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It is challenging to construct a multivariate probability distribution for soil properties based on 

site-specific data, because the construction of a multivariate probability distribution usually 

requires many data points. Site-specific data are typically sparse for this purpose. The current 

study investigates the possibility of constructing multivariate probability distribution for soil 

properties based on site-specific data. To circumvent the difficulty of data sparsity, the Bayesian 

approach is adopted to quantify the potentially large uncertainties. In particular, a hierarchical 

Bayesian framework is adopted with suitable non-informative conjugate priors so that the 

Markov chain Monte Carlo can be conveniently and effectively executed using the Gibbs 

sampler. The usefulness and effectiveness of this new method will be demonstrated using a real 

case. 

Keywords: site characterization, multivariate probability distribution, statistical uncertainty, 

Bayesian analysis. 

 

1 Introduction 

Multivariate soil data obtained in site investigation are valuable because they can be used to 

explore the correlation behaviors among soil properties. Multivariate soil data available in the 

literature have been compiled to construct the multivariate probability distribution for soil 

properties (Ching and Phoon 2014, Liu et al. 2016, Ching et al. 2017, 2018). However, the 

resulting multivariate probability distribution is not site-specific and is typically developed using 

a generic database compiled from a large number of sites. The multivariate probability 

distribution for a specific site can be fairly different from that constructed by a generic database, 

because the latter is intended to accommodate a wide range of soil types and site conditions. It is 

desirable to construct a site-specific multivariate probability distribution based on site-specific 

data.  

There are challenges for constructing a site-specific multivariate probability distribution. If 

we narrow down a database to a single site, the data points can be too sparse to construct the 

multivariate probability distribution with acceptable statistical significance. In this case, it is 

essential to quantify the statistical uncertainty in the parameters for the multivariate probability 

distribution. Another challenge is for the incomplete multivariate site-specific data. For instance, 

if a multivariate probability distribution for (LI, s¢p, su) is to be constructed, where LI is the 

liquidity index, s¢p is the preconsolidation stress, and su is the undrained shear strength, in 

principle we need multivariate data with simultaneous knowledge of (LL, LI, s¢p, su) at the same 
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depth and reasonably close borehole/test locations. However, it is very rare that such complete 

multivariate data points are available during a common site investigation program. It is common 

to measure incomplete multivariate data points at different depths and locations, for instance, 

some data points have (LI, s¢p) information, some have (LI, su) information, or even some only 

have LI information. If the data points are visualized as a spreadsheet table of size (m ´ 3), 

where m is the number of data points, incomplete multivariate data means there are missing 

entries in the spreadsheet table.  

The purpose of this paper is to propose a Bayesian method for constructing a site-specific 

multivariate probability distribution that can accommodate very sparse and incomplete site-

specific data while quantifying the associated large statistical uncertainties correctly. 

 

2 Site-specific Multivariate Probability Density Function 

Site-specific data are typically sparse and incomplete. Table 1 shows the site investigation 

results for a silty clay layer in a Taipei (Taiwan) site (Ou and Liao 1987). The depth intervals for 

the data range from 0.5 m to 2.6 m. Let us denote 

Y1 = ln(LL)  Y2 = ln(PI)  Y3 = LI  Y4 = ln(s¢v/Pa)  Y5 = ln(s¢p/Pa) Y6 = ln(su/s¢v)  (1.

) 

where LL = liquid limit; PI = plasticity index; LI = liquidity index; s’v = vertical effective 

stress; s’p = preconsolidation stress; su = undrained shear strength; Pa = atmospheric pressure = 

101.3 kPa. The su values are all converted to the “mobilized” su values, which is the in-situ 

undrained shear strength mobilized in embankment and slope failures (Mesri and Huvaj 2007). 

Let the observed data in Table 1 be denoted by Yo and the unobserved data be denoted by Yu. 

The Yo data will be used to “train” the site-specific multivariate PDF model. It is desirable to 

convert the Yi data to normal variable Xi by a certain transform. Although many transforms are 

possible, the transform based on the cumulative density function (CDF) of the Johnson 

distribution (Johnson 1949) used by Ching and Phoon (2014, 2018) is adopted in the current 

paper to maintain the consistency between the current paper and our past works: 

( )1

i i iX F Y-=F é ùë û
           

           
  (2.

