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The response surface method is regarded to be efficient for the problems, of which the limit state 
functions may not be available in explicit form and frequently require computational expensive 
numerical procedures, and builds a bridge between the existing reliability algorithms such as the 
first-order reliability method (FORM) and the second-order reliability method (SORM) and the 
standalone numerical packages. Focusing on practical reliability analysis and design of tunnels, 
the application of response surface method will be discussed. Different response surface models, 
including polynomial functions, artificial neural network and moving least square method, are 
introduced and compared. An iterative algorithm and an adaptive sampling technique are 
proposed. The efficient and practical procedures which combined the response surface methods 
with FORM and SORM are illustrated via examples of underground rock excavation. The 
application of response surface method to the reliability-based design optimization, in which 
two nested optimization procedures, i.e., the outer design optimization and the inner reliability 
analysis, are also presented for seeking an optimal design scheme for a circular tunnel.  
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1 Introduction 

The first-order reliability method (FORM) and second-order reliability method (SORM) are 
popular in reliability analysis of geotechnical engineering involving uncertainties, which are 
well-documented in Ditlevsen (1981), Ang and Tang (1984), Baecher and Christian (2003) and 
Melchers (1999), for example. The spreadsheet-based procedures for FORM and SORM 
proposed in Low and Tang (2004, 2007) and Low (2014) provide an intuitive perspective and 
efficient tool for geotechnical reliability analysis. However, for most practical problems of 
underground rock tunnels, stand-alone numerical packages such as finite element method are 
usually involved, where the limit state functions are implicit. This will lead to some difficulties 
in carrying out reliability analysis with these easily conducted procedures. To overcome this 
obstacle, the response surface method (RMS) is commonly adopted to approximate the implicit 
functions with simple closed-form solutions (Lü et al. 2011, Lü and Low 2011).   

 In the traditional RSM technique, polynomial functions were usually adopted to fit the 
unknown limit state surface (LSS) in the vicinity of the most probable failure regions. However, 
some advanced models such as artificial neural network (ANN) (Lü et al. 2012) and moving 
least square method (MLSM) (Lü et al. 2012) have also been proposed and applied for reliability 
analysis of rock tunnel excavations. These surrogate models provide a variety of alternatives for 
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reliability analysis under the framework of RSM. All models have their own advantages as well 
as disadvantages due to their unique characteristics, therefore, each of them plays a 
complementary role to others and would not be replaced. This paper will focus on practical 
reliability analysis and design of tunnels using RSM. Different response surface models, 
including polynomial functions, ANN and MLSM, are introduced and compared. In addition, the 
application of RSM to the reliability-based design optimization of a circular tunnel is also 
investigated. 
 
2 Three considerations when perform reliability analysis using RSM 

For the reliability analysis using response surface method, the computational accuracy 
depends on the fitting precision of the approximate response surface to real limit state function 
especially in the vicinity of the design point. Thus, there are three aspects which should be taken 
into consideration, i.e., the surrogate model type, the selection of sampling points and the 
algorithm of the procedure. 
 
2.1    Surrogate models 

The accuracy of the response surface in presenting the behavior of the actual limit state function 
largely depends on the surrogate model used for its generation.  Brief introductions and 
comparisons to several surrogate models used in tunneling engineering are presented in this 
section. 

 
2.1.1    Polynomial function 

The polynomial function regarded as response surface is generally known as least square 
regression and are widely reported in literatures (Bucher and Bourgund 1990, Mollon et al. 
2009).  The polynomial-based response surface is generated to replace real limit state function 
from a set of sampling points.  For example, a quadratic polynomial function has the form as 
below. 
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where xi is the basic random variables and n is the number of the random variables; And a0, ai, 
and aij are the unknown constant coefficients which are to be determined using the sampling 
points.  Most commonly, least square is used to determine the coefficients that minimize the 
error of the approximation at the sampling points. 

Generally, the widely used polynomial functions are linear and quadratic, in which the 
quadratic polynomial contains the quadratic polynomial function without and with cross terms.  
In Eq. (1), when all the coefficients of aij are zero, the polynomial function is then the linear 
polynomial.  

Certainly, for most function fitting problems, a high-order polynomial will generate a 
relatively superior fitting accuracy, but may also yield the over-fitting result and may lead to an 
exponential increase in the required number of the sampling.  Therefore, less attention has paid 
to the high-order polynomial response surface (Li et al. 2010). 
 
2.1.1    Artificial neural network  

Artificial neural network (ANN) is a powerful paradigm for mapping the relationship between a 
set of inputs and one or more outputs by means of training data obtained from either real 
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experiments or numerical simulations.  A number of applications of ANN in civil engineering 
have been reported (e.g., Cheng and Li 2008, Cho 2009, Zhang and Goh 2016). 
 

