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The uncertainty in soil stratigraphy identified using cone penetration test (CPT) data is usually 

unknown.  This paper develops a Bayesian framework to probabilistically identify underground 

stratigraphy based on soil behavior type index (Ic) data.  The proposed approach not only 

identifies the most probable soil layer boundaries with the consideration of spatial variability of 

Ic, but also quantifies the uncertainties in soil stratigraphy.  It is illustrated and verified using 

simulated Ic data.  Then, effects of layer thicknesses and statistical differences in Ic profiles of 

adjacent soil layers on the uncertainty of the soil layer boundaries are discussed using the 

simulated Ic data.  Results show that the proposed approach properly identifies soil stratigraphy 

based on Ic data and, rationally, quantifies the identification uncertainty in the soil layer based 

on CPT data.  The identification uncertainty in a soil layer boundary is affected by soil layer 

thicknesses and the statistical difference in Ic data within adjacent soil layers. 
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1 Introduction 

Cone penetration test (CPT) has been widely used to determine the soil stratigraphy during 

geotechnical site investigation because it is rapid, repeatable, and economical, and provides 

nearly continuous measurements over the depth (Roberson 2009).  In general, this consists of 

two major steps: (i) determine the soil type at each testing depth (i.e., soil classification) based 

on CPT measurements; and (ii) identify the number N and thicknesses (or boundaries) HN = [H1, 

H2, …, HN] of soil layers based on the profile of the soil type.  Among various CPT-based soil 

classification systems (e.g., Roberson 2009), the soil behavior type (SBT) index Ic is widely used, 

which, at different depths, varies spatially even for the same SBT soils.  The spatial variability 

of Ic poses a profound challenge in identifying soil stratigraphy (i.e., determining N and HN) 

from a single profile of Ic with certainty.  Soil stratigraphy provided by different engineers based 

on the same Ic profile might be inconsistent due to their different experience, expertise, and 

judgments.  Several approaches have been developed to delineate soil stratigraphy using CPT 

data in an objective and quantitative way, such as clustering method (Hegazy and Mayne 2002), 

statistical analysis using modified Bartlett statistics (Phoon et al. 2003, 2004), wavelet transform 

119



120 6th International Symposium on Reliability Engineering and Risk Management (6ISRERM)

modulus maxima method (Ching et al. 2015), and Bayesian methods (Cao and Wang 2013, 

Wang et al. 2013).  These approaches are able to provide the “best” estimates of N and HN in 

terms of prescribed criterion for soil stratification, but they provide little information on the 

uncertainty in estimated N and HN.  

This paper develops a Bayesian framework for probabilistic soil stratification based on the 

profile of Ic, the inherent spatial variability of Ic along the depth is explicitly modelled by 

random fields, and the uncertainty in N and HN estimated from the Ic profile is quantified by their 

posterior distributions.  With the proposed Bayesian framework, effects of layer thicknesses and 

the statistical difference in Ic profiles of adjacent soil layers on the uncertainty of the soil layer 

boundary are discussed. 

 

2 Bayesian Framework for Probabilistic Soil Stratification  

For a given profile of Ic (i.e., ξ), identification of soil stratigraphy under the proposed Bayesian 

framework is divided into two steps: (i) compare the soil stratification models with different 

numbers (e.g., N) of soil layers based on their conditional probabilities P(N| ξ) given ξ, and 

determine the most probable number of soil layers N* among a number of possible N values; and 

(ii) evaluate the posterior distribution P(HN| ξ, N) of soil layer thicknesses to quantify the 

uncertainty in HN based on ξ for a given soil stratification model with N (e.g., N = N*) soil layers, 

and determine the most probable thicknesses H*
N* = [H1

*, H2
*, ..., H*

N*] and internal boundaries.  

These two steps are introduced in the following two subsections. 

