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Characteristic value of geotechnical properties is essential for probability-based geotechnical 

design codes (e.g., Eurocode 7). In practice, it is generally selected by engineers based on sparse 

geotechnical data and assisted by engineering experience and judgment. Due to subjective 

nature of individual judgment, the characteristic values derived by different engineers may vary 

greatly, even from the same dataset. The problem becomes more challenging when the spatially 

varying but auto-correlated pattern of geotechnical properties is considered. To address this 

issue, a novel method based on Bayesian compressive sampling (BCS) is presented for 

facilitating characteristic values selection from sparse measurement data. The method is 

illustrated and validated by a series of numerical examples. The results show that the method 

performs reasonably well, and the spatially varying but auto-correlated pattern of geotechnical 

properties is explicitly considered in a rational manner. 

Keywords: Compressive sensing (CS), reliability-based design (RBD), spatial data, limit state 

design 

 

1.  Introduction 

Uncertainties, such as spatial variability of soil properties, greatly affect geotechnical design or 

analysis (e.g., Phoon and Kulhawy 1999; Baecher and Christian 2003). This then motivates 

development of many probability-based geotechnical design codes (e.g., Eurocode 7) in the past 

three decades. For these codes, such as Eurocode 7, characteristic value of soil properties is a 

key component to ensure that the intended design can achieve a pre-specified target reliability 

level. Characteristic values of soil properties are generally determined by engineers from sparse 

geotechnical data. As the number of measured data is usually limited, engineering experience 

and judgment are often used to assist in characteristic value selection (e.g. Orr, 2017). Due to the 

subjective nature of experience and judgment, the characteristic values derived by different 

engineers, however, may vary greatly, even from the same dataset (e.g., Bond and Harris 2008). 

For example, Bond and Harris (2008) showed three case studies where about one hundred 

engineers were asked for characteristic values selection from the same set of data based on 

Eurocode 7. It is shown that the selected characteristic value varied greatly, with the maximum 

characteristic value obtained being about three to five times larger than the minimum one. 

Therefore, more guidance is needed to select characteristic values in an objective manner, as 

suggested by Orr (2017). One possible solution is to resort to statistical methods, which have 

been increasingly used in geotechnical engineering (e.g., Baecher and Christian 2003; Zhang et 

al. 2004; Ching and Phoon 2011; Luo et al. 2012; Wang and Cao 2013). However, most of the 

available statistical methods for determining the characteristic values of geotechnical parameters 

focus on point statistics, such as mean and coefficient of variation for a previously defined 

homogeneous soil layer, and the spatially auto-correlated pattern of soil properties is often 

ignored (e.g., Pohl 2011; Wang et al. 2015; Orr 2017). Note that when the spatially varying but 
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auto-correlated patterns of geotechnical properties is ignored, characteristic values determined 

might be biased and unrealistic, which may further lead to undesirable designs. 

This paper aims to address these two issues by presenting a statistical procedure for 

characteristic value selection of geotechnical parameters from sparse measurement data, in a 

rational manner, with explicit consideration of the spatially varying but auto-correlated pattern 

of soil properties. The statistical procedure uses Bayesian compressive sampling (BCS) to 

probabilistically reconstruct a soil property profile from sparsely measured data, and provide 

quantified statistical uncertainty in terms of confidence interval (CI) associated with the 

interpreted profile (Wang & Zhao, 2017). The CI obtained in the BCS method has a clear 

statistical meaning: the confidence level α for a CI from the BCS is the expected coverage 

proportion (CP), i.e. fraction, of the complete profile that falls within the CI, if all data points 

along depth can be measured to provide the complete profile. The interpretation of CI may be 

used to facilitate characteristic values selection in practice from a statistical point of view. 

 

2.  Review of Bayesian Compressive Sampling (BCS) 

Bayesian compressive sampling/sensing (BCS) is a coupling of Bayesian methods and 

compressive sampling/sensing (CS) to reconstruct a signal (f) from sparse measurements on f, 

i.e., y (e.g., Ji et al. 2008). A signal f is defined as variation of a quantity (e.g., soil property) 

with time or space (e.g., depth). BCS and CS utilize the compressibility in many real-world 

signals (e.g., Candès & Wakin 2008). The term “compressibility” means that f can be concisely 

represented as a weighted summation of a proper basis functions (e.g., Daubechies 16 wavelet 

function). In math, f=Bω. f is an N-length real-valued column vector; B is an N×N orthonormal 

matrix composed of columns of pre-specified basis functions; and ω is the N-length weight 

coefficient vector corresponding to columns of B. Due to the compressibility of signals, most 

entries in ω are very near to zero. Therefore, f can be properly reconstructed if the non-trivial 

entries in ω  are identified and estimated from y, a column vector with a length of M (M<<N) 

through y=Ψf=ΨBω=Aω. A=ΨB and Ψ are both M×N matrices, where Ψ represents the 

locations of components y in f (e.g., Wang and Zhao 2016). The non-trivial coefficients ω is 

obtained by solving y= Aω, which leads to an approximation of ω , i.e., ωs. All components of 

ωs are zero except of the several non-trivial ones. Then, signal f is approximated as sωf B=ˆ . 

