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This paper extends two existing day-to-day models, including the Smith dynamic (Smith, 1984) 

and the BNN dynamic (Brown and von Neumann, 1950), to capture the marginality and bounded 

rationality in traffic flow evolution. Properties of the extended Smith dynamic are theoretically 

investigated and the extended BNN dynamic is numerically evaluated. We found the stationary 

point of the proposed MU-BRUE Smith dynamic coincides with boundedly rational user 

equilibrium (BRUE) path flow pattern. It is proved that this dynamic system is a RBAP-BRUE 

processes (Ye and Yang, 2017) and admit the globally asymptotical stability. Numerical 

experiments are conducted to compare the evolution trajectories with and without considering the 

marginal cost and examine the stability of proposed models. 
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1! Introduction 

Bounded rationality was first proposed by Herbert A. Simon in the 1950s to model people’s 

irrational decision-making behaviors resulted from the cognition limitation. It was first introduced 

by Mahmassani and Chang (1987), and later widely investigated in the transportation research. As 

an extension of classical user equilibrium (UE), boundedly rational user equilibrium (BRUE) 

characterizes a stable status that travelers can take any path whose journey time is within a so-

called “indifference band” of the shortest path cost (Di et al., 2013). These models focus on the 

final state of distribution of Origin-Destination (OD) demand throughout the entire network. 

While in a real network, it is always observed that events like traffic incidents, demand variation, 

capacity modifications etc. might affect the traffic flow pattern from equilibrium to disequilibrium 

(Kumar and Peeta, 2015). For such cases, the day-to-day models are required to explain the 

mechanism of network flow evolution and the possibility of approaching the UE or BRUE state. 

The empirical flow data during the collapse and reopening of the I-35 W Bridge suggested that a 

network change could be irreversible when the initial equilibrium path flow pattern cannot be 

restored by revoking the change (Guo and Liu, 2011). To account for this irreversible change, they 

proposed a link-based BRUE day-to-day model, whose mathematical properties were further 

investigated by Di (2013). Recently, Ye and Yang (2017) proposed a general framework for the 

BRUE-based “rational behavior adjustment process” (BRUE-RBAP). 

Most day-to-day models focus on the impact of historical path flow and cost on the number 

of drivers switching their path under the dis-equilibrium state. Mankiw (2012) proposed the 

principle that “rational individual think at marginal utility” which stated that a rational people 

evaluate the marginal cost when there are multiple choices. Inspired by this principle, Kumar and 

Peeta (2015) incorporated the sensitivity of the path cost to path flow into the day-to-day model. 
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In this paper, we extend two existing day-to-day models, including the Smith dynamic (1984) and 

the BNN dynamic (1950), to capture both the marginality and the bounded rationality in the flow 

evolution process towards equilibrium. The invariance property and asymptotic stability are 

discussed in this study. The rest of this paper is organized as follows. Section 2 introduces the 

background of mean-dynamics. Section 3 introduces the two existing models. Theoretical 

properties of the extended smith dynamic are analyzed. In Section 4, numerical example based on 

the Braess network is presented to compare the evolution processes of extended Smith dynamics 

and BNN dynamics with different initial states. 

 

2! Mean-dynamics 

We first provide the notations and definitions. The feasible flow set are defined as ! "

#$# % &'() * % +() ( , - , where ' is the link-path matrices and + is the OD-path matrices. 

Notation Definition 

. the set of O-D pairs; 

/0 the set of all paths connecting OD pair 1 2 .; 

30 travel demand for O-D pair 1 2 .; 

45
0 path flow on path 6 2 /0; 

( the vectors of path flow ( % 45
0 ) 6 2 /0 ) 1 2 .

7
; 

89 link flow on link&: 2 ;, where ; is the link set; 

< the vectors of link flows < % =9) : 2 ;
7; 

>5
0 path travel cost on path 6 for OD-pair 1; 

?0 the minimum path travel cost between OD pair 1 2 .. 

 

Based on the notion of revision protocol, Sandholm (2010) developed the framework of mean 

dynamic Eq. (1). Many existing deterministic evolutionary game models can be viewed as its 

special cases. The similar framework in the perspective of day-to-day dynamics was introduced 

by Yang and Liu (2005). 

345
0

3@
% 4A

0BA5)0 C 45
0 B5A)0
A2DEA2DE

) FG 2 /0 ) 1 2 .) (1) 

where BA5)0HI0 ) (0J describes the swapping rate of each driver from path G to path 6 connecting 

OD pair 1. It has been shown that when the revision protocol follows BA5)0 % K0LMN O) >A
0 C >5

0 , 

where K0& is an OD-dependent sensitivity parameter, we obtain the Smith dynamic. If BA5)0

