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Quantitative risk assessment and management of debris flows necessitates estimation of 

exceedance probability of quantities (e.g., the total discharge Qtotal and the maximum impact 

pressure Pmax) crucial to the hazard assessment and planning of mitigation strategies. This is a 

non-trivial task because various uncertainties exist in observation data of these quantities and the 

number of observation data is generally limited, particularly for extreme events (e.g., those with 

large Qtotal and Pmax), which are of great interest in practice. This paper proposes a Bayesian 

approach to develop a probabilistic model for estimating exceedance probability of debris flows 

based on observation data of Qtotal and Pmax.  The probabilistic model obtained from the 

proposed approach provides not only the exceedance probability but also its associated 

uncertainty level. For illustration, the proposed approach is applied to developing the 

probabilistic model of Qtotal and Pmax for quantitative risk assessment at Jiangjia Ravine, China.  

Results show that ignoring the statistical uncertainty in the exceedance probability estimated 

from a limited number of observation data leads to unconservative results of risk assessment. 

Keywords: Debris flow, risk assessment, Bayesian approach, exceedance probability, 

uncertainty. 

 

1 Introduction 

Risk assessment of debris flows is crucial to the design of mitigation strategies and 

countermeasures of debris flows.  The risk level of debris flows can be quantitatively 

represented by the exceedance probability (EP), which relies on the probabilistic model of debris 

flow quantities (e.g., total discharge Qtotal and maximum impact pressure Pmax), which is usually 

developed based on the observation data of debris flows.  However, there are many unavoidable 

uncertainties and variabilities affecting site observation data, such as measurement errors, 

climate uncertainty and inherent variability in geotechnical materials.  These uncertainties are 

propagated into estimates of model parameters, which affect probabilistic model identification 

and estimation of EP.  The uncertainty of EP is often ignored in literature (e.g., Van Steijn, 1996; 
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Zimmermann et al., 1997; Liu et al., 2008; Hong et al., 2015), which may undermine the 

reliability of the risk assessment results.  It is hence necessary to take the uncertainty into 

account in the risk assessment of debris flows. 

To address this problem, this study proposes a Bayesian approach for development of the 

probabilistic model of debris flow quantities to estimate the EP and its associated uncertainty.  

The proposed approach is illustrated with observation data of debris flows at Jiangjia Ravine in 

China. 

 

2 Exceedance Probability of Qtotal and Pmax 

3.1    Field data 

Jiangjia Ravine is located in Yunnan, China (as shown in Fig. 1(a)), and is famous for its 

frequent debris flows.  Dongchuan debris flow observation and research station, Chinese 

Academy of Sciences, has been recording debris flow events there since 1961.  Debris flows in 

the records are classified into two types: continuous flow and surge flow.  Hong et al. (2015) 

compiles Qtotal and Pmax data (see Fig. 1(b)) of 118 continuous flows and 139 surge flows in the 

period of 1967-2000 (Zhang and Xiong, 1997; Kang et al., 2006; Kang et al., 2007).  

3.2    Probabilistic models of Qtotal and Pmax 

The EP of Qtotal and Pmax based on ND observational data is defined as: 

 ( ) ( ) ( )EP , | , =Pr | ,total maxq p M Q q P p M> >é ùë ûé ù(((ë û(al max(((((((D D  (1) 

where q and p are threshold values of Qtotal and Pmax, respectively; D is a 2-by-ND vector 

comprised of observation data of Qtotal and Pmax; M is the joint probabilistic model of Qtotal and 

Pmax.  Considering the uncertainty in the model parameter vector ω, Eq. (1) can be rewritten as: 

 ( ) ( ) ( ) ( )Q,PPr | , 1 F , ; Pr | , dtotal maxQ q P p M q p M
W
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where FQ,P(∙) is the joint cumulative distribution function (CDF) of Qtotal and Pmax; Pr(ω|D,M) is 

the probability density function (PDF) of ω conditional on D and M.  To bypass the 

multidimensional integration in Eq. (2), the EP can be estimated using samples of model 

parameters simulated from Pr(ω|D,M): 
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where NS is the total number of ω samples; ω(j) is the j-th sample of ω.  