 

2.1    The most probable number of soil layers 

The number of soil layers contained in a profile of Ic is considered varying from 1 to a maximum 

value of Nmax.  Then, N is defined as a discrete random variable ranging from 1 to Nmax.  Using 

the Bayes’ Theorem, P(N| ξ) is written as (Cao and Wang 2013; Wang et al. 2013):  

( ) ( ) ( ) ( )| | /P N P N P N Px x x=  (1) 

where P(N) = prior probability of N reflecting the prior knowledge on N in the absence of CPT 

data; P(ξ) is a normalizing constant and independent of N; P(ξ| N) = conditional probability of ξ 

given the soil stratification model with N layers, and it is frequently referred to as the “evidence” 

for the soil stratification model with N layers provided by ξ.  In the case of no prevailing prior 

knowledge on N, the Nmax possible values (i.e., 1, 2, …, Nmax) of N are considered having the 

same prior probability, i.e., P(N) = 1/Nmax.  Then, based on Eq. (1), P(N| ξ) is proportional to the 

evidence P(ξ| N), which means that maximizing P(ξ| N) with respect to N leads to the maximum 

value of P(N| ξ) and, hence, N*. 

 

2.2    Uncertainty in soil layer thicknesses 

In this subsection, the number N of soil layers is a fixed value and is used as a condition for 

inferring HN from ξ according to P(HN| ξ, N).  Within a Bayesian framework, P(HN| ξ, N) is 

referred to as the posterior distribution of HN based on ξ, and it is expressed as (Cao et al. 2017):  

( ) ( ) ( ) ( )| , | , | |N N NP H N P H N P H N P Nx x x=  (2) 

The P(HN| ξ, N) in Eq. (2) quantifies the uncertainty in layer thicknesses HN (or, equivalently, 

layer boundaries DN) of the soil stratification model with N layers based on both CPT data and 

prior knowledge.  It involves the likelihood function P(ξ| HN, N), the prior distribution P(HN| N), 

and a normalizing constant P(ξ| N) independent of HN for a given N value.  
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In the case of no prevailing prior knowledge on soil layer thicknesses HN = [H1, H2, …, HN], 

they can be considered uniformly distributed within a range from 0 to CPT sounding depth H, 

i.e., 0 < Hn <H for n = 1, 2, …, N, and all the possible combinations of HN are uniformly 

distributed within a N-1 dimensional simplex Ω = {
1

N

n=S Hn = H, 0 < Hn <H}.  Such a uniform 

distribution of HN can be represented by a flat Dirichlet distribution, and is expressed as (Cao et 

al. 2017):  

( ) 1| ( ) N

NP H N N H -= G  (3) 

where Γ(·) is the Gamma function evaluated at N; and HN-1 serves as a normalizing constant.  As 

indicated by Eq. (3), P(HN| N) is a constant for a given N value and testing depth H. 

The likelihood function P(ξ| HN, N) quantifies information on HN of the soil stratification 

model with N soil layers provided by ξ.  This study models the Ic profile by N mutually 

independent lognormal random fields Icn (Z), n = 1, 2, …, N, where Ic at different depths are 

spatially correlated lognormal random variables with a mean μn and standard deviation σn.  Here, 

the correlation structure of lnIc is taken as a single exponential correlation function with a scale 

of fluctuation of λn, which is frequently used to analyze CPT data (Phoon et al. 2003, 2004).  

Correspondingly, the profile of lnIc (i.e., ξ = [ξ1, ξ2, …, ξN]) obtained from the N soil layers are 

considered as a realization of the N random fields with model parameters θn = [μn, σn, λn], n = 1, 

2, …, N.  Then, P(ξ| HN, N) is expressed as (Cao and Wang 2013; Wang et al. 2017):  

( ) ( )
1

| , | ,
N

N Nnn
P H N P H Nx x

=
=Õ  (4) 

where P(ξn| HN, N), n = 1, 2, ..., N is the likelihood function for the n-th soil layer.  Using the 

Theorem of Total Probability, P(ξn| HN, N) is written as: 

( ) ( ) ( )| , | , , | ,N N Nn n nn n
P H N P H N P H N dx x q q q= ò  (5) 

where P(ξn| θn, HN, N) is a joint Gaussian PDF of ξn for a given set of θn, HN and N; and P(θn| HN, 

N) is the prior distribution of θn in the n-th soil layer for a given N soil layers with layer 

thicknesses equal to HN and is simply taken as a joint uniform prior distribution of θn defined by 

their typical ranges reported by Cao et al. (2017). 

