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In order to ensure the safety, applicability and economy of the structure, the structural reliability 

analysis is needed in the design. But the traditional reliability analysis method cannot handle 

discrete variables. More to the point, structural state will dynamic change, but the traditional 

reliability analysis method cannot give response timely especially there is new information 

(usually measurements) about the structure. This is very important in structural health 

monitoring (SHM).In this paper, Gibbs sampling method was used to identify structural physical 

parameters for linear structural models. After some conversions to structural dynamic 

characteristic equations, a linear structural identification model was obtained, and the posterior 

distribution was obtained by the Bayesian updating theory. Using the model parameters and 

taking their randomness into consideration, the samples of physical parameters were obtained 

from the conditional posterior distribution of the linear structural identification model, the Gibbs 

sampling method is employed during the process, and structural reliability was updated based on 

the identified results. The approach is illustrated by applying it to a linear shear building, results 

show that the presented method can identify the damage level and locations, then the structural 

reliability was updated, and it has good accuracy. 

Keywords: Gibbs sampling, Bayesian updating, physical parameter identification, reliability 

updating. 

 

1 Introduction 

Structural health monitoring originated in the aerospace field, In the 1970s, Yao et al, firstly 

introduced the concept of system identification into the field of civil engineering. With the 

development of computational technology and experimental technology, many researchers carry  

out extensive research on the basis of different forms of structural models. Testa and Heann 

studied the damage identification of welded structures. The damage was defined as the 

connection crack between the rod and the plate. The damage of the steel frame connection was 

identified by examining the rate of change of initial vibrat ion mode and resonance frequency. 

Loh et al. used the ARMA model to simulate the system and obtained the system parameters of 

two 8-storey buildings by the method of least squares. 

During the process of structural reliability status assessment, the measured data analysis 

can not abandon the traditional fin ite element simulat ion and exists independently. In fact, the 

two are mutually connected. Structural reliability analysis usually requires the use of finite 

element analysis to verify the credibility of the measured data analysis results. The system 

identification can obtain accurate structural modal and physical parameters, carry  out model 
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correction and guide the finite element modeling in order to obtain a more accurate finite 

element model. Structural system identification is the core technology of structural health 

monitoring, which has become an important research direction in this field. The primary task of 

structural health monitoring is to determine structural modal parameters from the measured data, 

describe the dynamic characteristics of the system as a whole, further identify structural physical 

parameters and provide a theoretical basis for fault diagnosis and reliability assessment. 

In this article, Gibbs sampling method was used to identify structural physical parameters 

for linear structural models. After some conversions to structural dynamic characteristic 

equations, a linear structural identification model was obtained, and the posterior distribution 

was obtained by the Bayesian updating theory. Then we can update the model and its reliability 

index based on the identified results. 

 

2 Method 

 
2.1   The linear regression model  

The linear regression model is generally represented as follows  (Scott,2007): 

 Y X eq= +               (1) 

 e 2(0, )eN Is  (2) 

where iy  is equal to a linear combination of a set of predictors, 
i

T
X q plus error ie , and that the 

error term is normally distributed with a mean of 0 and some variance 
2

es ,and I  is an n-

dimensional identity matrix.  The diagonal elements of this matrix are all equal, and the off-

diagonal elements of this matrix are 0s. 

A Bayesian specificat ion typically begins with a normality assumption on |y x  (often with 

the conditioning suppressed): 
2

( , )q s( ,( ,( ,
i

T

i e
y N X .  And an improper unifo rm prior over the real 

line is often specified for the regression parameters q , namely: 

   ( ) 1iP q = ( (0, ); 1,2, )i i mq Î +¥ =
ly

)))     (3) 

The prior probability distribution function (PDF) for 
2

es is taken to be the product of 

independent inverse gamma PDFs,  
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When 0a b= =  the inverse gamma prior becomes the usual Jeffreys’ non-informative 

prior, i.e., 

  
2( )eP s 21/ es    (5) 

This yields a posterior distribution that appears as: 
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A Gibbs sampling for the linear regression model can be developed when the fu ll 

conditional posterior distribution of q  and 
2

es  is known.  The fu ll conditional posterior 

distribution for 
2

es is straightforward to derive from Eq. (6): 
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This conditional posterior is easily seen to be an inverse gamma distribution with 

parameters / 2na = and ( ) ( ) / 2TY X Y Xb q q= - - .While the conditional posterior distribution 

for q is: 

2 2 ( /2 1) 1

2 1

1
( | , , ) ( ) exp [ 2 ( ) ( )]

2 ( )

n T T T T

e e T

e

P X Y X X X Y
X X

q s s q q q
s

- + -
-

ì ü
µ - -í ý

î þ
 (8) 

It can be recognized that the conditional posterior distribution for q is normal with a mean  

equal to 
1( ) ( )T TX X X Y-

and a variance of 
2 1( )T

e X Xs -
.  

