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In this paper, a hierarchical decision-making model for sustainable building design is presented. In 
the higher level, the computational framework implements multi-criteria decision making system 
under uncertainty. Thus, different scenarios are ranked through the Generalized Expected Utility, 
recently proposed by two of the authors. In this way, the decision support system may provide a
tool for optimal integrated design under uncertainty of a smart building during the lifecycle. In this 
paper, the focus is devoted to the stage of building design operation, with particular reference to 
the energy efficiency. This is accomplished by applying, in the lower level of the decision-making 
system, a Monte Carlo Simulation (MCS) to a continuous game between non-cooperative agents.
MCS simulates a social game experiment designed to encourage energy efficient behavior amongst 
smart building occupants. The higher level of the decision-making system ranks the consequences 
of the incentives in terms of energy consumption. Thus, the building manager can design incentives 
such that a desired target (e.g. in terms of energy consumption) can be achieved. The proposed 
framework is also capable of incorporating several shared resources like lighting or HVAC systems 
and targeting behavioral changes through sociotechnical approaches for more environmental-
friendly occupants of green buildings.

Keywords: Game Theory, Information Theory, Machine Learning, Multi-criteria decision making, 

Smart Building, Uncertainty Quantification, Utility theory, .

1 Introduction

Energy consumption of buildings, both residential and commercial, accounts for 

approximately 40% of all energy usage in the U.S. Lighting is a major consumer of energy in 

commercial buildings; one fifth of all energy consumed in buildings is due to lighting. Many 

approaches have been proposed to improve energy efficiency of buildings through control and 

automation as well as incentives and pricing. However, most of the past approaches to building 

energy management mainly focus on heating and cooling of the building. In view of new 

technological advances in building automation, it is proposed herein to design not only 
efficient Heating, Ventilation and Air Conditioning (HVAC) systems, but also a human-
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centric system driven by the behavior and preferences of the occupants. In particular, our 

experimental set-up designs incentives based on lighting, individual plug-loads and HVAC 

which interact with the building occupants through a social game.

The aim of the social game is incentivizing occupants to modify their behavior so that the 

overall energy consumption in the building is reduced. In the framework, the occupants log 

their vote for the lighting settings in the office and they win points based on how energy 

efficient their vote is compared to other occupants. The points are used to determine the

likelihood of the occupants of winning a prize.

The occupants (or agents) are modeled as utility maximizers who engage in a non-cooperative
game playing according to a Nash equilibrium strategy. Their preferences are described

through utility functions able to model the tradeoff between the desire to win and their own 

comfort. The parameters of agents’ utility functions are estimated through a machine learning

methodology proposed in (Konstantakopoulos et al. 2018). The adopted dataset derives from 

the social game setup that occurred over a period of about three months. The findings of the 

previous research have shown that: (i) the Nash equilibrium is a good predictor of the occupant 

behavior, and (ii) the utility functions of the agents can be modeled through suitable machine 

learning tools.

A major significance of the game-theoretic framework is its capability to derive insights about 

the behavior of the occupants, and this can be leveraged in designing mechanisms for 

incentivizing occupants. This, in essence, is a problem of closing-the-loop so that the building 
manager achieves sustained energy savings. The task is accomplished in this paper through a 

hierarchical decision-making system under uncertainty.

Starting from the formulated data-driven utility functions of the occupants, the game theory 

framework provides the most likely behavior of the occupants when the building manager 

provides chosen incentives. The problem presents several sources of uncertainty, in particular 

the probability of any agent of being in the building at a given time of the day, in a given period 

of the year. To this aim, in the lower level of the decision-making system, through a Monte 

Carlo Simulation (MCS) we simulate the presence of the occupants. The game-theoretic 

framework predicts, like a black-box, the reactions of the agents to the incentives, expressed 

through their votes. This allows, in turn, to determine the probability distribution of annual 

energy consumption expressed at the community level, represented by the occupants of the 

building. The probability distributions are determined through the Kernel Density Maximum 
Entropy Method (KDMEM), which is a machine learning approach based on the Maximum 

Entropy (Alibrandi and Mosalam 2017). Thus, it is possible to determine the distribution of 

the consequences of the incentives, whose optimal choice is evaluated through the Generalized 

Expected Utility (Mosalam et al. 2018), defined to the higher level of the hierarchical decision 

making.