Solving the P(ξ| N) and P(HN| ξ, N) is a key step to determine the soil stratigraphy and its 

associated uncertainty.  This is a non-trivial task in this study because of the discontinuity of the 

likelihood function with respect to HN, constraint relationship among soil layer thicknesses, and 

high-dimensional integral involved in the evidence and the posterior distribution, particularly as 

N and the number of data are relatively large, such as N ≥ 3.  The Bayesian Updating with 

Structural Reliability Method (BUS) using Subset Simulation (SuS) (Straub and Papaioannou, 

2015; DiazDelaO et al. 2017) is adopted to, simultaneously, obtain P(ξ| N) and P(HN| ξ, N).  For 

the sake of conciseness, detailed algorithm and implementing procedures of the BUS with SuS 

are not provided herein.  Interested readers are referred to DiazDelaO et al. (2017) for details. 

 

3 Illustrative example 

3.1   Baseline case  

The proposed approach has been applied to a real site of the NGES at Texas A&M University 

Cao et al. (2017).  However, soil stratigraphy at a real site, where the actual soil layer boundaries 

are unknown, can only be inferred from site investigation data and prior knowledge.  For 

illustration and validation, the proposed approach is applied to a virtual site in this section, 
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Table 1. Summary of simulated Ic profiles and standard deviations of the boundary depth  

No. of Case 
Thickness Hn(m) μn σn λn Standard deviation 

of D (m) Layer 1 Layer 2 Layer 1 Layer 2 Layer 1 Layer 2 Layer 1 Layer 2 

Baseline case 6 6 3.2 2.7 0.4 0.2 0.6 0.3 0.21 

Case I 6 1 3.2 2.7 0.4 0.2 0.6 0.3 1.13 

Case II 6 2 3.2 2.7 0.4 0.2 0.6 0.3 0.72 

Case III 6 4 3.2 2.7 0.4 0.2 0.6 0.3 0.28 

Case IV 6 8 3.2 2.7 0.4 0.2 0.6 0.3 0.20 

Case V 6 10 3.2 2.7 0.4 0.2 0.6 0.3 0.16 

Case VI 6 6 3.2 3.2 0.4 0.2 0.6 0.3 2.19 

Case VII 6 6 3.2 2.7 0.4 0.4 0.6 0.3 0.33 

Case VIII 6 6 3.2 2.7 0.4 0.2 0.3 0.3 0.32 

 

where the actual soil layer boundaries are known and can be used to simulate Ic profile.  As the 

baseline case shown in Table 1, the virtual site is comprised of two soil layers with the same 

thickness of 6m and the data are simulated at the interval of 0.05m.  Correspondingly, there is an 

internal boundary located at depths of 6m (see the horizontal solid line in Figure 1(a)).  The Ic 

profile in the two soil layers is represented by two one-dimensional and mutually independent 

lognormal random fields, and their random field parameters of Ic are shown in the Table 1.  Soils 

in top layer mainly belong to SBT 3 (Clays: silty clay to clay), and soils in the second layer are 

of SBT 4 (Silt mixtures: clayey silt to silty clay) according to the soil classification system based 

on Ic (Robertson and Wride 1998).  The boundaries between different SBTs based on the Ic are 

shown by vertical dashed lines in Figure 1(a). 

Consider, for example, that there are, to the maximum, 5 soil layers within the testing depth, 

i.e., Nmax = 5.  When N equals to 1 and 2, Bayesian equations can be solved by direct numerical 

analysis integration with relative ease.  As N ≥ 3, the BUS with SuS is used due to the large 

number of possible combinations of HN.  Figure 1(b) shows the soil stratification results 

obtained from the proposed approach for different N values at the virtual site.  The maximum 

value (i.e., 306.5) of lnP(ξ| N) occurs at N* = 2, which is identical to the true number of soil 

layers at the site (see Figure 1).  Figure 1(b) shows an evolution of layer identification as N 

increases from 1 to 5.  For N* = 2, the internal boundary identified from the proposed approach 

is close to the true boundary located at 6m, as shown by horizontal red solid line in column 2 of 

Figure 1(b).  Effects of factors (including random field parameters and soil thicknesses) on 

probabilistic soil stratification are discussed in next subsection.  
 

