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This paper considers the service pricing problem in a duopolistic port competition system. In 

this system, the two ports compete for customers from the same hinterland. Besides the two 

ports, there is also a dry port set by one of the two ports. This paper examines the optimal 

pricing strategies of the two ports by applying a game theoretical approach based on the 

Hotelling model. Equilibrium results are derived for the game. 
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1 Introduction 

The annual volume of world trade has grown steadily in more than four decades.  As linages 

among different transportation modes, air ports and sea ports play very import roles in the world 

economy.  To deal with the increasing transportation demand, recent years has seen great 

growths in the number and capacities of air and sea ports.  Besides, competition among ports, 

especially geographically close ones has become fiercer than ever.  

To win competitive advantage, one common practice of ports is to set up dry ports in the 

hinterland.  Considering the economies of scale, the inland transportation between the dry ports 

and the ports can be conducted at a lower freight rate than the transportation between individual 

customers and the ports.  By setting up dry ports with its hinterland, a port can reduce the costs 

of some customer for using port services, which, in turn, will bring more customers to the port.   

Our analysis considers two duopolistic ports that compete for the traffic from the same 

hinterland.  One of the two ports has a dry port in the hinterland.  The two ports compete by 

setting their ports charges (pricing), and they decide their pricing policies simultaneously.  Note 

that while the port without dry ports only needs to price its service at the port, the one with a dry 

port needs to set charges both for the port and its dry port.  This paper aims at deriving the 

optimal pricing policies for the two ports by applying a game theoretical approach.  

 

2 Literature Review 

Port competition is currently an important concern in port studies. Ishii et al., (2009) constructed 

a non-cooperative game-theoretic model for the competition of two ports.  The ports compete by 

setting port charges at each time the ports invest in their capacities. The Nash equilibrium was 

derived using the model. Kaselimi et al., (2011) applied game theoretical analysis in the 

competition between multi-user terminals considering the impact of dedicated terminals. Zhuang 

et al., (2014) provided a game theory analysis of port specialization. The paper analyzed the 

competition between two ports that provide differentiated services in the sectors of containerized 

cargo and dry-bulk cargo. A Stackelberg game and a simultaneous game were used to formulate 

the competition.  

To the best of our knowledge, there have been no existing studies in the port competition 

area that focused on the impact of dry ports. This study analyzes the service pricing problem of 

two ports that compete for customers from the same hinterland using a game-theoretical 

approach.  Impacts of dry ports are considered in the problem. 
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3 Problem Description  

In this section, we give a detailed description of the considered problem.  Suppose in a region, 

there are two duopolistic ports located at the different ends of the region.  We denote the two 

ports by Port 1 and Port 2.  Besides the two ports, we further assume that Port 1 has a dry port 

(denoted by Dry Port 3) in the hinterland.  There are a number of cargo owners or consignees 

located within the hinterland of the two ports.  We refer to both cargo owners and consignees in 

the hinterland as customers and their exporting or importing requirements as demands for the 

ports.  In the considered problem, we assume that the customers have unit demand, that is, 

within a certain period, they export or import the same amount of cargoes.  We suppose the 

transportation demands of customers must be satisfied (i.e., the market is covered).  In the 

following sections, we introduce the geographical settings and the cost structure of the 

considered problem.  Cargoes are shipped between the ports and customers in the region in two 

different modes: they can be directly transported between the customers and Port 1 or 2 (the CP 

mode) or can be transported via Dry Port 3 and before being delivered to Port 1 or the customers 

(the CL mode).  

We assume that cargo shippers and consignees within the hinterland are indifferent to the 

ports and shipment modes (except for their generalized cost), so the two ports, and for Port 1, the 

two modes are perfect substitutes. 

 

3.1    Geographical Settings 

As shown in Figure 1, suppose the two ports and the hinterland of the region forms a linear 

region.  The two ports are located at the two ends of the region and customers are distributed 

uniformly within the hinterland.  We further suppose without loss of generality that the region 

can be placed into a one-dimensional coordinate system. In the coordinate system, the locations 

Port 1 and 2 are 0 and 1, respectively.  Port 1 has a dry port in the region, and we denote the 

location of the dry port by 3x .  

 

Port 1

0 1

Port 2

Port

Dry Port

Costumer
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LP mode

Dry Port

x3

 
Figure 1. Port-hinterland layout. 

