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The system reliability analysis is one of the main topics in the field of reliability engineering. Although 

progress has been made, there remain multiple challenges in the existing methods including the 

correlation of failure modes, the combinatorial explosion problems, and excessive computational efforts. 

In this paper, a new moment method with high accuracy, efficiency is presented. Firstly, by 

introducing the complete system failure process (originally defined as the development process of 

nonlinearity), an equivalent performance function describing a structural system is obtained. Secondly, 

point estimate method (PEM) based on adaptive dimensional decomposition is adopted to compute the 

first four moments of the equivalent performance function. Thirdly, approximated probability density 

function (PDF) of the equivalent performance function based on the maximum entropy principle is 

derived to estimate the system failure probability. An example is investigated to illustrate the numerical 

accuracy, efficiency of the proposed method in comparison to the Monte Carlo simulation method. 

Keywords: System reliability, complete system failure process, point estimate method (PEM), adaptive 

dimensional decomposition, maximum entropy. 

 

1 Introduction 

With the increasing awareness and importance of probability-based design methods and the development 

of modern computational techniques, reliability analysis has been playing an increasingly significant role 

in the structural engineering (Thoft-Christensen 1982, Ditlevsen 1996).  In general, structural reliability 

analysis is usually classified into two categories: structural member reliability and structural system 

reliability (Thoft-Christensen 1986). 

The structural system reliability considers multiple failure modes, and classical system reliability 

focuses on the collapse or forming mechanisms of perfectly elastoplastic and elastic-brittle structures 

(Melchers 1984, Thoft-Christensen 1986, Feng 1988, Zhao 2001).  There usually exist multiple potential 
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failure paths that lead to the collapse of structure, thus methods based on the dominant failure modes are 

developed naturally for the classical system reliability, which mainly include two steps: (i) identifying 

the dominant failure modes of a structure, including β-unzipping method (Thoft-Christensen 1986), branch 

and bound method (Thoft-Christensen 1986), truncating enumeration method (Melchers 1984), criterion 

methods (Feng 1988) and so on; and (ii) approximating reliability based on the identified failure modes, 

including the PNET (Ang 1984), the lower-upper bound method (Ditlevsen 1979, Feng 1989).  Although 

the achievements were fruitful, this family of methods have common restrictions that: (i) the number of 

failure modes increases dramatically as the structure redundancy increases (Onoufriou 2001); and (ii) the 

correlation information between failure modes is difficult to evaluate. To avoid the restrictions of 

traditional system reliability methods, Chen and Li (Chen 2007) proposed the development process of 

nonlinearity, which is also defined as complete system failure process (Fan 2016).  Based on this idea 

(Chen 2007, Fan 2016), the classical system reliability is effectively described by a single equivalent 

performance function. 

The present paper is organized as follows.  In Section 2, an equivalent performance function for 

system reliability of structure is formulated based on the complete system failure process; the moments 

of this performance function is evaluated by the adaptive bivariate dimensional decomposition method; 

and the system reliability is evaluated based on maximum entropy with the first four moments.  An 

example is investigated in Section 3 to verify the accuracy, efficiency of the proposed method.  At last 

some conclusions are drawn in Section 4.  

 

2 Improved moment method for system reliability 

2.1    On the complete system failure process 

In regard to the complete system failure process (Chen 2007), the system reliability of the structure with 

elastic-plastic material is equivalent to the probability of its ultimate capacity being greater than the 

applied load, namely 

( ) ( ){ }maxPr 0LR P P= - >Θ Θ                            (1) 

where R is the reliability, Θ=(ΘS, ΘL)=(Θ1,Θ2,…,Θn)T is the random vector, in which ΘS and ΘL are 

random vectors of the structural parameters and loads, respectively, Pmax(∙) is the ultimate limit capacity 

corresponding to the load parameter P.  Let 

                   
( ) ( ) ( )max max LZ P P= -Θ Θ Θ

                            (2) 

in which Zmax(Θ) denotes the margin for ultimate limit capacity of the structure.  Then, Eq. (1) 

becomes 

       ( ){ }maxPr 0R Z= >Θ
                                 

(3) 

In contrast to the traditional system reliability that requires identifying the dominant failure modes, 

there is only one equivalent failure mode based on the complete system failure process as summarized 

above.  

 

2.2    Equivalent performance function remodeled by Nataf transformation   
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By introducing the Nataf transformation (Li 2008) into the performance function ( )Z Θ , it can be 

inferred as 

           ( ) ( )( ) ( )-1

max max 1, , ,i nZ Z T U U U H= =Θ U)), , i n,,U U H)), ,, , i ni n,,U U ))                     (4) 

where T-1(∙) is the inverse transform of the Nataf transformation T(∙), and U={U1,…,Un} is a 

mutually independent standard normal vector. 

 

2.3    Point estimate for moments based on adaptive bivariate dimensional decomposition 

According to Fan and Wei (2015), the mean value and the first q central moments ( 2q ³ ) of Z are as 

follows 
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where E[.] is the expectation operator,
Zm is the mean value of Z , uc is the reference point, and ui

1
i
2
,c 

is a sub-vector of uc without the corresponding coordinates of 
1i

U ,
2i

U . 