3.2    Effect of layer thickness  

To explore the effect of layer thickness, five cases (i.e., cases I to V shown in Table 1) are 

considered in addition to the baseline case.  In the five cases, the thicknesses of the 2-nd layer 

are 1, 2, 4, 8 and 10 m, respectively.  As shown in Figures 2(a)-(e), simulated Ic data in the 

baseline case and cases I-V are represented with black solid lines and green dashed lines, 

respectively.  The identified boundaries based on simulated Ic data in cases I-V for N = 2 are also 

shown by horizontal yellow dashed lines in Figures 2(a)-(e).  The standard deviation of the 

boundary depth D representing the uncertainty of soil stratigraphy gradually decreases as the 

thickness of the 2-nd layer increases, as shown in the Table 1.  As the CPT sounding depth in the 

2-nd layer increases, more information is incorporated into the proposed Bayesian framework to 

determine the soil layer boundary.  This leads to reduction of identification uncertainty in the 

layer boundary, yielding a more reliable estimation of the boundary location.  

 

3.3    Effect of the statistical difference of Ic profiles in adjacent soil layers 

To explore effects of the statistical difference of Ic profiles in adjacent soil layers, three  
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Figure 1. Soil stratification results in the baseline case 

 
0

3

6

9

12

1 2 3 4

D
ep

th
(m

)

Ic  

0

3

6

9

12

1 2 3 4

D
ep

th
(m

)

Ic  

0

3

6

9

12

1 2 3 4

D
ep

th
(m

)

Ic  

0

2

4

6

8

10

12

14

1 2 3 4

D
ep

th
(m

)

Ic  
(a) Case I (b) Case II (c) Case III (d) Case IV 

0

4

8

12

16

1 2 3 4

D
ep

th
(m

)

Ic  

0

2

4

6

8

10

12

1 2 3 4

D
ep

th
(m

)

Ic  

0

2

4

6

8

10

12

1 2 3 4

D
ep

th
(m

)

Ic  

0

2

4

6

8

10

12

1 2 3 4

D
ep

th
(m

)

Ic  
(e) Case V (f) Case VI (g) Case VII (h) Case VIII 

 

 

Figure 2. Simulated Ic profiles for cases I-VIII 

 

additional cases are considered, i.e., cases VI-VIII in Table 1.  As shown in Table 1, thicknesses 

of the two layers and the true boundary depth of 6m remain unchanged in cases VI-VIII, but the 

ratios μ1/μ2, σ1/σ2, and λ1/λ2 of random field parameters of the two layers are taken as 1, 
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respectively.  As shown in Figures 2(f)-(h), simulated Ic profiles in cases VI-VIII are represented 

by green dashed lines, and the identified boundaries based on them for N = 2 are also shown by 

horizontal yellow dashed lines.  Comparing with the baseline case, the standard deviation of D 

increases in cases VI-VIII.  This indicates that the identification uncertainty in soil layer 

boundary increases as the statistical difference of Ic profiles in the two layers decreases.  As 

shown in Table 1, the effect of the mean value is more significant than standard deviation and 

scale of fluctuation of Ic.  

 

4 Conclusions 

This paper proposed a Bayesian framework for probabilistic soil stratification based on Ic, which 

was illustrated and verified using Ic data simulated at a virtual site.  Effects of the layer thickness 

and the statistical difference in Ic profiles of adjacent soil layers on the identification uncertainty 

in the soil layer boundaries were discussed.  Results showed that the proposed approach properly 

identifies the most probable soil stratigraphy and rationally quantifies the uncertainty in soil 

stratigraphy.  Increasing the CPT sounding depth in a layer can provide information for reducing 

the identification uncertainty in the estimated soil layer boundary and improving its reliability 

using the proposed approach.  The identification uncertainty provided by the proposed approach 

rationally reflects the statistical difference in Ic profiles of adjacent soil layers.  
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