) 

where Fi = the cumulative distribution function (CDF) of Yi, modeled as a Johnson distribution; 

F = CDF for a standard normal random variable. Let Xo and Xu be transformed from Yo and Yu, 

respectively. 

Table 1 Site investigation results for a silty clay layer at a Taipei site. 

Depth 

(m) 

Test results (training data Yo) 

LL 
(Y1) 

PI 
(Y2) 

LI 
(Y3) 

s¢v/Pa 

(Y4) 

s¢p/Pa 

(Y5) 

su/s¢v 

(Y6) 

12.8 30.1 9.1 1.20 1.26 1.71 0.37

14.8 32.8 12.8 1.43 1.43 n/a 0.36

16.1 36.4 14.5 1.24 1.54 n/a 0.33 

17.8 41.9 18.9 0.90 1.68 1.79 0.25

18.3 n/a* n/a n/a 1.72 n/a 0.34

20.2 38.1 17.3 0.70 1.88 n/a 0.32

22.7 37.0 16.0 0.58 2.08 n/a 0.31

24.0 38.0 16.2 0.75 2.19 2.19 0.30

26.6 34.8 13.8 0.80 2.41 n/a 0.34
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* n/a indicates “not available”. 

It is further assumed that site-specific Xi is normal and that, moreover, site-specific (X1, X2, 

…, Xn) is multivariate normal:  

( ) ( ) ( ) ( ) ( )
1 n T

1
2 2

1
f x | , N x | , 2 exp x x

2

- - -é ùm = m = p - -m -mê úë û
C C C C

         
  (3.

) 

where m is the mean vector for site-specific (X1, X2, …, Xn), and C is the covariance matrix. 

With the multivariate normality, elegant analytical solutions are possible. 

 

3 Bayesian Analysis 

The site-specific parameters m and C are unknown and are to be inferred by Xo. As mentioned 

previously, the statistical uncertainty in the inferred m and C can be significant if Xo is sparse. 

Conjugate prior PDFs for m and C exist because (X1, X2, …, Xn) is assumed to be multivariate 

normal. The conjugate prior PDF for ms is multivariate normal, whereas the conjugate prior PDF 

for C is inverse-Wishart. It is desirable that the prior PDFs f(m) and f(C) are non-informative. 

The multivariate normal prior f(m) can be easily made non-informative by adopting large 

variances. However, it is challenging to make the inverse-Wishart prior f(C) non-informative. 

Ching and Phoon (2018) adopted the hierarchical inverse-Wishart model proposed by Huang 

and Wand (2013). By adopting a set of hyperparameters, this hierarchical model makes f(C) 

roughly non-informative. 

Ching and Phoon (2018) showed that it is possible to draw (m, C) samples from f(m,C|Xo) in 

an analytical manner by adopting the Gibbs sampler (GS) (Geman and Geman 1984; Gilks et al. 

1996) in conjunction with the above conjugate prior PDFs. Moreover, unobserved entries, 

denoted by Xu, can be also sampled in an analytical manner (Ching and Phoon 2018). The basic 

idea is to divide the random variables into three groups, (m, C, Xu), and the GS is adopted to 

consecutively sample them from the following conditional PDFs: 

( ) ( ) ( )u o u o u u o~ f | , , ~ f | , , ~ f | , ,m m m mC X X C C X X X X C X          
  (4.

) 

Due to the assumed conjugate prior PDFs, the first two posterior PDFs are still with the same 

PDF forms: f(m|C,Xu,Xo) is still multivariate normal, and f(C|m,Xu,Xo) is still inverse-Wishart 

(Ching and Phoon 2018). Moreover, f(Xu|m,C,Xo) is also multivariate normal (Ching and Phoon 

2018) due to the assumed multivariate normality for X. As a result, the GS algorithm can be 

executed conveniently because all the posterior PDFs in Eq. (3) can be sampled analytically. Let 

us denote the samples obtained using the GS by (mt, Ct, Xu,t). The GS starts with an initial 

sample of (m0, C0, Xu,0) (time step t = 0), then it consecutively draws samples (mt, Ct, Xu,t) (t = 1, 

2, …, T) from the conditional PDFs in Eq. (4) based on the latest parameter values. The (mt, Ct) 

samples after the burn-in period are collected. It can be shown that these samples are distributed 

as f(m,C|Xo). It is noteworthy that the scatter of the (mt, Ct) samples quantifies the site-specific 

statistical uncertainty. 