 

3.1    Cost Structure 

In this section, we analyze the costs of the ports and the customers.  First, the costs paid by Port 

1 and 2 for providing services for the customers mainly include the costs for: 

 

(i) Handling, moving and stocking cargoes at Port 1 and 2 (denoted by 1F   and 2F , for both 

modes); 

(ii) Handling, moving and stocking cargoes at Dry Port 3 (denoted by 3F , for the CL mode of 

Port 1 only); 

(iii) Transporting cargoes between the Dry Port 3 and Port 1 (denoted by U , for the CL mode 

of Port 1 only). 
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Denote the demands for Port 1 and 2 by 1d  and 2d , respectively, and denote the demand in 

CL mode for the dry port by 3d .  In addition, we assume that 1F , 2F  and 3F  are linear to the 

corresponding demands, i.e., 1 1 1 3( )F c d d= + , 2 2 2F c d= , and 3 3 3F c d=  , where ic (i=1,2,3) are 

coefficients.  As for U , we assume that the generalized unit transportation (time and money) 

cost is linear to the squared value of the distance between Dry Port 3 and Port 1, that is 
2

3 3U x da= , where a  is a coefficient.  

As for the customers, the costs mainly include: 

 

(i) The generalized transportation (money and time) cost between Port 1, 2 or Dry Port 3 and 

their locations (denoted by 1G , 2G  and 3G , respectively) ; 

(ii) The port charges paid to Port 1, 2 or Dry Port 3 (denoted by 1p , 2p   and 3p , respectively). 

 

Hence, for customers who transport their cargoes directly through Port i, the total cost is 

i i iC G p= + .  In addition, we assume that the transportation cost between the customers and the 

ports is linear to the squared value of the distance between them.  Therefore, for a customer 

located at x ( 0 1x£ £ ), we have 2

1G xb= , 2

2 (1 )G xb= - , and 
2

3 3( )G x xb= - , where b  is a 

coefficient and b a> . 

 

4 The Game 

The two ports compete by setting pricing policies and while Port 2 only needs to price the 

service at the port ( 2p  ), Port 1 needs to price port services both at the port ( 1p  ) and at its dry 

port ( 3p  ).  We further suppose that all the ports and the dry port are valid (i.e., each has non-

zero transportation demands from customers).  Therefore, we have the following relationships 

among 1p  , 2p  and 3p :   

 2

1 3 3p p xb< + , (1) 

 2

3 1 3p p xb< + , (2) 

 2

3 2 3(1 )p p xb< + - , (3) 

 2

2 3 3(1 )p p xb< + - . (4) 

Constraint (1) ensures that Port 1 is not dominant by Dry Port 3, which means at least 

costumers located at Port 1 prefer to transport their cargoes via Port 1 rather than Dry Port 3. 

Similarly, Constraints (2)-(4) ensure Dry Port 3 is not dominant by Port 1, Dry Port 3 is not 

dominant by Port 2 and Port 2 is not dominant by Port Dry Port 3, respectively.  

We first derive locations where a marginal customer is indifferent between two of the three 

ports (including two ports and one dry port). Let %
13x   and %23x   denote the locations where 

costumers are indifferent to transporting their cargoes between Port 1 and Dry Port 3 and Port 2 

and Dry Port 3, respectively. Note that constraints (1)-(4) ensure that there is no direct 

competition between Port 1 and 2. Then we have the following equations: 
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 % %2 2
13 131 3 3( )x p x x pb b+ = - + , (5) 

 % %2 2
23 232 3 3( 1) ( )x p x x pb b- + = - + . (6) 

After solving the above equations, we obtain %
2

3 3 1
13

32

x p p
x

x

b
b
+ -

= , and %
2

3 2 3
23

32 (1 )

x p p
x

x

b b
b

- + -
=

-
.  

The following proposition describes the relationship between %13x  and %23x . 

 

Proposition 1. The indifferent locations among the three ports satisfy the following relationship: 

% %
13 23x x< . 

 

Proof. Since 2

3 1 3p p xb- <  due to (2), we have %
2

3
13 3

3

2

2

x
x x

x

b
b

< =  .  Besides, since 

2

2 3 3(1 )p p xb- > - -  due to (3), we have %
2 2

3 3
23 3

3

(1 )

2 (1 )

x x
x x

x

b b b
b

- - -
> =

-
.  This implies 

% %
13 23x x< . □ 

 

Based on Proposition 1, we can now derive the demands for Port 1, 2 and Dry Port 3, 

which are demonstrated as follows. 

 

%

%
13

131

0

1

x

d dx x= =ò , (7) 

 
%

%

23

1

232 1 1
x

d dx x= = -ò , (8) 

 
%

%

% %
23

13

23 133 1

x

x

d dx x x= = -ò . (9) 

Based on the demands, the revenues ( 1 2,P P ) for the Port 1 and Port 2 are 

2

1 1 1 1 3 3 1 3 3=( ) ( )p c d p c c x daP - + - - - , and  2 2 2 2=( )p c dP - .  The objectives of the two ports 

are to maximize their own profits, therefore, we have the following objective functions: 

 
1 3

2

1 1 1 1 3 3 1 3 3
,

max =( ) ( )
p p

p c d p c c x daP - + - - - , (10) 

 
2

2 2 2 2max =( )
p

p c dP - . (11) 

The following theorem leads to the optimal pricing strategies of the two ports and the dry port. 