The CDF and PDF of Qtotal and Pmax can be constructed using copulas (Nelsen, 1999; Li et 

al., 2013): 

 ( ) ( ) ( )Q,P Q Q Q P P PF , ; C F ; , ,F ; , ; C( , ; )q p q p u vm s m s t té ù= =ë ûω   (4) 

 ( ) ( ) ( )Q,P Q Q Q P P Pf , ; c( , ; ) f ; , f ; ,q p u v q pt m s m s=ω   (5) 

where ω=[μQ,σQ,μP,σP,τ] is the vector of model parameters; C(∙) is the CDF of copula; μQ and σQ 

are the mean and standard deviation of Qtotal, respectively; μP and σP are the mean and standard 

deviation of Pmax, respectively; u=FQ(q;μQ,σQ) and v= FP(p;μP,σP), which are marginal CDFs of  
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(a) (b) 
Figure 1. (a) Spatial distribution of debris flow hazards in China (Liang et al., 2012; Hong et al., 2015); 

(b) Observation data of debris flows at Jiangjia Ravine during 1967-2000. 
 

Qtotal and Pmax, respectively; τ is the Kendall rank correlation coefficient; c(∙) is the PDF of 

copula; fQ(∙) and fP(∙) are PDFs of Qtotal and Pmax, respectively. Consider, for example, four 

commonly-used marginal distributions (i.e., Normal, Lognormal, Weibull and Gamma 

distributions) and five types of copulas (i.e., Gausssian, Plackett, Frank, Clayton and Gumbel 

copulas).  Thens, 80 (i.e., 4×4×5) candidate joint probability distributions can be obtained by 

assembling a candidate distribution of Qtotal, a candidate distribution of Pmax, and a candidate 

copula in every possible combination, denoted as {MQ, MP, copula}.  The next section presents 

the proposed method for probabilistic model identification. 

 

3 Bayesian Identification of Probabilistic Models 

The probabilistic model M in Eq. (3) can be determined by comparing the occurrence 

probabilities of candidate models.  For NM (i.e., 80) candidate models, the probability of the i-th 

model Mi given the observation data D is defined as follow (Yuen, 2010): 
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where Pr(D|Mi) is the probability of D given the model Mi, and it is referred to as model 

“evidence” in Bayesian framework; Pr(Mi) is the prior probability of Mi, which can be taken as a 

constant when there is no prevailing knowledge on models in the absence of data, i.e., 1/NM; 
MN

1

Pr( ) Pr( | ) Pr( )i i

i

M M
=

=åD D  is a normalizing constant for all candidate models.  The model 

evidence is unknown and is needed for calculating the model probability.  

Estimating the EP based on Eq. (3) also requires the posterior distribution of ω, which is 

written as: 
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where Pr(D|ω,Mi) is the likelihood function; Pr(ω|Mi) is the prior distribution of model 

parameters, which can be taken as a joint uniform distribution when there is little prior 

knowledge on model parameters.  Assume debris flow events in the ND observations are 
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mutually independent, and then the likelihood function can be calculated by:  

 ( ) ( )
DN
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where fQ,P(∙) is the joint PDF of Qtotal and Pmax and it is given by Eq. (5); qn and pn are the total 

discharge and the maximum impact pressure of the n-th record, respectively. 

The calculation of model evidence involves multidimensional integration, which can be 

computationally expensive as the number of model parameters increases.  To address this 

problem, a recently proposed Bayesian updating technique, called Bayesian updating with 

structural reliability methods (BUS) (Straub and Papaioannou, 2015) is employed.  The BUS not 

only gives the model evidence, but also generates posterior samples of ω for evaluating EP by 

Eq. (3).  For the sake of conciseness, the details of BUS are not provided herein.  Interested 

readers are referred to Straub and Papaioannou (2015) and Diazdelao et al. (2017). 