It is of practical interest to simulate the properties at a new depth (xnew) that does not appear 

in the training data in Table 1. By assuming xnew to be from the same population as Xo, the 

multivariate PDF for xnew is also multivariate normal with mean = m and covariance matrix = C. 
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However, (m, C) are uncertain and their conditional samples have been obtained by GS. Based 

on the total probability theorem, the conditional multivariate PDF f(xnew|Xo) is a mixture of 

multivariate normal PDFs:  

( ) ( ) ( ) ( )
b

T

new new newo o tt
t t 1b

1
f x | f x | , f , | d d N x | ,

T t = +

é ù
= m × m × m × » mê ú

- ë û
åòX C C X C C        

 (5.

) 

where tb is the end of the burning-period. Samples for xnew can be readily sampled using the 

following steps: 

(i) Sample the t index randomly among the indices (t
b
+1, t

b
+2, …, T).  

(ii) Sample xnew ~ N(xnew|mt, Ct), where t is the sampled t in Step (i). 

These xnew samples have incorporated site-specific training data Xo. Moreover, the statistical 

uncertainty due to sparse Xo is also characterized by the samples. These xnew samples can be 

further converted to the physical soil parameters ynew through the inverse CDF transform: 

( )1

i i iY F X-= Fé ùë û
           

           
  (6.

) 

These xnew samples have incorporated site-specific training data Xo. Moreover, the statistical 

uncertainty due to sparse Xo is also characterized by the samples. These xnew samples can be 

further converted to the physical soil parameters ynew through the inverse CDF transform: 

 

3 Case Study 

Now consider the silty clay layer for the Taipei site (Table 1). For the GS, the total sampling 

step size is taken to be T = 20,000, and the end of burn-in period is determined to be tb = 1000. 

The behaviors of the conditional PDF f(xnew|Xo) will be presented and compared with the 

measured data Yo. 

To demonstrate the behaviors of the conditional PDF f(xnew|Xo), consider a new depth in the 

same clay layer at the Taipei site with (transformed) property = xnew (LL, PI, LI, s’v/Pa, s’p/Pa, 

su/s’v). The GS samples for xnew can be readily obtained and converted to ynew samples through 

Eq. (6.). The total sampling step size is taken to be T = 20,000, and the end of burn-in period is 

determined to be tb = 1000. Figure 1 shows the marginal cumulative density functions (CDFs) 

for the resulting ynew samples. In the figure, the marginal CDFs based on f(xnew|Xo) are plotted as 

dashed lines, whereas the empirical CDFs based on the training data Yo are plotted as solid lines. 

It is clear that the marginal PDFs for ynew are similar to the empirical CDFs. 

Figure 1 only shows the marginal distributions for ynew samples. Figures 2a and 2b show the  

correlation behaviors among some ynew sample pairs, including the LI-s¢p/Pa (Y3 versus Y5) 

sample pair and the s¢v/Pa-su/s¢v (Y4 versus Y6) sample pair. The LI-s¢p/Pa samples spread 

widely because the LI-s¢p/Pa data in Yo is sparse, so the statistical uncertainty in f(xnew|Xo) is 

significant. During the GS, the site-specific covariance matrix C is sampled. From each C 

sample, a sample for the site-specific correlation coefficient between (X3, X5) and (X4, X6), 

denoted by d35 and d46, can be extracted. Figures 2c and 2d show the histograms for d35 and d46. 

Again, the histogram for d35 spread more widely because the LI-s¢p/Pa data in Yo is sparse. In 

general, the correlation behaviors for ynew are similar to those in the actual data Yo. 
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Figure 1  Marginal CDFs for the ynew samples (Taipei site). 

 

 
Figure 2  Correlation behaviors among some ynew sample pairs: (a) LI-s¢p/Pa correlation plot; (b) s¢v/Pa-

su/s¢v correlation plot; (c) histogram of d35; (d) histogram of d46. 

 

4 Conclusion 

This study proposes a novel method of constructing site-specific multivariate probability 

distribution for soil properties. The proposed method allows incomplete multivariate inputs. It 

can rigorously quantify statistical uncertainties. A real case study is used to demonstrate the 

usefulness of the proposed method. Analysis results show that the proposed method can 

effectively capture the marginal and correlation behaviors in site-specific data. 
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