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To deal with the curse of dimensionality of polynomial chaos expansion for assessing reliability 

of structures with high stochastic dimensions, this paper proposes a novel non-intrusive algorithm 

based on a sparse partial least squares regression procedure.  Firstly, an initial estimation of the 

expansion coefficients is obtained by performing partial least squares regression with all 

polynomials in the candidate set.  Then, updated estimations of the expansion coefficients are 

iteratively obtained by eliminating a ratio of terms with smallest coefficients in absolute value.  

The quasi-optimal metamodel is selected by using a largest sparsity degree criterion which 

prevents overfitting.  Next, the optimal metamodel is constructed with important inputs which are 

identified with an effective global sensitivity analysis procedure.  Finally, structural reliability is 

effectively estimated by simulating the optimal metamodel.  Numerical experiments verified that 

the proposed method outperforms the traditional counterpart in terms of computational efficiency 

and accuracy.  

Keywords: Polynomial chaos expansion, Curse of dimensionality, Partial least squares regression, 

Structural reliability. 

 

1 Introduction 

Structural reliability analysis is of key importance in risk assessment and decision making.  

To reduce the heavy computational burden of simulation-based methods, metamodel-based 

methods are under active research.  Many metamodeling procedures such as Kriging (Jiang and 

Li 2017), artificial neural networks (Dai et al. 2015), support vector machine (Dai and Cao 2017), 

polynomial chaos expansion (PCE) (Hawchar et al. 2017), low-rank tensor approximations 

(Konakli and Sudret 2016) have been proposed for constructing structural reliability algorithms.  

Among these procedures, PCE has gained much attention in recent years. 

PCE projects the random structural response onto a Hilbert space spanned by orthonormal 

polynomials of the inputs (Xiu and Karniadakis 2002).  The whole information about the 

probability distribution is encapsulated in the coefficients of the expansion.  Due to mean-square 

convergence (Ernst et al. 2012) and fast convergence rates for smooth input-output relationships, 

PCE has become a powerful tool for uncertainty quantification in many territories.  While 

mathematically elegant, PCE suffers from curse of dimensionality.  To alleviate this problem, 
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many approaches have been proposed in recent years such as stepwise regression (Abraham et al. 

2017), least angle regression (Blatman and Sudret 2011), compressive sensing (Hu and Zhang 

2017), support vector regression (Cheng and Lu 2018), D-MORPH regression (Cheng and Lu 

2018a) and so on.  These approaches have been verified to be capable of building metamodels 

with acceptable accuracy under small sample sizes. 

This paper proposes a new PCE-based metamodeling method for structural reliability 

analysis.  Different from the existing literature, a state-of-the-art regression method named partial 

least squares regression (PLSR) (Rosipal and Kramer 2006) is introduced to capture the latent 

low-dimensional structure of the model.  Expression of the metamodel is greatly simplified with 

a largest sparsity degree criterion and an efficient global sensitivity analysis procedure, leading to 

accurate estimations of structural reliability. The proposed method is introduced in detail in 

section 2 and verified with two numerical examples in section 3. 

 

2 The Proposed PCE-based Metamodeling Approach 

The random structural response  (assumed to be unidimensional and zero-mean) can be 

expressed with the polynomial chaos expansion with order maxp  in Eq.(1). 

 b
=

= Yå                                                                (1) 

where b  are expansion coefficients, Y  are orthonormal polynomials, =   is 

the vector of independent inputs and 

 
+

= -                                                            (2) 

Under the framework of non-intrusive analysis, the PCE coefficients are originally computed with 

the ordinary least squares regression (OLSR) as Eq.(3). 
+=                                                                      (3) 

where  is the vector of coefficients,  is the matrix whose each line contains values of 

polynomials at a sample point ,  is the vector of structural response and “+” denotes the Moore-

Penrose generalized inverse.   Clearly, OLSR-PCE suffers from curse of dimensionality as shown 

in Eq.(2).  Therefore, we propose a new method to build the metamodel for structural reliability 

analysis. 

 

2.1    Initialization 

Firstly, select maxp  with prior knowledge about nonlinearity of the model. Then generate a 

set of N  training samples with the Sobol quasi-random sampling scheme.  Run high-fidelity 

simulations to get the centered response vector .  Meanwhile, compute the polynomial matrix

. 

 

2.2    Sparse partial least squares regression 

2.1.1    Initial estimation of the expansion coefficients 

The initial estimation of the expansion coefficients is obtained with the PLSR. The idea of 

PLSR is to extract latent variables by iteratively solving the optimization problem in Eq.(4) 
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where  and  are called loadings, =  and =  are the latent variables. Assume the 

relationship between is linear: 

 = +                                                                 (5) 

Let = bu t  and deflate  and  with OLSR as Eq.(6) and Eq.(7). 