 
Figure 1. Architecture of the three-layer network with n inputs, h hidden neurons and one output. 
 
The most widely used ANN is the multi-layer feed-forward back-propagation network (see 

Figure 1).  The architecture of this ANN is composed of a number of neurons which are 
connected with weights and logically arranged into the input layer, the hidden layer and the 
output layer. However, the selection of the number of hidden neurons is more difficult because 
using too few neurons impedes the training process and prevents the correct mapping of inputs 
to outputs, while using too many neurons tends to overfit the data and requires more 
computation (Hagan et al., 1996).  There is no general rule for determining the appropriate 
number of hidden neurons.  In addition, the ANN network requires to be trained by adapting 
their weights and biases using optimization methods, which is a daunting task. 
 
2.1.2    Moving least square method 

In the moving least square method (MLSM), the approximated function can be written as: 

 T
( ) ( ) ( )g =x x xp a( ) (g ( ) (( ) (( ) (( ) (( ) (( ) (( ) (( ) (  (2) 

where x is the vector of random variables, [ ]
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vector, a(x) is the undetermined coefficient which depends on the x coordinate.   
The form of MLSM is analogous to the traditional least square method (LSM).  But 

compared with the LSM, there are two significant improvements in MLSM: (1) The 
approximated function is not a simple polynomial or other general functions but consists of a 
coefficient vector a(x) and basis function p(x), where both a(x) and p(x) are functions of x 
coordinate; (2) It considers that the value of fitted function ( )g x( )g ( )( )  is only affected by the samples 
within the sub-domain of the x point and gives more weights to samples that are “nearby” rather 

than giving all samples equal weight.  Therefore, the MLSM is a local approximation. 
Due to the local approximation around each point through a weight function, the MLSM can 

achieve the reduction of the approximation error and the dependence on the type of basis 
function. 
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2.2    Selection of training samples 

Generally, the accuracy of response surface not only rests on the type of surrogate model, but 
also depends on the design of experiments (DOE) for selecting the sampling point location and 
density.  In reliability analysis, the random sampling method and central composite design 
method are commonly used to prepare sampling points.  However, the random sampling method 
can not guarantee the distributed uniformity of samples in the domain of interest.  

Recently, new experimental techniques are emerging for the DOE that provides the new 
alternatives for the selection of training samples, among which the Latin hypercube sampling 
(LHS) and uniform design (UD) are commonly employed sampling technique.  These methods 
provide a space-filling technique that guarantees that the sampling points are scattered in the 
domain as uniformly as possible.  In general, the UD is a deterministic method, whereas the 
LHS is a random method.  Due to the stochastic nature of the LHS, its results are not the same 
for each sample, and the uniformity of space filling is not always satisfactory, which may create 
an unstable response surface, especially for a low number of sampling points.  However, the use 
of LHS in computers is convenient and less limited by the increase in data dimension (Ji et al. 
2017).  And the application of UD can be efficiently performed with tabular procedures.  A 
series of UD tables have offered great convenience to users. Using the existing UD table, the UD 
method can generate steady, uniform and representative samples conveniently.  But additional 
computational effort may be required to obtain the tabularized uniform design data without 
available UD table, especially when the dimension is high and the number of samples is large. 

 
2.3    Procedures of reliability analysis using RSM 

After the determination of the surrogate model and the sampling points, a response surface 
can be readily established to approximate the implicit limit state function.  Based on this 
obtained explicit response surface, the standard reliability method, such as the FORM, can be 
adopted to compute the reliability index and the corresponding design point conveniently.   

It is essential to realize that the approximation of RSM should be as sufficiently well as 
possible to obtain the accurate reliability results.  Thus, enough samples are needed to construct 
the response surface model.  This approach that only built one response surface model can be 
found in the application of RSM in tunnel engineering (e.g., Li et al. 2016).  However, one issue 
may be encountered that how to determine the appropriate number of samples.  

In addition to above mentioned approach, the iterative algorithm is more commonly used in 
reliability analysis with RSM in which the response surface model is updated continuously 
based on the tentatively obtained design point. As the narrow region around the design point 
contributes most to the probability of failure, the iterative algorithm can improve the estimation 
accuracy of the response surface near the design point.  For this reason, an adaptive sampling 
technique is proposed that the sampling range starts from a relatively large value and gradually 
reduced to a small value in the subsequent iteration.  In the first iteration, the sampling points are 
around the mean value with a relatively large sampling range to roughly locate the position of 
the design point.  Then new sampling points are added around the tentative design point with 
small range to gradually approach the true design point and improve the accuracy of response 
surface model around the design point.  With such iterative procedure, the design point and the 
reliability index could be accurately seeked. 

