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Nonlinear bending of shear deformable nanobeams subject to a temperature field is
investigated in this paper based on von Kármán type nonlinearity and nonlocal elas-
ticity theory. By using the variational principle approach, new higher-order governing
differential equations and the corresponding higher-order boundary conditions both in
the transverse and axial directions are derived and discussed. Several examples are pre-
sented to highlight the effects of nonlocal nanoscale, temperature and shear deformation
on the transverse deflection of nanobeam. The exact analytical solutions for transverse
deflection are derived and the solutions confirm that the nonlocal nanoscale tends to
significantly decrease nanobeam transverse deflection while shear deformation increases
the transverse deflection of nanobeam. It is also concluded that the stiffness of shear
deformable nanobeams could be reinforced at low and room temperature, while at high
temperature the stiffness will be reduced.

Keywords: Nonlocal elasticity, Thermal-elasticity, Shear deformable nanobeam, Variation
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1. Introduction

With the advent of nanoengineering and nanotechnology, nanostructures including

nanotube, nanobeam and nanorod etc., have become potential design candidates

which are likely to play key roles in many engineering devices or components at

the nanometer scale, such as micro- or nano-electromechanical systems (MEMS or

NEMS). Recently, a great deal of research indicates that the material properties of

nanostructures are related to temperature change, subsequently, there were numer-

ous researches which concerned thermal bending, vibration and buckling analyses

of nanostructures. At nanoscale, the mechanical properties of nanostructures are

significantly different from their behavior at macroscopic due to the inherent size

effects. There have been some essential approaches to investigate the mechanical

properties of nanostructures considering size and thermal effects, including, but
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not restricted to, strain gradient models [Mindlin, 1964, 1965], couple stress mod-

els [Mindlin, 1962; Toupin, 1962], and nonlocal stress models [Eringen, 1972, 1972,

1972, 1981, 1983]. The methods would potentially play a critical part in the analyses

related to nanotechnological applications.

The nonlocal elasticity field theory used in this paper, which was first developed

by Eringen [1972, 1972, 1972, 1981, 1983] and his associates, assumes that the

stress tensor at a point is a function of strains at all points in the continuum. It

is different from the classical continuum theory because the latter is based on a

constitutive relation which states that the stress at a point is a function of strain

at that particular point. This nonlocal theory is proved to be in accordance with

atomic model of lattice dynamics and with experimental observations on phonon

dispersion. At present, it has been extensively applied to analyze bending, buckling,

vibration and wave propagation of CNTs and other nanostructures.

Based on this model, Murmu and Pradhan [Murmu et al., 2009, 2010] investi-

gated the buckling and vibration of single-walled CNTs with thermal effect. Wang

and his associates [Wang et al., 2006, 2009] investigated buckling and postbuck-

ling of micro and nanorods by applying the nonlocal beam theory considering shear

deformation and nonlinearity respectively. Later, based on the nonlocal Timoshenko

beam model, Benzair et al., [2008] studied free vibration of single-walled nanotubes

with thermal effect. Li and Kardonatea [2007] investigated the thermal buckling

phenomenon of multi-walled CNTs in an elastic medium using the nonlocal theory.

Tounsi et al., [2008] investigated the small size effect on wave propagation in double-

walled CNTs under temperature field. Yan et al., [2010] studied the small scale effect

on the buckling behaviors of triple-walled CNTs with the initial axial stress under

temperature field. However, the nonlocal models used in these references [Murmu

et al., 2009, 2010; Wang et al., 2006, 2009; Benzair et al., 2008; Li et al., 2007; Tounsi

et al., 2008; Yan et al., 2010] are termed the partial nonlocal models and they, in

fact, do not satisfy the conditions of equilibrium [Lim, 2009, 2010, 2010] and do not

describe the true state of motion. These references reached a common conclusion

that, in many cases, the buckling load or frequency of nanostructures reduces in

the presence of nonlocal nanoscale effects. This conclusion is surprising and con-

tradictory to intrinsic intuition, as nanoscale size effects are believed to enhance

nanostructural stiffness and lead to higher buckling load and natural frequencies.

This contradictory technical query is exactly the key issue of this paper.

In the application of nonlocal elasticity models for nanostructure, Lim [2009,

2010, 2010] recently showed that the classical governing equations of motion and

equilibrium equations cannot be directly applied in nonlocal stress models even

with the relevant quantities replaced by the corresponding nonlocal quantities.

He proposed a new nonlocal stress model which considers the nonlinear history

of finite straining in the derivation of the strain energy density and further derived

exact equilibrium conditions and higher-order differential governing equations with

the corresponding higher-order nonlocal boundary conditions via the variational
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principle in which an effective nonlocal bending moment is derived as an infinite

series of higher-order nonlocal bending moments. Using the new exact nonlocal

model, Lim and his associates further analyzed buckling [Lim et al., 2010], vibration

[Li et al., 2011], wave propagation [Lim et al., 2010, 2010; Yang et al., 2011], thermal

bending [Lim et al., 2011] and thermal buckling [Yang et al., 2011] of nanostructures.

