrates that this 

approach enables a direct comparison of the impact of different controls on the resilience of the 

system, e.g. failure prevention and recovery improvement arrangements.  In addition, the method 

is capable of incorporating monetary aspects into this decision-making process – which are in 

reality of paramount importance.  Furthermore, the computational effort is significantly reduced 

by a grid search algorithm for systemic risk measures.  Another benefit of the suggested 

methodology is its broad applicability that is not limited to flow networks.  The approach can 

easily be adapted to other systems, e.g. systems whose performance purely depends on the 

topology.  The presented method is capable to substantially support decision-makers in improving 

the complex systems of our modern society and increasing their resilience. 
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