When y is sparse and limited, ωs estimated from y might not be accurate and contain 

significant statistical uncertainty, which may be quantified in a Bayesian framework (e.g., Wang 

and Zhao 2017). The quantified uncertainty in ωs would lead to quantified uncertainty associated 

with f̂ . It has been shown that ωs follows a multivariate Students’ t distribution, with a mean of 

sω
μ , degree of freedom of 2cn, and a covariance matrix of 

sω
COV  (e.g., Wang and Zhao 2017). 

As sωf B=ˆ , f̂  also follows a multivariate Student’s t distribution with a degree of freedom of 

2cn (e.g., Fenton and Griffiths 2008). The mean 
f
μ ˆ  and covariance 

f̂
COV  of f̂  are expressed 

as (e.g., Wang and Zhao 2017) 
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where “E(·)” represents expectation. Note that the mean 
f
μ ˆ  represents the best estimate of f̂ ; 

while diagonal elements of 
f̂

COV  represent variance of elements of f̂  and they quantify the 

statistical uncertainty. Using Eq. (1), the confidence interval (CI) at a specified confidence level 
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α can be constructed and the meaning of CI is presented and demonstrated in the next section, 

which can be used to facilitate the characteristic value selection. 

 

3.  Coverage Proportion of the BCS Confidence Interval Profiles 

3.1  Construction of CI Profiles from BCS 

As f̂  follows a multivariate Student’s t distribute, CI of the i-th element of if̂  is expressed as 

(e.g., Zhao et al. 2018): 

iini fnncf

i cct
,

ˆ2,2/)1(ˆ COV2/)22(CI -±= -aa m             (2) 

where 
if̂

m  represents i-th element of 
f
μ ˆ ; 

iif ,
ˆCOV  represents the i-th diagonal element of 

f̂
COV . Note that if̂  varies spatially such as with depth, therefore i

aCI  also varies with depth. 

i
aCI  (i = 1, 2, …, N) constitutes two column vectors, denoted as CIα. Zhao et al. (2018) have 

shown that the CIα has a clear statistical meaning: the corresponding confidence level α for a CI 

from the BCS is the expected coverage proportion (CP), i.e. fraction, of the complete profile that 

falls within the CIα, if all data points along depth can be measured to provide the complete 

profile. The CP at level α, denoted as CPα, is expressed as: 
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where “I(·)” is the indicator function. I(·) =1 if if̂  (i = 1, 2, …, N) is within the upper and lower 

bounds of i
aCI , and otherwise, I(·) = 0. For example, given the measurement data shown in Figure 

1a to Figure 1c by open squares as input, the best estimate and 95% CI profiles are obtained from 

the BCS and shown in Figure 1a to 1c by a dashed line and a pair of dotted lines, respectively. 

Then, using Eq. (3), the CP95% is evaluated as 94.5%, 97.9% and 95.7%, respectively, for the cases 

shown in Figure 1a to 1c. All CP95% is very close to α = 0.95, with differences less than around 3%. 

 

3.2  Probability Distribution of CPα for BCS CIα Profiles 

Note that the soil property X profile shown in Figure 1a to 1c are only three realizations of a 

stationary Gaussian random field with a constant mean of μX = 30 and standard deviation σX=2. 

The auto-correlation of X at different depths is quantified by an exponential function 

)/exp(, cji ldr -= , where d  = |dxi-dxj| represent the distance between X at depths dxi and dxj. λc 

represents the correlation length and it is taken 2m in this example. To further evaluate the 

meaning of CI from the BCS method, 1000 random field samples (RFSs) in total are generated 

from which 20 measurement data are extracted as sparsely measured data. This leads to 1000 

sets of sparse data, and 1000 sets of CIα and CPα for a given confidence level α using BCS 

method. Subsequently, using the 1000 CPα, the distribution of CPα in terms of box-and-whiskers 

plot, are constructed as shown in Figure 2a. The box represents the inter-quartile range (IQR) 

calculated as IQR = 75%-25% percentiles; while the whiskers represent the maxima and minima 

values within 1.5IQR. The maximum and minimum values of 1000 CPα for a given α are shown 

by crosses in Figure 2a. Figure 2a also includes the mean of 1000 CPα as open diamonds and a 

1:1 dashed line. It is evident that all mean CPα values at different α levels are close to the 1:1 line. 