Introducing the delineation of the cross terms (Fan 2015) of the cross terms of Ui and Uj, Then 

( )( ),, ,
q

i j ij c ZE H U U mé ù-ê úë û
u  becomes 
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where ( ),h i jI U U  is the indication function defined as  

    ( ) 1,   if  the cross terms of    and  exist

0,   otherwise
,

i j

h i j

U U
I U U

ì
= í
î

                  (7) 

If ( ),h i jI U U =1, then Eq. (6) becomes 

( ) ( ) ( )( ) ( ) ( ) ( )( )( )
( )( )

, , ,

,

, , , 1 , , ,

, ,

q

h i j i j ij c h i j i i c j j c c Z

q

i j ij c Z

E I U U H U U I U U H U H U H

E H U U

m

m

é ù+ - + - -ê úë û

é ù= -ê úë û

u u u u

u

  (8) 

If ( ),h i jI U U =0, then Eq. (6) becomes 



648 6th International Symposium on Reliability Engineering and Risk Management (6ISRERM)

( ) ( ) ( )( ) ( ) ( ) ( )( )( )
( )( ) ( )( ) ( )( )( )

( )( ) ( )( ) ( )( ) 213

1 2 3

, , ,

, ,

, ,

1 2 3

, , , 1 , , ,

, ,

!
, ,

! ! !

q

h i j i j ij c h i j i i c j j c c Z

q

i i c Z j j c Z c Z

kkk

Z c i i c Z j j c Z

k k k q

E I U U H U U I U U H U H U H

E H U H U H

q
H E H U E H U

k k k

m

m m m

m m m
+ + =

é ù+ - + - -ê úë û

é ù= - + - - -ê úë û

é ùé ù= - - -ê ú ê úë û ë ûå

u u u u

u u u

u u u

 (9) 

It is worth pointing out that: If ( ), 0h i jI U U = , then the Eq. (6) only involves one dimensional 

integrals.  Obviously, introducing the delineation of the cross terms improves the efficiency of the 

moments estimation for the response function with ( ), 0h i jI U U = . 

Eq. (5a) and Eq. (5b) are only expectation operation of functions with independent standard normal 

variables, and the Gauss-Hermite quadrature is useful, namely 
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where xGH,p and wGH,p are the abscissas (in ascending order) and weights of the Gauss–Hermite quadrature 

formula as illustrated in http://keisan.casio.com/exec/system/1330940731. 

 

2.4    System reliability analysis by maximum entropy 

The information-theoretic entropy of a continuous random variableY with PDF (y)Yf  is defined as 

[ ] ( ) log[ ( )]Y Y
Y Y

H f f y f y dy= -ò                            (11) 

Given m moments of Y , an estimation (y)Yf
Ù

 of the true PDF (y)Yf  can be obtained by the 

principle of maximum entropy (MaxEnt) in the following way (Zhang 2013): 

    Find:   Yf y  

    Maximize:    [ ] ( ) log[ ( )]Y Y
Y Y

H f f y f y dy= -ò  

Subject to:                  ( )k k

Y
Y Y

y f y dy M
a a=ò       (for k=1,2,...,m)         (12) 

    where 
kYM a is an ktha  order origin moment of Y . 

    The estimated PDF has the following generic form: 
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l  and a  of the MaxEnt distribution can be carried out in MATLAB with the simplex search 

method (Lagarias 1998).  

 

3 Numerical examples 
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In this example, consider a ten-bar truss shown in Fig. 1.  The geometric dimensions of this truss are 

l0=1.0m, and h=1.5m; the section areas of all bars are 0.01m2.  The material is assumed to be elastic 

perfectly plastic with the elastic modulus of E=2.06×105MPa.  There are four lognormal random 

variables involved, namely the load F1 and the yield stresses of the bars σi (i=1,2,3).  The mean value 

of F1 is 500 KN, and its coefficient of variation (cov) is assumed to be 0.2.  The statistical information 

of the yield stress σi is listed in Table 1. 

 

   

 

Fig.1 Ten-bar elastoplastic truss             Fig.2 Distribution of the margin for the ultimate capacity 

 

Table 1 The statistical information of yielding stresses of bars 

 

 Member Mean value(MPa) cov 

σ1 ,  200 0.1 

σ2 , , ,   200 0.1 

σ3 others 200 0.1 

 

According to the complete system failure process, the system reliability of this truss can be expressed 

equivalently by 

( ) ( ){ } ( ){ }max 1 2 3 1 1 max 1 2 3 1Pr , 0 Pr , 0R P F P F Z Fs s s s s s= - > = >           (14) 

If σi (i=1,2,3) and F1 are assumed to be mutually independent, the failure probability from Monte 

Carlo simulation with 1 million samples is 3.671×10-3.  Through the proposed method, the first four 

moments of the margin for ultimate limit capacity are approximately μZmax=387.66, σZmax=133.41, 

α3,Zmax=-0.1937, α4,Zmax=3.2535, and the probability density function (PDF) of the equivalent 

performance function is obtained as illustrated in Fig. 2.  The reliability index is 2.675 with the 

corresponding failure probability of 3.734×10-3.  This result agrees well with the result of the Monte 

Carlo method. 

 

4 Conclusions 
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In this work, by introducing the complete system failure process to obtain the equivalent performance 

function, and then combining the adaptive PEM with the maximum entropy to calculate the failure 

probability, an improved moment method for system reliability analysis is proposed An numerical 

example is presented to verify the effectiveness of the proposed method. 

The following conclusions can be drawn: 

(i) By introducing adaptive DRM into evaluation of statistical moments, the efficiency is improved  

(ii) The proposed method, which shows good efficiency, accuracy, provides a complete systematic 

solution to system reliability analysis, and avoids the common restrictions of existing methods. 
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