 

2.2   Linear structural identification model 

In terms of structural health monitoring, linear structural models are often used for model 

updating, since much vibrat ion data of structures under investigation are obtained using low-

amplitude excitation, such as ambient v ibration and hammer. In  this case, many structures (even 

damaged nonlinear structures) behave approximately linearly, so the linearity assumption of th e 

approach is justified (Ching et al.,2006). 

The i th natural frequency iw and mode shape vector if  of a n  DOF system satisfy the 

following characteristic equation: 

{ }2[ ] 0i iK Mw f- =                                                                  (9) 

The expanded form of the equation can be expressed as follows: 
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Where 1 2, ,..., nq q q normalized no-dimensional parameters (calling the structural stiffness 

parameters in the following).  iq  indicates the contribution ratio  of  one structural member to  

the whole structure, and values range from 0 to 1.  The i th structural member can be judged to 

be damaged when 1iq < , and the damage degree can be seen through the value of iq .Note that 

the mass of the structural members are fixed values since it is less sensitive to the d amage.  If 

there is a need to identify the mass parameters, a similar transform to equation (9) will do. 

Transform Eq. (10) and plus the error term, then the linear structural identification model can  be 

expressed as follow: 
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2.3   Gibbs sampler algorithm 

l Draw the initial sample { }(0) 2(0)ˆ ˆ,q s
e from the prior PDFs and let 1k = ; 

l According to Eq. (7)and(11), sample the error term 
2( ) 2 1ˆˆ ( | , , )s s q -

( |
2( ) 2 ˆs s2( ) 2

( |( |
2( ) 22( ) 22( ) 2k k

e e
P X Y ; 

l According to Eq. (8)and(11),  sample the structural stiffness parameters 
( ) 2( )

ˆ( | , , )q q s( ) 2(( ) 2(( ) 2(
( |

( ) 2(q q( ) 2(
( |( |

( ) 2(( ) 2(( ) 2(( ) 2(( ) 2(k k

e
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l Let 1k k= + ,go back to step two and cycle to obtain N samples { }( ) 2( )ˆ ˆ, : 1, 2, ,q s = }2, ,
k k

e
k N . 

When k  gets large enough, the samples { }( ) 2( )ˆ ˆ,q sk k

e will follow the PDF
2( , | , )eP X Yq s . 

 

2.4 Reliability analysis method 

According to the structure seismic reliability formula, in the serviceability limit  [0,T],the 

probability of a structure that no damage occur under different levels of seismic action can  be 

expressed as: 

max( , ) ( , ) ( )i E K yi K

k

P Y T P I T P Id d= · <å                                                    (12) 

In which, ( , )E KP I T  is the probability o f encountering an earthquake whose intensity is 
KI  in  

the serviceability limit T, max( )yi KP Id d<  is the no-damage probability of the ith story of the 

structure when ground motion of intensity occurs. 

 

3 Result  

To examine the performance of the Gibbs sampling algorithm, studies are performed using 

simulated data from a 5-DOF linear shear structure, its physical parameters are as follows: 

There are three damage patterns in this paper: (1)DP1: loss of 40% column stiffness in the first 

floor and loss of 30% column stiffness in the second floor; (2) DP2: loss of 50% column 

stiffness in the second floor and loss of 40% column stiffness in the third floor and loss of 30% 

column stiffness in the forth floor ;(3) DP3: the losses of column stiffness in the first ,second, 

third, fourth and top floor are 50%,40%,30%, ,20%,10% respectively. 
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Table 1. Physical  parameter. 

 

Floor 
Mass 

(102kg) 

Stiffness 

(105N/m) 

1 6 1.2 

2 5 1.1 

3 5 1.1 

4 5 1.0 

5 4 1.0 

 

In order to take the randomness of the modal parameters into consideration, in this paper, 

the first-order natural frequency used during the Gibbs sampling process is assumed to follow a 

normal distribution with mean taken to be the theory natural frequency value and proper 

variance, as shown in Table.2. 

 

Table 2. Statistical properties of the first-order natural frequency. 