Applying this exact stress model, this paper investigated the nonlinear thermal

bending of nanobeam based on Timoshenko beam model and with von Kármán

type geometric nonlinearity. New higher-order differential equations of equilibrium

with the corresponding non-classical boundary conditions for nonlinear thermal

bending of nanobeam, which include essential higher-order nonlocal terms miss-

ing in the previous partial nonlocal stress models, are derived. Analytical solu-

tions for some practical examples with various boundary conditions are obtained

and discussed in detail. Conclusions are consequently drawn that stiffness of shear

deformable nanobeam increases with increasing nonlocal effect while it decreases

with the effect of shear deformation. The paper also concludes that at low and

room temperature the nanobeam thermal-elastic deflection decreases with increas-

ing temperature difference, while at high temperature the deflection increases as

the temperature difference increases.

2. Nonlinear Thermal Elastic Model for Shear

Deformable Nanobeam

According to the Timoshenko beam theory and considering von Kármán type non-

linearity for large deflection, the strain-displacement relations are given by

εxx =
du

dx
+

1

2

(

dw

dx

)2

− z
dϕ

dx
(1)

γxz =
dw

dx
− ϕ = w〈1〉 − ϕ (2)

where u and w are the axial and transverse deflections of nanobeam neutral axis, ϕ

is rotation of nanobeam cross section, x is the axial coordinate measured from the

left end and z is the normal coordinate measured from the midplane, as shown in

Fig. 1.

In accordance with the nonlocal elastic stress theory of Eringen [1983], the

nonlocal constitutive equation for nanobeam considering nonlocal effect can be

expressed as

σxx − (e0a)
2 d2σxx

dx2
= Eεxx (3)

where a is an internal characteristic length (e.g., lattice parameter, C-C bond length,

granular distance, etc.), e0 is a material constant, σxx is the nonlocal normal stress,

E is the classical Young’s modulus, and εxx is the normal strain. The magnitude

of e0 is determined experimentally or approximated by matching the dispersion
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Fig. 1. Coordinate system of a shear deformable nanobeam.

curves of plane waves with those of atomic lattice dynamics. The normal strain can

be expressed as

εxx = εm + εb (4)

where εm is the axial strain and εb is the bending strain.

For generality, the equation above is non-dimensionalized using the following

dimensionless parameters

σ̄xx =
σxx

E
, z̄ =

z

L
, x̄ =

x

L
, w̄ =

w

L
, ū =

u

L
, τ =

e0a

L
(5)

Hence, Eq. (3) can be expressed as

σ̄xx − τ2 d2σ̄xx

dx̄2
= εm + εb (6)

where

εm = ū〈1〉 +
1

2

(

w̄〈1〉
)2

(7)

εb = −z̄
dϕ

dx̄
= −z̄ϕ〈1〉 (8)

in which ()
〈n〉

= dn/dx̄n represents the derivative with respect to the dimensionless

coordinate x̄. Neglecting all pre-stresses and pre-strains which appear as constants

of integration, the solution to Eq. (6) can be expressed as

σ̄xx =

∞
∑

n=1

τ2(n−1)ε〈2(n−1)〉
xx (9)

which relates the nonlocal stress and strain gradients. Considering only the most

significant nonlocal term with n = 2, Eq. (9) can be reduced to

σ̄xx = (εm + εb) + τ2 (εm + εb)
〈2〉

(10)

The strain energy density e at a point in the nanostructure is the integral sum of

the nonlocal stress over the history of straining which can be expressed as

e =

∫ εxx

0

σxx dεxx = E

∫ εxx

0

σ̄xx dεxx (11)
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Expanding Eq. (11) using the constitutive solution in Eq. (10) yields

e = e1 + e2 (12)

where

e1 = 1
2E (εm + εb)

2

e2 = 1
2Eτ2

[

(εm + εb)
〈1〉

]2 (13)

Furthermore, the energy density contributed by shear stress should also be consid-

ered for a shear deformable nanobeam as

es =
1

2
Gγ2

xz (14)

where G is the shear modulus and γxz is shear strain and the shear force is defined

as

Q =

∫

A

GγxzdA =

∫

A

G
(

w̄〈1〉 − ϕ
)

dA = GAκs

(

w̄〈1〉 − ϕ
)

(15)

in which κs is the shear correction factor. Thus the total strain energy in the whole

deformed body with volume V is

U =

∫

V

(e + es) dV =

∫

V

(e1 + e2 + es) dV (16)