P% K0Q50 , where Q50H(J % R 6 % MSTLUV
A2DE

>A
0H(J , the mean dynamic degenerate to the best 

response dynamics. Even though the best response dynamics is discontinuous, the existence result 

may still exist due to the good regularity properties of the set-valued mapping. If the revision 

protocol follows BA5)0 P% W0Q50 , where Q50H(J % LMN O) C>5
0 X >0 , we arrive at the BNN 

dynamic. Eq.  (1) describes that the current path cost > and flow 4 both influence the switching 

rate under the dis-equilibrium state. Moreover, in real-world scenario, drivers may also consider 

the sensitivity of path cost to the flow (He and Peeta, 2015). Drivers would more likely to shift to 

a path whose cost increases slowly with flow, e.g., the arterials with large capacity. Combining 

the above three factors, Kumar and Peeta (2015) furnished a MU-based dynamic model in which 

the path set connecting an OD pair is divided into sets of expensive path R0and attractive path R0 

using the shortes path travel time ?0  and a threshold Y. The path flow will outflow from the 

expensive set and be distributed to the paths in attractive set according to the marginal cost Z>5
0 %

[\]
E

[ ]̂
E.  
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However, the RHS of Eq. (2) may not satisfy the Lipstiz continuity and thus may have no 

classical solution, which is revealed by the following toy example. Consider a single network with 

only one OD pair connected by three parallel links. The OD demand is 12 and the link cost 

functions are given by >f %
f

g
4f
g X h, >g % 4g

g X ci, >j % k4j X cc, respectively. Suppose the link 

flow pattern is ( % & Hl) i) iJ, which is not an equilibrium state. If Y is slightly greater than 
f

j
, then 

attractive set R % c) h . By Eq. (2), ( % & Hm) m) CcnJ with _ % c. The flow of link 1 and 2 will be 

increased by same amount during a tiny time interval, after which the link 2 will immediately 

become unacceptable since the marginal cost of link 2 is greater than link 1. However, once link 

2 joins the unacceptable set R, its flow will decrease immediately and rejoin the attractive set R. 

So the RHS of Eq. (2) may not satisfy the Lipschitz continuity. When the cost function is affine, 

the discontinuity will not occur. This discontinuity also occurs in Di (2013), which is revealed by 

Ye and Yang (2017). To guarantee the nice property, the sensitivity parameter _0  must be 

bounded above by the largest excess cost of a path (see Property 1 in Kumar and Peeta (2015)). 

 

3! Marginal Utility Day-to-day Dynamics Formulation for BRUE  

To avoid the disturbing discontinuity, we extend some well-defined existing dynamical models to 

capture both the marginality and the bounded rationality. By introducing the marginal term, we 

rewrite the Eq. (1) as:  
345

0

3@
%

4A
0

Z>5
0 BA5)0 C

45
0

Z>A
0 B5A)0
o2DEA2DE

) FG 2 /0 ) 1 2 . (3) 

This form has the following features: (1)The revision revision protocol p I0 ) (0  decides whether 

it is necessary to switch the routes. If the drivers have no alternative choice, they will not consider 

the marginal cost; (2)When the drivers have multiple alternatives, the marginal cost and the travel 

cost will combine to affect the switch rate. A path with higher marginal cost will be less attractive. 

In general, we can extend the revision protocol p I0 ) (0  to pHI0 ) (0 ) q0J by considering the 

indifference band q0 for BRUE. Suppose p follows the Lipschitz condition, Eq. (3) can admit a 

unique solution. To exemplify this extension, we will focus on the Smith dynamic, where revision 

protocol BA5)0 % K0LMN O) >A
0 C >5

0 C r0 . Note that this extension can also be made for other 

dynamics following the mean dynamic. For example, the MU-BRUE based BNN dynamic can be 

achieved by revising BA5)0 % W0Q50, where Q50H(J % LMN O) C>5
0 X >0 C r

0  and >0 is the average 

travel time of all the paths of OD pair 1. MU-BRUE based smith dynamic can be described by: 
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Eq. (4) indicates that when drivers make decisions, path cost and the indifference band both 

determine whether it is a necessary swap between the two routes. If the drivers have no incentive 

to switch the route, marginal cost will not be considered. When the drivers have more than one 

option, the marginal cost will also influence the swapping rate. We first show Eq. (4) satisfies the 

important invariance property, which is expected for any valid fixed demand day to day models. 

Invariance property. If (HOJ 2 !, it holds that ( t 2 !) F&t u O.  

Proof: From Eq. (3), we have: 
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By rewriting the second term in Eq. (5), we have: 

45
0
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We can regard the 
v̂
E

w\]
E >A

0 C >5
0 C r0

s
 as an element in matrix where 6 and G denote the row 

and column respectively. Hence we have: 
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Next we show that the fixed point (set) of the dynamical system described by Eq. (4) coincide 

with the BRUE, which is elaborated in Theorem 1. Following Guo and Liu (2011), the BRUE 

condition is given below. 

Definition of BRUE. A path flow vector f is said to be a boundedly rational user equilibrium 

(BRUE) path flow pattern yz if the following condition holds: 

>5
0 (

{ ?0Xr0 )&&&45
0 u O

&u ?0 X r0 )&&&45
0)z

% O
&&&&&F6 2 /0 ) 1 2 .e (7) 

Theorem 1. The fixed point of dynamical system coincides with BRUE path flow pattern. 

Proof: Part 1: BRUE path flow pattern implies equilibrium of the day to day dynamical model. 