2 Social Game

In this paper, we focus on encouraging occupants to select lower lighting settings in

exchange for a chance to win in a series of lotteries. O ccupants’ votes are for the lighting

settings in their zone as well as for neighboring zones. The game is designed to leverage

interactions amongst occupants who win points based on how energy efficient their votes

are compared to others. The occupants select their desired lighting settings in the continuous

interval [0,100] where each value represents the percentage of the maximum lighting

setting possible in the space. The occupants can vote as frequently as they like and the

average of all the occupants’ current votes sets the implemented lighting setting. One of our

control mechanisms is the default lighting setting. An occupant can leave the lighting
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setting as the default after logging in or they can change it to some other value between 

0% and 100% depending on their preferences and environmental factors. Three persistent

player behavior profiles have emerged: 1) those who actively participate through voting, 2) 

those who are present yet keep their vote at the default value, and 3 ) those who are

absent (i.e. do not participate in the game). For the experiment, the baseline lighting setting

is taken to be = 90%,  which is the value used before the implementation of the

social game.

In the game-theoretic framework, the occupants are defined as agents, or players. Let
denote the number of agents participating in the game. The agents are modeled as utility 

maximizers whose utility functions ( , ) are composed of two basis functions that capture 

the tradeoff between comfort and desire to win as follows,

( , ) = ( , ) + ( , ) (1)

where [0,100] is the vote of the th agent, = , , … , , , … , collects the 

votes of all the agents except , ( , ) and ( , ) model the preferences of the agent 

with respect to the comfort and the desire to win, respectively. They are defined as

( , ) = ( ) , ( , ) = (2)

where = is the average of all the agents’ votes and it is the implemented lighting 

setting. The comfort basis function ( , ) measures the discomfort an agent feels given 

his/her vote and the state of the environment . The function ( , ), expressing the 

desire of the agent to win, depends on the total number of points distributed by the building 

manager. In Eq. (1), is a parameter expressing the degree of importance which the agent 

attributes to the desire to win. In this paper, it is assumed that are known, and determined 

through the procedure described in (Konstantakopoulos et al. 2018).

The agents can only log votes in the interval [0,100]. Thus, the agent faces the following 

constrained optimization problem

max ( , )

, ( ) 0

, ( ) 0

(4)

where , ( ) = 100 and , ( ) = . The game , ,…, is a continuous game on a 

convex strategy space, given by = × ×… , with = { |0 100}. To 

model the outcome of the strategic interactions between the agents, we use the Nash 

equilibrium point defined as

( , ) ( , ), [0,100] (5)

which consists of strategies that are all best responses to each other. This implies that no player 

can do better by deviating from a Nash point, assuming that no one else deviates. Additional 

constraints on the parameters guarantee that the game is concave on a convex set, and that 

it has unique differential Nash equilibrium point. As a consequence, for chosen incentive 
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and given number of agents playing the game, the lighting setting of the occupants is 

uniquely determined by the Nash equilibrium point.

However, the occupancy, including the distribution of people within the building and the 

variability of this distribution over time, is uncertain. To this aim, a building population model 

is adopted. The population models describe population patterns varying with time of day (e.g., 

hours of operation, lunch time fluctuations), day of week (weekdays versus weekends), and 

month of the year to characterize the effects of holidays. In this way, for any hour of any day 

of the year, it is possible to estimate the number ( ) of people present in the office. A Monte 

Carlo Simulation (MCS) is used to choose which agents are present at time instant .

Of course, different distributions of occupants will determine different Nash equilibrium 

points ( ). It follows a time-dependent uncertain distribution of the lighting setting, and in 

turn, of the Energy Consumption ( ) inside the building. The distribution of any quantity 

of interest is determined through the recently proposed Kernel Density Maximum Entropy 

Method (KDMEM). This is a novel machine learning approach based on the Maximum 

Entropy principle (Alibrandi and Mosalam 2017). It is here adopted because of its capabilities 

to provide, with reduced computational cost, the least biased distribution given the available 

information.

3 Generalized Expected Utility (GEU)

In the theory of decision under risk, the main focus of the decision maker is the choice of the 

optimal solution with respect to a chosen performance (e.g. the annual Energy Consumption 

in the building) given a set of alternatives ( ) = ( ), ( ) , = 1,2,… , . The vector
( ) =

( ) ( ) ( ) collects all the design variables containing the control variable 

values representing the set of preselected alternatives. The vector ( ) = { ( )}

collects all the uncertain parameters appearing in the decision-making problem where 

collects the basic random variables, which are the parameters that cannot be controlled by the 

decision-maker, e.g. environmental conditions or population distribution, while ( ) collects 

the derived parameters that are affected by the design variables, e.g. responses of the 

occupants to the incentives or the environmental conditions.