3. Higher-Order Nonlocal Governing Equations and

Boundary Conditions

The variational principle is applied to determine the governing equation of equilib-

rium and boundary conditions. Variation of the strain energy in Eq. (16) yields

δU =
∫ 1

0

[

EAL
(

−ε
〈1〉
m + τ2ε

〈3〉
m

)

w̄〈1〉 + EAL
(

−εm + τ2ε
〈2〉
m

)

w̄〈2〉

−GALκs

(

w̄〈2〉 − ϕ〈1〉)] δw̄dx̄

+
∫ 1

0
EAL

(

−ε
〈1〉
m + τ2ε

〈3〉
m

)

δūdx̄

+
∫ 1

0

[

EI
L

(

τ2ϕ〈4〉 − ϕ〈2〉) − GALκs

(

w̄〈1〉 − ϕ
)]

δϕdx̄

+
{[

EAL
(

εm − τ2ε
〈2〉
m

)

w̄〈1〉 + GALκs

(

w̄〈1〉 − ϕ
)

]

δw̄

+EALτ2ε
〈1〉
m w̄〈1〉δw̄〈1〉

+EAL
(

εm − τ2ε
〈2〉
m

)

δū + EALτ2ε
〈1〉
m δū〈1〉

+EI
L

(

ϕ〈1〉 − τ2ϕ〈3〉) δϕ + EI
L

τ2ϕ〈2〉δϕ〈1〉}1

0

(17)

For static bending of a nanobeam subject to transverse load and axial tension, the

work W1 exerted by external distributed transverse load P (x) and axial tension
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Nxx at the two ends is

W1 = LNxx ū|x=1
x=0 −

LNxx

2

∫ 1

0

(

w̄〈1〉
)2

dx̄ + L2

∫ 1

0

Pw̄ dx̄ (18)

It is assumed that the thermal diffusion processes in the nonlocal continuum are of

local nature [Ardito et al., 2009; Polizzotto, 2001, 2003]. Therefore, in this paper, the

effect of temperature rise is considered as an additional force in the axial direction.

As a result of thermal expansion, the additional force is given by

NT = αTEA (19)

where T is the temperature difference with respect to an initial reference tempera-

ture, A is the cross sectional area and α is the thermal expansion coefficient. The

work done by this axial force NT is

W2 =
NT

2

∫ L

0

(

∂w

∂x

)2

dx =
αTEAL

2

∫ 1

0

(

∂w̄

∂x̄

)2

dx̄ (20)

Hence, the variation of work done on the nanobeam is

δW1 = LNxx δū|10 − LNxxw̄〈1〉 δw̄|10 + LNxx

∫ 1

0

w̄〈2〉δw̄ dx̄ + L2

∫ 1

0

P δw̄ dx̄ (21)

δW2 = LNT w̄〈1〉 δw̄|10 − LNT

∫ 1

0

w̄〈2〉δw̄ dx̄ (22)

According to the variational principle, variation of the functional U − W1 − W2

vanishes, or

δ (U − W1 − W2) = 0 (23)

in the search for an extremum. Since δw̄, δū and δϕ do not vanish according to the

variational principle, Eq. (23) yields the higher-order nonlocal equilibrium equations

as

EAL
(

−ε
〈1〉
m + τ2ε

〈3〉
m

)

w̄〈1〉 + EAL
(

−εm + τ2ε
〈2〉
m

)

w̄〈2〉 − GALκs

(

w̄〈2〉 − ϕ〈1〉)

+ (LNT − LNxx) w̄〈2〉 = L2P

(24)

EI

L

(

τ2ϕ〈4〉 − ϕ〈2〉
)

− GALκs

(

w̄〈1〉 − ϕ
)

= 0 (25)

EAL
(

−ε〈1〉m + τ2ε〈3〉m

)

= 0 (26)

From Eq. (26), −εm + τ2ε
〈2〉
m is a constant and, upon integration with respect to x̄,

it can be shown that

Nε = EA
(

−εm + τ2ε〈2〉m

)

(27)

where Nε is the total compression load induced by the presence of axial strain in

the nanobeam. In the axial direction, the nanobeam is fixed at x̄ = 0 and free at
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x̄ = 1. Hence, from the boundary conditions, we see that

Nε = −Nxx + NT (28)

Substitute Eqs. (26) and (27) into Eq. (24), the differential governing equation can

be expressed as

LPxxw̄〈2〉 − GALκs

(

w̄〈2〉 − ϕ〈1〉
)

= L2P (29)

where Pxx is the total force in axial direction and can be expressed as

Pxx = 2 (NT − Nxx). In this paper, the bending of nanobeam under a combined

action of axial tension load and transverse load under thermal field is most inter-

ested. Therefore, −Pxx = 2 (Nxx − NT ) > 0 is considered.