 

4 Results 

Fig. 2 shows the most probable model M* and probabilities of candidate models for continuous 

flow and surge flow.  The most probable models for continuous flow and surge flow are 

{Lognormal, Lognormal, Frank} with the probability of 0.73 and {Weibull, Gamma, Clayton} 

with the probability of 0.58, respectively.  The probabilities of other candidates are much 

smaller than those of the most probable model. 

With the most probable model M* and posterior samples of ω, the EP of Qtotal and Pmax 

based on observation data can be estimated by Eq. (3), as shown in Fig. 3.  Moreover, the 

coefficient of variation (COV) of the estimated EP can also be obtained using the proposed 

method, as shown in Fig. 4.  For relatively large threshold values, the EP of debris flows exhibits 

large fluctuation due to scarcity of observation data of extreme events (i.e., debris flows with 

relatively large Qtotal and Pmax).  Since the EP for large threshold values provides valuable 

information for the determination of the design value of Qtotal and Pmax in the design of 

mitigation strategies and countermeasures, the large fluctuation of EP for extreme events might 

cause insufficient design and its associated uncertainty should be considered with caution. 

For comparison, the EP reported by Hong et al. (2015), where the probabilistic model is 

identified by K-S test and the model parameters are determined by the method of moments, is 
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Figure 2. Model probabilities of candidate models for: (a) continuous flow; (b) surge flow. 
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(a) (b) 

Figure 3. Contours of EP for: (a) continuous flow; (b) surge flow. 
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Figure 4. COVs of EP for: (a) continuous flow; (b) surge flow. 

 

also included in Fig. 3 by dashed lines.  For both continuous flow and surge flow, the proposed 

method gives larger estimates of EP than Hong et al. (2015) at a given threshold value.  Note 

that the proposed method considers the uncertainty in model parameters, which is ignored in 

Hong et al. (2015). This indicates that ignoring the uncertainty in model  parameters may lead to 

underestimation of EP or unconservative designs for debris flow mitigation measures. 

The EPs of continuous flow and surge flow exhibit quite different patterns, especially for 

extreme events.  For relatively large threshold values (e.g., q=1600×103m3, p=800kPa), the EP 

of continuous flow (e.g., 0.033 by the proposed method and 0.006 by Hong et al. (2015)) is 

larger than that of surge flow (i.e., 0.002 by the proposed method and 0.003 by Hong et al. 

(2015)), indicating the risk level of continuous flow is higher than that of surge flow.  This 

pattern indicates that, to achieve the same safety degree, the design standard of countermeasures 

of continuous flow is higher than that of surge flow.  Therefore, continuous flow plays a 

dominant role in the design of mitigation strategies. 

 

5 Summary and Conclusions  

This study proposed a Bayesian approach to develop the probabilistic model for modelling EP of 

debris flows.  Copulas are used to construct a pool of candidate bivariate models of Qtotal and 

Pmax.  The proposed approach identifies the most probable model among a pool of candidate 

models, and quantifies the uncertainty of EP. The proposed approach was applied to Jiangjia 
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Ravine, China. Results show that EP of debris flows might be underestimated without proper 

consideration of uncertainty of EP, resulting in an unconservative risk assessment or insufficient 

risk mitigation measures.  Comparison of EP between continuous flow and surge flow reveals 

that the risk level of continuous flow is higher than that of surge flow.  Therefore, it is worth 

paying more attentions to continuous flow in the design of mitigation strategies and 

countermeasures at Jiangjia Ravine.  More importantly, the uncertainty of EP was presented in 

the form of its COV.  Results showed that the uncertainty of EP for large threshold values is 

inevitably large due to scarcity of observation data of extreme events, and the uncertainty of EP 

for surge flow is greater than that for continuous flow at the same threshold value.  The 

uncertainty should be treated carefully in the design of mitigation strategies and 

countermeasures to avoid unconservative designs. Although equations in this study were derived 

based on Qtotal and Pmax data, the probabilistic model can be developed based on other quantities 

of debris flows (e.g., travel distance) using the proposed approach.   
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