The practical procedure for tunnel reliability analysis which combined the response surface 
methods with FORM and SORM can be outlined as following:  

Step 1: Prepare sampling points in U-space using UD.  
Step 2: Build the samples set for response surface model by calculating the limit state 

function at each sampling point. 
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Step 3: Construct the response surface and compute reliability index and design point. 
Step 4: Check convergence. Update the response surface model based on new added 

sampling points around design point until the convergence criterion is satisfied. 
 To illustrate the efficiency and accuracy of the proposed procedure, the circular rock tunnel 

example of Lü et al. (2017) is revisited here.  Three types of response surface model, i.e., 
polynomial function, MLSM, and ANN, are compared. The results are presented in Table 1. 

 
Table 1. Comparison of reliability results from different response surface methods 

 

  MCS 
MLSM-RS 

RSM-1 
RSM-2 RSM-3 ANN-RS 

FORM SORM FORM SORM FORM SORM FORM SORM 

g1 
Pf (%) 0.089 0.104 0.092 0.104 0.104 0.085 0.104 0.087 0.104 0.087 

N 2×105 55 55 40 60 60 108 108 47 47 

g2 
Pf (%) 0.451 0.441 0.557 0.441 

Non-convergence 
0.441 0.447 0.441 0.455 

N 2×105 55 55 56 144 144 55 55 

g3 
Pf (%) 0.734 0.670 0.780 0.670 0.671 1.055 0.670 0.728 0.670 0.731 

N 2×105 71 71 48 75 75 144 144 55 55 
Note: RSM-1, 2, 3 denote first-order polynomial-RS, second-order polynomial-RS with and without cross terms, 
respectively; N denotes the total number of the sampling points. 

 
As shown in Table 1, the FORM results for different methods are equivalent.  For the 

MLSM-RS, the total number of required sampling points is relatively small compared with the 
polynomial-RS and almost equivalent with the ANN-RS.  Although the first-order polynomial-
RS (RSM-1) can achieve the same reliability index with fewer samples for the case in hand, it 
cannot perform SORM analysis because the first-order polynomial is incapable of capturing the 
curvatures around the design point.  Regarding the SORM results, the ANN-RS and the second-
order polynomial-RS with the cross terms (RSM-3) show reasonable accuracy when compared 
with the MCS results.  And MLSM-RS also shows good accuracy except that the error of one 
limit state function is relatively large.  However, it is worthy to be noted that RSM-2 encounters 
the non-convergence issue, in which a pseudo response surface may occur during the iterative 
process. 
 
3 Reliability-based Design Optimization Using RSM 

In general, the mathematical formulation of a reliability-based design optimization (RBDO) 
problem can be defined as the form: 
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In can be seen, the formulation of the RBDO methods involves two nested optimization 
procedures, i.e., the outer design optimization and the inner reliability analysis.  According to 
the differences in the manner of dealing with the two optimization procedures, the RBDO 
algorithms can be classified into three categories, namely, the double-loop approach, the single-
loop approach and the decoupled approach (Aoues and Chateauneuf 2010), among which the 
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double-loop approach is the most direct method to solve the RBDO problem.  The double-loop 
approach deals with reliability assessment in the inner loop and the design optimization in the 
outer loop, which leads to a nested optimization since the reliability analysis in essence is also 
an optimization procedure. 

On the other hand, the limit state functions for tunnels are usually not available in their 
explicit forms, which leads to some difficulties in carrying out reliability analysis in the 
framework of optimization-based approaches.  At this time, the RSM can again be adopted to 
deal with RBDO.  The proposed procedure in section 2.3 with the iterative algorithm and 
adaptive sampling technique is used for computing the probabilistic constraints in RBDO.  And 
here a linear polynomial is used as response surface model because of the less calculation cost 
for linear polynomial response surface. 

A circular rock tunnel example presented in Lü et al. (2017) is analyzed to get an optimal 
design scheme.  Two design variables, the shotcrete thickness and the distance from the 
shotcrete installation position to the tunnel face, are optimized to achieve the required reliability 
level with the minimum cost. 
 
4 Conclusions 

The application of RSM to the probabilistic analysis of rock tunnel excavations are introduced in 
this paper. Three types of surrogate model, i.e. polynomial function, ANN and MLSM, are 
presented and discussed.  The efficient and practical procedure which combined the RSMs with 
FORM and SORM are illustrated via examples of a circular tunnel.  

The RBDO, in which two nested optimization procedures, i.e., the outer design optimization 
and the inner reliability analysis, are also presented.  And a procedure that the RSM is used to 
deal with RBDO is presented to carry out the optimization design of tunnels.  
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