Similarly, the corresponding higher-order nonlocal boundary conditions obtained

from the remaining terms in Eq. (23) can be shown as follows

[

EAL
(

εm − τ2ε
〈2〉
m

)

w̄〈1〉 + GALκs

(

w̄〈1〉 − ϕ
)

+ (LNxx − LNT ) w̄〈1〉
]

x̄=0,1 = 0

or w̄|x̄=0,1 = 0

(30)

EI
L

(

ϕ〈1〉 − τ2ϕ〈3〉) = 0 or ϕ = 0
EI
L

τ2ϕ〈2〉 = 0 or ϕ〈1〉 = 0

}

at x̄=0,1

(31)

EAL
(

εm − τ2ε
〈2〉
m

)

= LNxx − LNT or ū = 0

EALτ2ε
〈1〉
m = 0 or ū〈1〉 = 0

}

at x̄=0,1

(32)

The displacement and rotation in Eqs. (24), (25) and (26) for thermal buckling of

shear deformable nanobeam can be decoupled as

τ2ϕ〈5〉 − ϕ〈3〉 + βϕ〈1〉 = −P̄ γ (33)

τ2w̄〈6〉 − w̄〈4〉 + βw̄〈2〉 = −P̄ γ (34)

where β = L2Pxx

EI
GALκs

GALκs+LPxx
, γ = GALκs

GALκs+LPxx
and P̄ = PL3

EI
. Considering β > 0

and τ < 1, then 0 < ∆ = 1 − 4τ2β < 1 can be deduced. Therefore the general

solution to Eq. (34) comprises both the homogeneous solution and the particular

solution which can be expressed as

w̄ = C1e
λ1x̄ + C2e

−λ1x̄ + C3e
λ2x̄ + C4e

−λ2x̄ + C5x̄ + C6 −
P̄ γ

2β
x̄2 (35)
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with six constants of integration which can be determined from the boundary con-

ditions for w̄ in Eq. (30) and for ϕ in Eq. (31) and

λ1 =

√

1 +
√

1 − 4τ2β

2τ2
; λ2 =

√

1 −
√

1 − 4τ2β

2τ2
(36)

Substituting Eq. (35) into Eq. (29) and integrating once, ϕ can be expressed as

ϕ =
1

γ

(

C1λ1e
λ1x̄ − C2λ1e

−λ1x̄ + C3λ2e
λ2x̄ − C4λ2e

−λ2x̄
)

+ C7 −
P̄ x̄

β
+

L2P x̄

GALκs

(37)

Further, substituting Eq. (35) and Eq. (37) into Eq. (25), one obtains

C5 = C7 (38)

Hence, the transverse rotation ϕ can be finally expressed as

ϕ =
1

γ

(

C1λ1e
λ1x̄ − C2λ1e

−λ1x̄ + C3λ2e
λ2x̄ − C4λ2e

−λ2x̄
)

+ C5 −
P̄ x̄

β
+ P̄ ηx̄ (39)

where η = EI
GAL2κs

= E
16Gκs

(

d
L

)2
is related to material constants and diameter to

length ratio d/L.

4. Examples and Discussion

Several examples for nanobeams with different boundary conditions are presented

in this section to highlight the effect of nonlocal effect, shear deformation and tem-

perature difference. The different boundary conditions considered include simply

supported (SS), propped cantilever (CS), and clamp-clamp (CC) nanobeams. The

material constants and parameters are ν = 0.19, E = 1.1TPa, G = E/2 (1 + ν),

shear correction factor κs = 0.8, diameter to length ratio d/L = 0.05 and negative

thermal coefficient α = −1.6×10−6 at low and room temperature, and positive ther-

mal coefficient α = 1.1 × 10−6 at high temperature [Jiang, 2004]. The nanobeams

are subjected to distributed transverse load P (x) as defined in the beginning of

Sec. 3 and following Eq. (34). In the following examples, the boundary conditions

in the z-direction vary but in the x-direction, all cases do have the left-end fixed

and the right-end free.

4.1. Simply Supported (SS) Shear Deformable Nanobeam

For a nanobeam simply supported in the z-direction, the six higher-order boundary

conditions in the transverse direction are

ϕ〈1〉
∣

∣

∣

x̄=0,1
= 0 ; ϕ〈3〉

∣

∣

∣

x̄=0,1
= 0 ; w̄|x̄=0,1 = 0 (40)

Substituting Eqs. (35) and (39) into Eq. (40), the constants of integration are

C1 =
P̄ (ηβ−1)γλ2

2

(1+eλ1)βλ2
1(λ2

2−λ2
1)

; C2 =
P̄ eλ1 (ηβ−1)γλ2

2

(1+eλ1)βλ2
1(λ2

2−λ2
1)

; C3 =
P̄ (ηβ−1)γλ2

1

(1+eλ2)βλ2
2(λ2

2−λ2
1)

C4 =
P̄ eλ2 (ηβ−1)γλ2

1

(1+eλ2)βλ2
2(λ2

2−λ2
1)

