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The serviceability analysis of Water supply networks (WSNs) under earthquakes has significant 

importance for estimating the probable losses and the impact of diminished functionality on the 

affected community. In this paper, a physical-based analytic strategy is suggested. Following the 

stochastic seismic response of buried pipe networks, the transient flow analysis of WSNs with or 

without leakage is derived. Then the dynamic serviceability of WSNs under earthquakes is 

analyzed based on the probability density evolution method (PDEM).At last, an assessment of 

the serviceability of a small WSN illustrates the approach. 

Keywords: Water supply networks; serviceability; stochastic ground motion; probability density 

evolution method 

 

1 Introduction 

Water supply networks (WSNs) are important components of lifeline systems, which include 

buried pipes, pumps, valves etc. to deliver water from sources to customers, and reservoirs, 

tanks and cisterns etc. to meet the needs of fire protection, emergency relief and some other 

infrastructures. However, a great many previous earthquake investigations prove that the seismic 

serviceability of WSNs is still very weak (O’Rourke 1996). In order to assess the dynamic 

serviceability of WSNs under earthquakes, a physical-based analytic strategy based on the 

probability density evolution method (PDEM) is suggested in this paper by combing the 

stochastic seismic response of buried pipe networks and the transient flow analysis of WSNs 

with or without leakage. 

 

2 Seismic Response of Buried Pipe Networks 

2.1 Seismic behaviors of buried pipe networks 

In order to get the seismic behaviors of buried pipe networks, a finite element model proposed 

by Liu et al. (2015) is adopted in this paper. In this method, the motion equation of the pipe 

network can be expressed as: 

 { }[ [ ] { }]S LYS gu KK u=  (1) 
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where [ ]SYSK is the stiffness matrix of the system; [ ]LK is transfer matrix of load. { }u  and 
g{ }u  

are the displacement vector of the pipe elements and ground motion, respectively.  

After solving the Eq. (1), we can get the joint deformation. For the joint i, the axial 

deformation uJ
i
 can be expressed as follows: 

 
+1 -1

1 2= -i i i

Ju u u  (2) 

The method has been validated by an artificial earthquake test by Liu et al. (2017). 

2.2 Leakage model of the pipe network 

In order to determine the relationship between the leakage flow and the water pressure, the 

following point leakage model is used (Chen & Li 2004): 

 ( ) ( ) ( )L 0 L L= 2Q t C A t gH t   (3) 

where QL(t) is the leakage flow at the leakage point; AL(t) is the leakage area, HL(t) is the water 

pressure at the leakage point, g is the gravitational acceleration; t is time; C0 is a model 

parameter. The leakage area of this joint can be estimated by the following equation: 
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where do is the outer diameter of the pipe; δ is the maximum width of the joint gap; RL is the 

depth of the spigot inserting into the socket. R1 and R2 are the limit value of elastic deformation 

and plastic deformation of the pipe joint, respectively. ( )Jm

iu t  is the maximum tensile 

deformation of the pipe joint, which can be expressed as: 
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where T1 and T2 are the beginning and ending time of the earthquake, respectively; T3 is the time 

when the broken joint has been repaired. 

For simplicity, we assume that the leakage area of every joint in a pipeline can be focused 

in the two ends of the pipeline. Therefore, for node j in the pipe network, the total leakage area 

at this point should be: 

 ( ) ( )
JP

L

1 1

1
=

2

NN

j i

k i

AL t A t
= =
åå  (6) 

where NJ is the number of pipe joint of pipeline k; NP is the number of pipelines at node j in the 

pipe network. 
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2.3 Stochastic ground motion field 

The ground motion field can be expressed as follows: 

 
l s l l

1
( , , ) ( , , , , ) cos[ ( , , , , )]

2
a r r t A r r t r r dw w F w w

p

+¥

-¥
= - × +ò x h x h  (7) 

where a(r,rl,t) is the time history of ground motion in the engineering site; r is the distance from 

the hypocenter to the geometric center of the local site; rl is the simulated location of the ground 

motion in the local site; As(ξ,η,ω,r,rl) is the amplitude spectrum of the ground motion; 

Φ(ξ,η,ω,r,rl) is the phase spectrum of the ground motion; ξ=[A0,T,ωg,ζg,α0,cg]
T
 is a stochastic 

vector representing the main physical factors that affect the ground motion; η=[K,a΄,b΄,c΄,d΄]
T 

is 

a deterministic vector, which reflects the effect of transmission paths. 