 = -                                                               (6) 

 = -                                                               (7) 

The times of iteration  is determined by minimizing the modified cross validation error in Eq.(8) 

 ( )
1

* T 1
LOO(P) LOO(P) 1 1 tr(( ) )e e

-
-æ ö

= ´ - +ç ÷
è ø

h

N
T T                               (8) 

where LOO(P)e  is the normalized pseudo leave-one-out cross validation error.  The initial 

estimation is expressed with Eq.(9). 

 T T T 1 T( )-=β E U T EE U T F                                                    (9) 

 

2.1.2    Selection of the quasi-optimal metamodel 

Denote the length of  as  and the retaining ratio as .  Retain the polynomials with the 

largest  regression coefficients in absolute value.  Then, PLSR is performed between  

and the retained polynomials.  This process is proceeded iteratively until *
LOO(P)e  is larger than a 

prescribed threshold *
LOO(P),the .  If this condition is not satisfied, retain the initial estimation. 

 

2.1.3    Construction of the optimal metamodel 

    The optimal metamodel is constructed by using the sparse PLSR approach with the important 

inputs identified with variance-based global sensitivity analysis.  Total Sobol index of each  is 

computed by a simple post-processing of the coefficients of the quasi-optimal metamodel, as 

shown in Eq.(10). 
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and 
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2.1.4    Estimation of the failure probability 

Since the computational complexity of the optimal metamodel is much lower than that of the 

high-fidelity model, Monte Carlo Simulation (MCS) is feasible for computing the failure 

probability. 

 

3 Case studies  

Two different structures are exampled to test the accuracy and efficiency of the proposed method.  

 

3.1    Simply supported beam 

A simply supported beam subjected to a uniformly distributed load is shown in Figure 1 

 

Figure 1 Configuration and loads of a simply supported beam 

where 3m=L ,  inertial moment 
6 48 10 m-= ´I  and 13kN/m=q .  The elastic modulus is 

( , ) exp( ( , ))w w=E x N x  where ( , )wN x  is a homogeneous Gaussian random field with 

correlation coefficient function ( )( , ) exp | | /r ¢ ¢= - -x x x x l  where 0.5m=l .  ( , )wN x is 

discretized with the first 40 components of Karhunen-Loeve expansion.  The mean and coefficient 

of variation of elastic modulus are 210GPam =E  and 0.2d =E , respectively.  The failure event 

is defined as 0.012m>u .  Let max 3=p  then we get 12340=P .  Define /g = N P  as the sample 

ratio.  Let *
LOO(P),th =0.001e .Comparison of the failure probabilities computed with OLSR-PCE 

and the proposed method is illustrated in Figure 2. 

 

Figure 2 Comparison of failure probabilities in Example 1 

The reference solution of failure probability in this example is 0.0024. The number of important 

inputs is two with the threshold of TiS  is set to 0.018.  It can be seen that the proposed method 
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can get accurate results (error<10%) at 0.05( 617)g = =N while OLSR-PCE need 1.2g 1.2g  to 

ensure accuracy.  Thus, the computational gain factor is 24. 

 

3.2    Plain truss 

A plain truss subjected to vertical loads is shown in Figure 3 

 

Figure 3 Configuration and loads of a plain truss 

Each bar has elastic modulus ( 1,...,32)=iE i  and diameter 20mm. Distribution parameters of 

all the inputs are listed in Table 1.  The quantity of interest is the vertical displacement of node 18, 

denoted as u .  The failure event is defined as 0.210m>u . 

Table 1 Distribution parameters of the inputs in Example 2 

Variables Distribution type Mean Standard deviation 

( 1,...,32) (Pa)=iE i  Gaussian 112.0 10´  103.0 10´  

1 (N)P  Extreme 1 41.2 10´  32.0 10´  

2 (N)P  Extreme 1 41.0 10´  31.5 10´  

3 (N)P  Extreme 1 39.0 10´  31.2 10´  

( 4,...,8) (N)=jP j  Extreme 1 38.0 10´  31.0 10´  

Let max 3=p  then we get 12340=P .  Let 
*
LOO(P),th =0.01e .Comparison of the failure 

probabilities computed with OLSR-PCE and the proposed method is illustrated in Figure 4. 

 

Figure 4 Comparison of failure probabilities in Example 2 
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All the inputs are transformed to standard Gaussian random variables.  The reference solution of 

failure probability in this example is 0.0052.  The number of important inputs is 14 with the 

threshold of TiS  is set to 0.005.  It can be seen that the proposed method can get accurate results 

(error<10%) at 0.2 ( 2468)g = =N while OLSR-PCE need 1.2g 1.2g  to ensure accuracy.  Thus, the 

computational gain factor is 6 which is lower than the previous example since the effective 

stochastic dimension is much higher. 

 

4 Conclusions 

This paper proposes a new PCE-based metamodeling method for structural reliability analysis 

in high stochastic dimensions.  The proposed method shed new light on PCE by extracting latent 

variables using PLSR.  The proposed method has the potential of improving computational 

efficiency of structural reliability analysis, which is demonstrated by the results of numerical 

experiments. 
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