; C5 = P̄ γ
2β

; C6 =
P̄ γ(ηβ−1)(λ2

1+λ2
2)

βλ2
1λ2

2

(41)
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Hence, the transverse deflection and rotation using a nonlocal Timoshenko model

for a simply supported nanobeam subjected to a uniformly distributed load P (x)

are

w̄T = P̄ γ
2β

x̄ − P̄ γ
2β

x̄2 + P̄ γ(ηβ−1)
β

[

λ2
2(eλ1x̄+eλ1(1−x̄))

(1+eλ1)λ2
1(λ2

1−λ2
2)

− λ2
1(eλ2x̄+eλ2(1−x̄))

(1+eλ2)λ2
2(λ2

1−λ2
2)

+
(λ2

1+λ2
2)

λ2
1λ2

2

] (42)

ϕT =
P̄ γ

2β
− P̄ x̄

β
+P̄ x̄η+

P̄ (ηβ − 1)

β

[

λ2
2

(

eλ1x̄ − eλ1(1−x̄)
)

(1 + eλ1)λ1 (λ2
1 − λ2

2)
+

λ2
1

(

eλ2x̄ + eλ2(1−x̄)
)

(1 + eλ2)λ2 (λ2
1 − λ2

2)

]

(43)

For vanishing axial force parameter β → 0, Eq. (42) can be readily degenerated to

the linear bending of a shear deformable nanobeam and can be easily shown as

(w̄T )L = P̄
24

[

(

x̄ − 2x̄3 + x̄4
)

− 12τ2
(

x̄ − x̄2
)

+ 24τ4
(

1 − ex̄/τ+e(1−x̄)/τ

1+e1/τ

)]

+ P̄ η
2

(

x̄ − x̄2
)

(44)

For GAκs → ∞, Eq. (42) can be reduced to the nonlinear bending of a Euler-

Bernoulli nanobeam, as

w̄E = P̄
2β

x̄ − P̄
2β

x̄2 + P̄ (ηβ−1)
β

[

λ2
2(eλ1x̄+eλ1(1−x̄))

(1+eλ1)λ2
1(λ2

1−λ2
2)

− λ2
1(eλ2x̄+eλ2(1−x̄))

(1+eλ2)λ2
2(λ2

1−λ2
2)

+
(λ2

1+λ2
2)

λ2
1λ2

2

] (45)

where β = L2Pxx

EI
in this equation. Eq. (42) can also be reduced to the transverse

deflection for linear bending of a Euler-Bernoulli nanobeam

(w̄E)L =
P̄

24

[

(

x̄ − 2x̄3 + x̄4
)

− 12τ2
(

x̄ − x̄2
)

+ 24τ4

(

1 − ex̄/τ + e(1−x̄)/τ

1 + e1/τ

)]

(46)

by setting GAκs → ∞ and vanishing axial force parameter β → 0, which is first

solved by Lim [2010]. For vanishing nonlocal effect, τ → 0, Eq. (42) is reduced to

the classical Timoshenko beam solution

w̄
Tcla =

P̄ γ

2β
x̄ − P̄ γ

2β
x̄2 +

P̄ γ (ηβ − 1)

β2

[

1 − e
√

β(1−x̄)

(

1 + e
√

β
)

β2
− e

√
βx̄

(

1 + e
√

β
)

β2

]

(47)

The maximum bending deflection (w̄Tcla) max occur at x̄ = 1/2 and it is

(

w̄
Tcla

)

max =
P̄ γ

8β
+

P̄ γ (ηβ − 1)

β2

[

1 − 2e
√

β/2

(

1 + e
√

β
)

β2

]

(48)

The nonlocal size effect τ on the dimensionless deflection ratio w̄T

/(

w̄
Tcla

)

max is

demonstrated in Fig. 2, where w̄T is the thermal-elastic deflection based on nonlocal

Timoshenko beam model as expressed in Eq. (42) and
(

w̄
Tcla

)

max is the maximum
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deflection of a classical beam shown in Eq. (48). For a nanobeam in high temperature

environment, the thermal expansion coefficient and temperature change are taken as

α = 1.1 × 10−6
/

K and T = 100K. The nanoscale τ ranges from 0, a classical beam,

to 0.2. As observed in Fig. 2, increasing τ tends to reduce the static deflection of the

nanobeam. Hence, the classical theory overestimates the thermal-elastic deflection

of a shear deformable nanobeam.

In Figure 3 the variation of deflection ratio w̄T

/(

w̄
Tcla

)

max along the nanobeam

for temperature change ranges from T = 0K to T = 120K and τ = 0.1. It is

observed that at low and room temperature where α = −1.6×10−6, w̄T

/(

w̄
Tcla

)

max

decreases as the temperature change increases, while at high temperature where

α = 1.1 × 10−6, w̄T

/(

w̄
Tcla

)

max increases as the temperature change increases.