This shows that the CIα obtained from the BCS method may be statistically interpreted as the  
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Figure 1 Three simulated X profiles and those reconstructed from BCS using M = 20 measurement data 
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Figure 2 Box-and-whiskers plot for the coverage proportion (CPα) for different α values given different M 

(after Zhao et al. 2018) 
 

upper and lower bounds of an interval within which a spatially varying soil property X profile 

falls with an expected CP (or fraction) of α. Detailed exploration on the meaning of CIα is 

carried out by Zhao et al. (2018), and the effect of number of measurement data M and 

correlation length are summarized below. 

 

3.3  Effect of M and Correlation Length on CPα 

In this subsection, the BCS method is repeated with different M scenarios, such as M = 10 to 60 

with an increment of 10 points, to further explore the effect of M on the interpretation of CIα. As 

M increases, more local variations of the original profiles are captured by the best estimate 

profile from the BCS method (Wang and Zhao 2017). Moreover, the region defined by the 

bounds of CIα become generally narrower with the increase of M. This shows that the statistical 

uncertainty involved in the interpretation of soil property profile is effectively reduced with the 

increase of number of measurement data. The narrower region defined by the bounds of CIα with 

larger M, however, would not greatly affect the interpretation of CIα, as shown as follows. For 

each M scenario, 1000 sets of CIα and CPα for a given confidence level α are obtained following 
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the procedure presented in previous subsection. In such a case, box-and-whiskers plots for each 

M scenario can be constructed. For example, Figure 2a to 2c shows the M = 20, 40 and 60 

scenarios, respectively. It shows that as M increases, the variability of CPα values decreases, 

implying the increase of reliability of the interpretation of CIα. The mean CPα values, however, 

are quite close to the 1:1 line for all M scenarios, with relative difference between the average 

CPα and α less than 15% in all the cases tested. For further evaluation, the mean CPα values for α 

= 0.5, 0.80 and 0.95 under all M scenarios tested are summarized in Figure 3. It shows that the 

mean CPα fluctuates around the α value, and is not greatly affected by M. 

Different λc values with λc = 0.1, 0.3, 0.5, 1, 2, 3, 5 and 10m are further used to investigate 

the effect of correlation length λc on interpretation of CIα. For each λc scenario, 1000 RFSs are 

generated from which 1000 sets of sparse measurement data are extracted. Then, following the 

procedure for the λc = 2m scenario, 1000 CPα values are obtained for each λc scenario. 

Subsequently, box-and-whiskers plot for combinations of α and M under different λc scenario 

are constructed. The mean CPα values for α = 0.50, 0.80 and 0.95 with M = 20, 40 and 60 under 

eight λc scenarios are summarized in Figure 4. It is observed that when λc is large, the average 

CPα tends to be greater than α. Namely, a relatively large proportion of many RFSs tested falls 

inside the corresponding CIα profiles. In contrast, the average CPα tends to be smaller than α, 

when λc is relatively small. For λc ranging from 0.5m and 2m, which are common values for soil 

properties (e.g., Phoon and Kulhawy 1999), the relative difference between the mean CPα and α 

is less than 15%. This relatively small differences suggest that the BCS method is robust and the 

statistical interpretation of BCS CI is reasonable: the confidence level α for a CI from the BCS is 

the expected coverage proportion (CP), i.e. fraction, of the complete profile that falls within the 

CIα, if all data points along depth can be measured to provide the complete profile. As such, the 

bounds of CIα (e.g., lower bound of CIα for α = 90%) obtained from the BCS method might be 

used as characteristic values profile of soil properties when characteristic values are defined 

from a statistical point of view (e.g., the lower 5% percentile of a probability distribution). Note 

that this procedure, involving a limited number of measurement data, explicitly considers the 

spatially varying but auto-correlated pattern of soil properties. It has been used to determine 

characteristic values of friction angle profile, and details are provided by Zhao et al. (2018). 

 

4.  Summary and Conclusion 

In this paper, a statistical procedure based on Bayesian compressive sampling (BCS) was 

presented to facilitate objective selection of characteristic values of soil properties from sparse 

measurement on soil properties. The BCS method is able to provide best estimate of soil 

properties profiles and quantified statistical uncertainty in terms of confidence interval (CI). The 

CI at a confidence level was interpreted as the expected coverage proportion (i.e. fraction) of the 

complete profile that falls within the CI, if all data points over the depth can be measured to 
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provide the complete profile. This interpretation was illustrated and evaluated using a series of 

simulated data. The results show that this interpretation is statistically meaningful and may 

facilitate an objective selection of soil property characteristic values from sparse data from a 

purely statistical point of view. 
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