 

Damage Patterns 
Undamaged 

(UD) 
DP1 DP2 DP3 

Mean of 
1w   (rad/s  4.4075 3.7635 3.5962 3.401 

Variance of 
1w  0.3098 0.3000 0.3410 0.2899 

 

For simplicity, the in itial samples of the structural stiffness parameters vectorq of the four 

patterns are all taken to be [0.8 0.8 0.8 0.8 0.8]q =
T .Following the Gibbs sampler algorithm, 

the Markov chain samples of the structural stiffness parameters are obtained. The results of the 

second floor are as follows: 

           

           

 

Figure 1. Sampling of structural stiffness from UD,DP1,DP2,DP3,respectively 
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Table 3. Posterior statistical properties of the stiffness parameters. 

 
Damaged 

Patterns 

   

Mean Var Error(%) Mean Var Error(%) Mean Var Error(%) 
UD 1.0054 0.1407 0.5400 1.0052 0.1407 0.5200 1.0062 0.1408 0.6200 
DP1 0.6039 0.0957 0.6500 0.7051 0.1118 0.7286 1.0089 0.1600 0.8900 
DP2 1.0083 0.1902 0.8300 0.5042 0.0951 0.8400 0.6053 0.1142 0.8833 
DP3 0.5041 0.0858 0.8200 0.6049 0.1029 0.8167 0.7056 0.1201 0.8000 

Damaged 
Patterns 

  

Mean Var Error(%) Mean Var Error(%) 

UD 1.0054 0.1408 0.5400 1.0056 0.1409 0.5600 

DP1 1.0096 0.1601 0.9600 1.0100 0.1608 1.0000 

DP2 0.7059 0.1332 0.8429 1.0090 0.1907 0.9000 

DP3 0.8072 0.1376 0.9000 0.9075 0.1554 0.8333 

   

According the results, we can identify the degree of structural stiffness reduction and 

damage location, take the second picture of figure 1,we can known that the stiffness of the 

second floor is  reduced approximately 30%. 

In this paper, by means of -Newmark b method, 20 seis mic loads are applied to the 

structure to obtain the inter-story displacement response, The distribution of structural response 

can be fitted to a logarithmic normal d istribution, and then the failu re probability of the structure 

under various conditions can be calculated by the Monte Carlo simulation method and the subset 

simulation method. 

 

Table 4. Interlayer displacement response under DP0. 

 

 6 degree 7 degree 8 degree 9 degree 10 degree 

Logarithmic mean -11.07661 -10.38343 -9.69033 -8.99718 -8.30400 

Log standard deviation 1.49237 1.49235 1.49239 1.49238 1.49241 

Failure probability by 

MC method 
0.00068 0.00332 0.0121 0.0352 0.0905 

Failure probability by 

SS method 
0.000665 0.0030 0.0124 0.0377 0.0938 

 

The reliability of the structure can be calculated separately using Monte-Carlo method and 

subset simulations and compared with each other: 

Reliability probability by MC method(Number of samples :100000)        

Pr(MC)=0.485×0.99932+0.334×0.99668+0.1244×0.9879+0.02579×0.9648+0.00273×0.9095 

=0.9678 

Total reliability index by MC method 1 1( ) (0.9678) 1.8494rPb - -=F =F =   

Reliability probability by SS method (Number of samples:10000)  

Pr(SS)=0.485×0.999335+0.334×0.997+0.1244×0.9876+0.02579×0.9623+0.00273×0.9062 

=0.9678 

Total reliability index by SS method ' -1 -1( ) (0.9678) 1.8494rPb =F =F =
 

The interlayer displacement response under DP1, DP2, DP3 are similar to above, the results 

are as follows: 

 

1q 2q 3q

4q 5q
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Table 5. Physical  parameter. 

 

Damage Patterns Probability index(MC) Probability index(SS) 

undamaged(DP0) 1.8494 1.8494 

Damage Pattern 1(DP1) 1.7720 1.7672 

Damage Pattern 2(DP2) 1.6706 1.8692 

Damage Pattern 3(DP3) 1.5991 1.5953 

 

From the result, it can be seen that compared with the init ial structure, the structure updated 

after the physical parameters are identified, the reliability is updated and closer to the true state.  

 

4 Conclusion 

In this paper, we firstly make a series of changes to the dynamic characteristic equation of the 

structure to get the linear structure identificat ion model, and then obtain the posterior 

distribution form of the model by Bayesian update theory . By using the modal parameters of the 

structure and taking into account its randomness, the Gibbs sampling method was applied to 

successfully identify the structural physical parameters and update the structural reliability index.  
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