The shear deformation effect on dimensionless transverse deflection ratio of

nanobeam is clearly demonstrated in Fig. 4. The deflection ratio based on nonlocal
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Fig. 4. Transverse deflection ratio using NT and NE model for SS nanobeam.

Timoshenko beam model (NT) and nonlocal Euler beam (NE) is shown in Eq. (42)

and Eq. (45) respectively. A nanobeam in high temperature environment, with ther-

mal expansion coefficient α = 1.1 × 10−6
/

K and temperature change T = 100K is

considered. It is observed that the shear deformation effect tends to reduce the

nanobeam stiffness where the deflection ratio of the NT model is larger than the

corresponding deflection ratio of the NE model.

4.2. Clamped (CC) Shear Deformable Nanobeam

For a nanobeam fully clamped in the transverse direction, the six boundary condi-

tions are

w̄|x̄=0,1 = 0 ; ϕ|x̄=0,1 = 0 ; ϕ〈2〉
∣

∣

∣

x̄=0,1
= 0 (49)

Substituting Eqs. (35) and (39) into the boundary conditions above and solving the

equations yield six integration constants C1, C2, . . . , C6, and these constants are

C1 =
Pγλ2

2

2βλ1q1(eλ1−1)(λ2
1−λ2

2)

{

2eλ1
(

eλ2 + 1
)

(βη − 1)λ1λ2

(

λ2
1 − λ2

2

)

+γλ3
2

(

eλ1 − 1
) (

eλ2 + 1
)

[2 (βη − 1) − λ1]

+ γλ3
1 (2βη − λ2 − 2)

(

eλ1 − eλ2 − eλ1+λ2 + 1
)}

(50)

C2 =
P γλ2

2eλ1

2βλ1q1(eλ1−1)(λ2
1−λ2

2)

{

2
(

eλ2 + 1
)

(βη − 1)λ1λ2

(

λ2
1 − λ2

2

)

+γλ3
1 (2βη + λ2 − 2) ×

(

1 − eλ1+λ2
)

+ γλ3
2

(

eλ1 − 1
) (

eλ2 + 1
)

[2 (βη − 1) + λ1] + γλ3
1 (2βη − λ2 − 2)

(

eλ1 − eλ2
)}

(51)
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C3 =
Pγλ2

1

2βλ2q2(eλ2−1)(λ2
2−λ2

1)

{

2eλ2
(

eλ1 + 1
)

(βη − 1)λ1λ2

(

λ2
2 − λ2

1

)

+2γλ3
2

(

eλ1 − 1
) (

eλ2 + 1
)

(βη − 1)

+γλ1

(

eλ1 + 1
) (

eλ2 − 1
) [

λ3
2 − λ2

1 (2 − 2βη + λ2)
]}

(52)

C4 =
Pγλ2

1eλ2

2βλ2q2(eλ2−1)(λ2
2−λ2

1)

{

2
(

eλ1 + 1
)

(βη − 1)λ1λ2

(

λ2
2 − λ2

1

)

+2γλ3
2

(

eλ1 − 1
) (

eλ2 + 1
)

(βη − 1)

+γλ1

(

eλ1 + 1
) (

eλ2 − 1
) [

λ2
1 (2βη + λ2 − 2) − λ3

2

]}

(53)

C5 = Pγ
2βq2

{

2λ3
2

(

eλ1 − 1
) (

eλ2 + 1
)

(βη − 1) +
(

eλ1 − 1
) (

eλ2 + 1
)

λ1λ
3
2

+λ3
1

(

eλ1 + 1
)

(2βη − λ2 − 2) − λ3
1e

λ2
(

eλ1 + 1
)

(2βη + λ2 − 2)
}

(54)

C6 = Pγ

2βλ1λ2q1(eλ2−1)(eλ1−1)(λ2
1−λ2

2)

{

4 (βη − 1)λ1λ2

(

λ2
1 − λ2

2

)

×
[

λ3
1e

λ2
(

e2λ1 − 1
)

− λ3
1e

λ1
(

e2λ2 − 1
)]

−γ
[

λ3
1

(

eλ1 + 1
) (

eλ2 − 1
)

− λ3
2

(

eλ1 − 1
) (

eλ2 + 1
)]

×
[

−2λ3
2

(

eλ1 + 1
) (

eλ2 − 1
)

(βη − 1) − λ1λ
3
2

(

eλ1 − 1
) (

eλ2 − 1
)

+λ3
1

(

eλ1 − 1
)

(2βη − λ2 − 2) + λ3
1e

λ2
(

eλ1 − 1
)

(2βη + λ2 − 2)
]}

(55)

where

q1 =
(

eλ1 + 1
) (

eλ2 + 1
)

λ1λ2

(

λ2
1 − λ2

2

)

− 2γ
(

eλ1 + 1
) (

eλ2 − 1
)