The optimal choice is determined through the definition of a functional ( ) applied to the 

performance , such that if ( ) ( ) , then the alternative ( ) is preferred over the 

alternative ( ). The Generalized Expected Utility ( ) (Mosalam et al. 2018) is adopted 

and expressed as follows,

( ) = ( ) ( )
(6)

where ( ) is the utility of the th alternative, 
( )

is its Cumulative Distribution Function 

(CDF), while ( ) is a suitable function describing the risk perception of the decision maker,

here represented by the decision maker. The utility ( ) is defined through the utility function
( ) which is a function converting the values of the performance into the degree of 

preference of the decision maker. The embodies a distinction between the attitudes to the 

outcomes, measured by ( ), and attitudes to the probabilities, distorted through ( ). The 

optimal decision maximizes the .

If the probabilities are not distorted by the risk perception of the decision maker, i.e. ( )

, then the coincides with the largely adopted Expected Utility (Von Neumann and 
Morgenstern, 1944)
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( ) ( ) = ( ) ( )
( ) = ( )

( )
( ) ( ) (7)

where 
( )

is the CDF of the performance . In the literature, some researchers state that a 

rational decision maker should be risk-neutral by considering complete consequence models. 

Under this further assumption, then ( ) = and

( ) ( ) =
( )

( ) =
( )

( ) ( ) (8)

where 
( )

( ) is the Probability Density Function (PDF) of ( ). The optimal alternative 

provides the maximum , i.e. 

max
( )

max
( )

max
( )

[ ] (9)

Thus, a rational building manager will pursue the maximum expected performance. In this 

paper, the considered performance is represented by the annual Energy Consumption of the 

building ( ), i.e. and thus the maximum benefit is coinciding with the minimum 

expected . In the considered case, [ , ( )] where the control variables are the 

distributed points and the baseline lighting setting, i.e. = { }, while ( ) collects the 

uncertain parameters. The basic random variables are the random population ( ) =

( ), ( ), … , ( ) , representing a multivariate stochastic process, where the process 

( ) describes the probability of occupancy of the agent at time . The derived variables are 

the votes ( ; ) = [ ( ); ], which in turn affect the lighting setting ( ; ) which in turn 

affects the considered performance ( ) ( ) = [ ( ; )].

4 Numerical Application

The procedure is applied to a hypothetical office building located in Berkeley, California. The 

office area is = 300 , with a peak population of = 12 people. The population model 
proposed by FEMA is adopted. A time window of an average year is chosen, with an interval 

time = 1 , so that 365 × 24 = 8,760 time slots per year are considered. The processes 
( ) describing the occupancy of the agents are discretized through a vector of random 

variables, i.e. = , , … , where = ( = ), = 1,2, … ,12 and =

1,2, … ,8760. Monte Carlo Simulation (MCS) is applied to simulate the probability of 

occupancy of the 12 occupants along the average year. Five different years are simulated.

In (Konstatakopoulos et al., 2018), values of the parameters are determined through a 
machine learning procedure. The adopted dataset derives from the social game setup, 

developed in a collaboratory space within a building on the UC Berkeley campus, occurred 

over the period of about three months. Starting from these findings, some representative values 

of , = 1,2, … ,12 are chosen in this numerical application. Thus, for each time slot, the 

votes ( ) are determined as Nash equilibrium points. It follows the lighting setting ( ) and 

the energy consumption of the building ( ). The daily value of is determined, giving 

rise to vectors of size 365 × 5, where five is the number of simulated years. The distributions 
of the uncertain parameters are determined through the Kernel Density Maximum Entropy 

Method (Alibrandi and Mosalam 2017). In the analysis, it has been assumed a baseline lighting 

setting = 90%, while different values of the distributed points are considered, ranging from 

= 0 to = 10,000 with steps = 1,000. The results are shown in Figure 1.
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Figure 1. (left) daily average votes of the active agents, (right) energy consumption

On the left part of Figure 1, we show how the daily average votes of the active agents vary 

with the incentives, which shows the different behavior of the occupants to the incentives. On 

the right part of Figure 1, the corresponding reduction of energy consumption of the building 

is presented. It is seen that if the building manager desires to achieve an average energy 

lighting consumption of 34 (i.e. energy saving of about 14% compared to the 

consumption without incentives, i.e. 39.5 ), he/she needs to distribute 5,650 point. 

5 Concluding Remarks

A hierarchical decision-making system under uncertainty for sustainable building design is 

presented. It is based on a human-centric design driven by the behavior and preferences of the 

occupants, described through a continuous game between non-cooperative agents. The lower 

level of the decision making applies a Monte Carlo Simulation to the social game, while the 

higher level ranks the consequences of the incentives. A simple numerical example shows the

capabilities of the presented system in designing incentives for more environmental-friendly 

occupants.
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