From Eq. (7), if a path flow pattern f is a BRUE path flow pattern, we have: 

45
|H>5

0 C ?0 C r0Js % Oe (8) 

Then the equilibrium state can be inferred from Eq. (8) for any fixed 6: 

(1)! If 45
| u O, from Eq. (7), we have >5

0 { ?0 X r0. Then we have >5
0 { >A

0 X r0, since ?0 is the 

minimal path cost between OD pair 1. Hence 45
|H>5

0 C >A
0 C r0Js % O. 

(2)! If 45
| % O, it is obviously the RHS of Eq. (4) is equal to 0. 

Part 2: The fixed point of dynamical model (4) implies that the path flow pattern is BRUE path 

flow pattern. Assume that the path 6 has the minimum path cost ?0 between OD pair 1. If the 

flow pattern is in equilibrium, we have  
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Given that ?0 C >A
0 C r0

s
% O, we have: 
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All items in Eq. (10) are positive, which leads to: 

4A
0 >A

0 C ?0 C r0
s
% O&&&&&&&&&F&G 2 /0 ) 1 2 ~e x 

Next we show that the BRUE will be globally reached over time. This asymptotical property 

is guaranteed by revealing that the dynamical system shown in Eq. (4) satisfies the BRUE-RBAP 

condition in Ye and Yang (2017).  

Theorem 2. The proposed Eq. (4) satisfies RBAP-BRUE defined in Ye and Yang (2017). 
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Proof: 
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When transportation system is under dis-equilibrium, we know that the above formula has 

even number of non-zero pairs. Without loss of generality, assume that the path cost of one pair 

of routes which consists of path 6) G connected by the same OD pair 1 satisfying >5
0 u >A

0 X r0. 

Under this scenario, it is obvious that 45
0 u O. Hence, 
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Given that >5
0 u >A

0 X r0,  

CK0
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0

Z>A
0 >5

0 C >A
0 >5

0 C >A
0 C r0 � O (13) 

Since the zero pairs are ineffectual, we arrive at >5
0 [ ]̂

E

[�52DE02~ � O. x 

Theorem 3 (Ye and Yang, 2017). Assume the BRUE-RBAP has classical solutions that are 

continuous functions of the initial conditions, and the link travel cost functions are separable. If 

4 O 2 y, then 4 @ � yz&:�&@ � �. 

We end this section by giving the following lemma on the stability property. 

Lemma. Under The proposed dynamical system (8) with separable link cost function, if (HOJ 2 !, 

it holds that ( t 2 !z as t � �, i.e., the dynamical system is globally asymptotically stable. 

Proof: It can be verified by Theorem 2 and 3 with assuming separable travel cost functions. 

 

4! Numerical Experiment 

We use the classical Braess network which has one OD pair, five 

links, and three paths (see Figure 1). Path1: O->1->3->D; Path2: O-

>2->4->D; Path3: O->2->5->3->D. For each link, the travel time 

function is chosen as the well-known BPR function: >9 89 %

>9
� c X Oeck

��

A�

�

) F: 2 ;) where >9
� is the free flow travel time and 

G9  is the link capacity. Here, >� % & Hck) cO) cO) ck) kJ& and G % & HcnOO) cnOO) ilOO) cnOO) cnOOJe  The 

OD demand is fixed to be 5400. The indifference band r % c. At @ % O, the system starts evolving 

with different initial states. Numerically, if marginal cost becomes zero (link flow is zero), we will 

add a small positive value into the marginal term. Figure 2a compares the evolution trajectories 

with and without considering the marginal cost term. The figure reveals that the marginal term 

will increase flow swapping rate. At @ % O, path 1 which has less traffic and larger capacity will be 

more attractive due to the marginal term. Moreover, the fast swapping speed may induce a different 

final equilibrium state in which the path with small marginality cost will have more traffic. Figure 

2b shows the flow trajectories of path 2 and 3 under the MU-BRUE BNN dynamics. With the 

assumption of separable link cost function, the MU-BRUE BNN dynamics can be proved to satisfy 
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the BRUE-RBAP, even though the proof is omitted here to conserve space. The figure shows that 

dynamic will also converge to the BRUE set which is possibly non-convex. At first the convergent 

speed is fast and it will gradually diminish when approaching the equilibrium. 

 

Figure 2: a. Flow evolution of MU-BRUE Smith dynamic; bb. Trajectories of MU-BRUE BNN dynamic with � % c. 

5! Conclusions 

In this paper, the Smith dynamic and BNN dynamic are extended to capture both the marginality 

and the bounded rationality in the flow evolution process from dis-equilibrium to equilibrium. The 

properties of the extended Smith dynamic are theoretically investigated and the extended BNN 

dynamic is numerically evaluated. We show that the stationary point of the MU-BRUE Smith 

dynamic coincides with BRUE path flow pattern and prove this dynamic follows RBAP-BRUE. 

Numerical experiments show that the marginal cost term can accelerate the flow swapping speed 

when the system is far away from the equilibrium. And faster swapping speed may induce a 

different equilibrium state in which the path with smaller marginality cost will endure more traffic. 
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