λ3
1

+2γ
(

eλ1 − 1
) (

eλ2 + 1
)

λ3
2

(56)

q2 =
(

eλ1 + 1
) (

eλ2 + 1
)

λ1λ2

(

λ2
2 − λ2

1

)

+ 2γ
(

eλ1 + 1
) (

eλ2 − 1
)

λ3
1

−2γ
(

eλ1 − 1
) (

eλ2 + 1
)

λ3
2

(57)

Hence, substituting the above constants C1, C2, . . . , C6 into Eqs. (35) and (39), the

thermal-elastic deflection w̄T and rotation ϕT for a shear deformable CC nanobeam

can be obtained. For GAκs → ∞, w̄T can be reduced to the thermal deflection w̄E

for a Euler nanobeam, which can be shown as

w̄E = P̄
2β

[

λ2
1(eλ2x̄+eλ2−λ2x̄)

λ2(eλ2−1)(λ2
1−λ2

2)
− λ2

2(eλ1x̄+eλ1−λ1x̄)
λ1(eλ1−1)(λ2

1−λ2
2)

−λ3
1(eλ1−1)(eλ2+1)−λ3

2(eλ1+1)(eλ2−1)
λ1λ2(eλ1−1)(eλ2−1)(λ2

1−λ2
2)

]

(58)
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where β = L2Pxx

EI
. Furthermore, when the nonlocal effect τ → 0, w̄T can be reduced

to the classical shear deformable deflection w̄
Tcla, as

w̄
Tcla = P̄ γe−

√

βx̄

2β3/2(e
√

β−1)[
√

β(e
√

β+1)−2γ(e
√

β−1)]

{

e2
√

βx̄γ
(

2 +
√

β − 2βη
)

−e(1+x̄)
√

β
[√

β (γ − 2) + 2γ + 2β3/2η − 2βγη
]

−e
√

β
[√

β (γ − 2) − 2γ + 2β3/2η + 2βγη
]

−2e(1+x̄)
√

β
√

β
[

2 − γ + 2x̄2γ − 2βη + 2x̄ (βη − 1)
]

+e2
√

βγ
(√

β + 2βη − 2
)

+e(2+x̄)
√

β
[

x̄2
(

2
√

βγ − β
)

+
(

x̄
√

β − γ
) (

2βη − 2 +
√

β
)]

+e
√

βx̄
[

x̄2
(

β + 2
√

βγ
)

+
(

x̄
√

β + γ
) (

2βη − 2 −
√

β
)]

}

(59)

The response of dimensionless deflection ratio w̄T

/(

w̄
Tcla

)

max under high tem-

perature filed with T = 100K and α = 1.1 × 10−6
/

K is illustrated in Fig. 5

with τ ranges from 0 to 0.2. The maximum classical shear deformable deflection
(

w̄
Tcla

)

max occur at x̄ = 1/2. As observed in the figures, increasing τ tends

to reduce w̄T

/(

w̄
Tcla

)

max. Hence, the classical theory overestimates the thermal-

elastic deflection of a nanobeam.

Plotted in Fig. 6 is the effects of temperature change T on w̄T

/(

w̄
Tcla

)

max with

τ = 0.1 and in low and high temperature environments, where T ranges from 0K

to 120K. Similar to the previous example, it is also observed that w̄T

/(

w̄
Tcla

)

max

decreases as T increases for α < 0, while w̄T

/(

w̄
Tcla

)

max increases as T increases

for α > 0.
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Fig. 7. Transverse deflection ratio using NT and NE model for CC nanobeam.

The comparison between thermal-elastic deflection w̄T and w̄E , based on Tim-

oshenko beam model (NT) and Euler beam model (NE) respectively, are demon-

strated in Fig. 7. It is shown in the figure that shear deformable nanobeam have

lager deflection ratio than the one without shear deformation. Therefore, shear

deformation effect tends to reduce the stiffness of a nanobeam.

4.3. Propped Cantilever (CS) Shear Deformable Nanobeam

For a propped cantilever nanobeam clamped at x̄ = 0 and simply supported at

x̄ = 1, the six boundary conditions in the transverse direction are

w̄|x̄=0 = 0 ; ϕ|x̄=0 = 0 ; ϕ〈2〉∣
∣

x̄=0
= 0

w̄|x̄=1 = 0 ; ϕ〈1〉∣
∣

x̄=1
= 0 ; ϕ〈3〉∣

∣

x̄=1
= 0

(60)
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Substituting Eqs. (35) and (39) into the boundary conditions above and solving the

equations yield six integration constants C1, C2, . . . , C6 which can be expressed as

C1 = P̄ γλ2

2βλ2
1(λ2

1−λ2
2)q3

{

2eλ1λ1λ
2
2

(

λ2
1 − λ2

2

) (

e2λ2 + 1
)

(βη − 1)