On the basis of the superposition method of narrow-band harmonic wave groups, Wang and 

Li (2011) suggested the time history samples of the ground motion in a local site can be derived 

as follows: 
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where A0 and T are the random coefficients of the hypocenter; ωg is the equivalent predominant 

circular frequency of the local site; ζg is the damping ratio of the local site. α0 is the attenuation 

parameters of the local site; cg is the apparent seismic wave velocity. a΄, b΄, c΄ and d΄ are the 

empirical coefficients for synthetizing ground motion fields. 

 

3 The Transient Flow Analysis in the Pipe Network 



688 6th International Symposium on Reliability Engineering and Risk Management (6ISRERM)

 

For the one-dimensional transient flow in the pipe shown in Figure 1, its momentum equation 

and continuity equation can be respectively expressed as (Chaudhry 2014): 
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where g is the acceleration of gravity; A is the cross sectional area of the pipe; Q is the flow rate 

in the pipe; V is the fluid velocity; H is the pressure head; f and m are two coefficients of friction 

resistance, which depend on different hydraulic loss models. Generally, a is the propagation 

velocity of small disturbances, such as sound, which can be expressed as (Chaudhry 2014): 
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where K is the bulk modulus of the fluid; ρ is the fluid density; di is the inner diameter of the 

pipe; e is the wall thickness of the pipe; C1 is a parameter which depends on the support 

conditions of pipe ends. When one end of the pipe is fixed while the other can lengthen and 

shorten freely, C1 should be 1-μ/2, where μ is the Poisson's ratio; when the two ends are fixed, 

C1 is 1-μ
2
; when the pipe can lengthen and shorten freely at both ends, C1 equals to 1. 

Characteristic line method can be used to solve the above differential equations. 

xo

h

H

Q

 
Figure 1. The one-dimensional fluid in pipes 

 

4 Probability Density Evolution Method 

In 2004, Li and Chen (2004, 2009) suggested a new method named the probability density 

evolution method (PDEM) for analyzing the nonlinear stochastic dynamical system with random 

parameters subjected to stochastic excitations. PDEM reveals the internal relationships between 

the probability density evolution and the physical system state evolution. 

In general, the basic procedures of solving the probability density evolution function are as 

follows (Li and Chen 2009): 

(i) Selecting some representative points θq in the random parameter space ΩΘ and then 

assigning corresponding probability Pq to the point θq, where q=1,2,...,N. N is the number of 

selected points. (ii) For the representative point θq, q=1,2,...,N, Eqs. (13)‒(14) are solved to 

obtain the node head. (iii) Then for the selected point θq, the PDEE can be further written as: 
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Meanwhile, the initial condition can be expressed as: 

 
0 0( , , ) ( )t t qp t Pd= = -

ZΘ
z θ z z  (17) 

(iv) Synthesizing the results will yield the instantaneous probability density function (PDF) 

as follows: 
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5 Case study 

In order to further explain the method suggested in this paper, a small WSN is used as an 

example to analyze the function reliability of the pipe network when suffering the earthquake. 

The topological structure, the number of pipelines and nodes are shown in Figure 2. All pipes 

are grey cast iron pipes. The length of pipe segments is 6 m. The network is located in II type 

site based on the Chinese design code and the burial depth of all pipes is 1 m. The soil is soft 

clay with the undrained shear strength of 22.93 kPa. Therefore, the stiffness of axial and lateral 

soil springs can be got according to the ALA seismic guidelines (ALA 2005). Then based on the 

PDEM, the PDFs of the dynamic water head and flow rate, as well as the leakage flow rate at 

different nodes in the pipe network can be got. The analysis results of the node No. 7 in the pipe 

network have been shown in Figure 3 and Figure 4 as an example. Figure 3 is the PDF and the 

probability density contour of the dynamic water pressure while Figure 4 is the PDF and the 

probability density contour of the leakage flow. 
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Figure 2. A small pipe network 
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(a) PDF                                    (b) probability density contour 

Figure 3. The water head at the node No. 7 
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(a) PDF                                (b) probability density contour 

Figure 4. The leakage flow at the node No. 7 

6 Conclusions 

Based on the seismic response of buried pipe networks and the transient flow analysis in 

networks, this paper achieve dynamic real-time serviceability seismic function analysis of water 

supply networks based on physical mechanism. This model can be applied to the function 

analysis of water supply networks during and after earthquakes. The case study shows that 

during the earthquake, the water pressure will change sharply. When the leakage area of the 

network is constant, the water pressure and leakage flow rate will gradually stabilize. 
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