 

Theorem 1. Unique Nash equilibrium port charges exist for the game and optimal prices of port 

charges at Port 1, 2 and at Dry Port 3 are 

 
2 2

* 3 3 3 1 2 3

1

4 4 2 6

6

x x x c c c
p

a b b b+ - + + + +
= , (12) 
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2 2

* 3 3 3 1 2 3

2

4 2 3

3

x x x c c c
p

a b b b+ - + + + +
= , (13) 

 
2 2

* 3 3 3 1 2 3

3

2 2 2 2 3

3

x x x c c c
p

a b b b- - + + + +
= . (14) 

Proof.  To begin with, we transform the revenue functions 1P  and 2P  as follows. 

 

% % %

2

1 1 1 1 3 3 1 3 3

2
13 23 131 1 3 3 1 3

2 2 2

23 3 1 3 2 3 3 3 1

1 1 3 3 1 3

3 3 3

2 2

23 3 1 3 3 2 3 3 1

1 1 3 3 1 3

3

=( ) ( )

( ) ( )( )

( ) ( )( )
2 2 (1 ) 2

( ) ( )(
2

p c d p c c x d

p c x p c c x x x

x p p x p p x p p
p c p c c x

x x x

x p p x x p x p p
p c p c c x

x

a

a

b b b b
a

b b b

b b b
a

b

P - + - - -

= - + - - - -

+ - - + - + -
= - + - - - -

-

+ - - + + - +
= - + - - - 1 3

3 3

)
2 (1 )

p x

x xb

-

-

, (15) 

 %

2 2 2 2

232 2

2

3 3 3 2

2 2

3

( )

( )(1 )

2
( )

2 (1 )

p c d

p c x

x p x p
p c

x

b b b

b

P = -

= - -

+ + - -
= -

-

. (16) 

Then, we analyze the optimal port charges of Port 2 given the optimal charges at Port 1 

( *

1p ) and Dry Port 3 ( *

3p ).  The first and second order derived functions of (16) are 

 
2 *

3 3 3 2 22

2 3

2 2

2 (1 )

x p x p c

p x

b b b

b

+ + - - +¶P
=

¶ -
, and  

2

2

2

32

1

2 (1 )xp b

¶ P -
=

-¶
. Therefore, 

2

2

2

2

0
p

¶ P
<

¶
, 

which implies that 2P  is a concave function of 2p .  We then have the optimal 2p  when 

2

2

0
p

¶P
=

¶
, which gives 

 
2 *

* 3 3 3 2

2

+ 2

2

x p x c
p

b b b+ - +
= . (17) 

Next, we derive the optimal charges at Port 1 and Dry Port 3 given the optimal charge at Port 2 

( *

2p ).  To do this, we first show that 1P  is joint concave towards 1p  and 3p .  For 1P , we 

have: 
2

1

2

31

1
0

xp b

¶ P
= - <

¶
, 

2

1

1 3 3

1
0

p p xb

¶ P
= >

¶ ¶
, 

2

1

2

3 33

1
0

(1 )x xp b

¶ P
= - <

-¶
, and 

2

1

3 1 3

1
0

p p xb

¶ P
= >

¶ ¶
.  

Besides, the Hessian matrix H for 1P  is  
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2 2

1 1

2

1 31

22 2
31 1

2

3 1 3

1
H 0

p pp

x

p p p

b

¶ P ¶ P

¶ ¶¶
= = >

¶ P ¶ P

¶ ¶ ¶

. (18) 

Hence, 1P  is a joint concave function of 1p  and 3p , and the optimal value *

1p  and *

3p  can be 

obtained using the first order condition as follows. 

 
2 * 2

* 3 3 3 3

1

2

2

x p c x
p

b a+ - -
= , (19) 

 
* * * 2 2

* 1 1 3 1 3 3 2 3 3 3 3

3

2 2

2

p p x c x x p x x c x
p

b b a- + + + - + +
= , (20) 

Finally, solving the equation system of (17), (19) and (20), we can obtain the optimal port 

charges at Port 1 and 2 and Dry Port 3 ( *

1p , *

2p , and *

3p ) as in (12), (13) and (14). □ 

As we can see from the above theorem, in a duopolistic port competition system with one 

dry port, the location and the service cost of the dry port affect the pricing decisions of all the 

three ports. 

 

5 Conclusion 

In order to attract more customers, many ports have decided to build dry ports in the hinterland. 

This paper analyzed pricing problem of two duopolistic ports that compete for customers from 

the same hinterland where one of the two ports has set up a dry port.  The problem was 

formulated as a non-cooperative game based on the Hotelling.  Based on the game, this paper 

derived optimal pricing policies for the two ports.  For future studies, it would be an interesting 

topic to study the pricing strategies when both ports have dry ports in the hinterland. 
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