−2eλ1λ3
1γλ2

(

e2λ2 − 1
)

(βη − 1)

+2λ4
2γ

(

eλ1 − 1
) (

e2λ2 + 1
)

(βη − 1) − λ2
1λ

4
2γ

(

e2λ2 + 1
)

+λ4
1γ

[

2
(

2eλ2 − 1
)

(βη − 1) + λ2
2 + e2λ2

(

2βη − 2 + λ2
2

)]

(61)

C2 = P̄ γλ2eλ1

2βλ2
1(λ2

1−λ2
2)q3

{

−
(

eλ1 + eλ1+2λ2
)

γ
(

λ2
1 − λ2

2

)

[

2λ2
2 (βη − 1) + λ2

1

(

2βη − 2 + λ2
2

)]

+4eλ1+λ2γ (βη − 1) − 2e2λ2λ2 (βη − 1) (λ1 + λ2)
[

λ1λ2 (λ2 − λ1) + γ
(

λ2
1 − λ1λ2 + λ2

2

)]

+2λ2 (βη − 1) (λ1 − λ2)
[

λ1λ2 (λ2 + λ1) + γ
(

λ2
1 + λ1λ2 + λ2

2

)]

(62)

C3 = P̄ γλ1

2βλ2
2q3(λ2

1−λ2
2)

{

2eλ2λ2λ
2
1

(

λ2
2 − λ2

1

) (

e2λ1 + 1
)

(βη − 1)

−2eλ2λ3
2γλ1

(

e2λ1 − 1
)

(βη − 1)

+2λ4
2γ

(

eλ1 − 1
)2

(βη − 1) + λ2
1λ

4
2γ

(

e2λ1 + 1
)

+ λ4
1γ

(

e2λ1 + 1
)

[

2 − 2βη + 2eλ2 (βη − 1) − λ2
2

]

(63)

C4 = P̄ γλ1eλ2

2βλ2
2q3(λ2

1−λ2
2)

{

2λ2λ
2
1

(

λ2
2 − λ2

1

) (

e2λ1 + 1
)

(βη − 1)

−2λ3
2λ1γ

(

e2λ1 − 1
)

(βη − 1)

−2eλ2λ4
2γ

(

eλ1 − 1
)2

(βη − 1) + λ4
1γ

(

e2λ1 + 1
)

[

2 − 2βη + eλ2
(

−2 + 2βη + λ2
2

)]

(64)

C5 = P̄ γ

2βλ2
1λ2

2q3
{−2 λ4

2

(

eλ1 − 1
)2 (

e2λ2 + 1
)

(βη − 1) − λ2
1λ

4
2

(

e2λ1 + 1
) (

e2λ2 + 1
)

+ λ4
1

(

e2λ1 + 1
)

[

2
(

2eλ2 + 1
)

(βη − 1) + λ2
2 + e2λ2

(

2βη − 2 + λ2
2

)]

(65)

C6 = P̄ γ

2βλ2
1λ2

2q3
{2λ1λ2 (βη − 1)

[(

eλ2 + e2λ1+λ2
)

λ4
1 −

(

eλ1 + eλ1+2λ2
)

λ4
2

]

−γ
[

λ3
1

(

e2λ1 + 1
) (

e2λ2 − 1
)

−λ3
2

(

e2λ1 − 1
) (

e2λ2 + 1
)]

[

2 (βη − 1)
(

λ2
1 + λ2

2

)

+ λ2
1λ

2
2

]

(66)
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where

q3 =
(

e2λ1 + 1
) (

e2λ2 + 1
)

λ1λ2

(

λ2
1 − λ2

2

)

− γλ3
1

(

e2λ1 + 1
) (

e2λ2 − 1
)

+γλ3
2

(

e2λ1 − 1
) (

e2λ2 + 1
)

(67)

Hence, substituting C1, C2, . . . , C6 into Eqs. (35) and (39), the thermal-elastic

deflection w̄T and rotation ϕT for shear deformable CS nanobeam can be obtained.

For GAκs → ∞, w̄T can be reduced to the thermal deflection w̄E for a Euler

nanobeam. Furthermore, for vanishing nonlocal effect τ → 0, w̄T can be reduced to

the classical shear deformable deflection w̄
Tcla, as

w̄
Tcla = P̄ γe−

√

βx̄

2β2[(e2
√

β+1)
√

β−γ(e2
√

β−1)]
{

−e
√

βx̄
[

x̄2β
(

γ +
√

β
)

−
(

x̄
√

β + γ
)

(β + 2βη − 2)
]

−2e(1+2x̄)
√

β
(√

β − γ
)

(βη − 1) − 2e
√

β
(√

β + γ
)

(βη − 1)

+γ
(

e2
√

β − e2x̄
√

β
)

(β + 2βη − 2)

+e(2+x̄)
√

β
[

x̄2β
(

γ −
√

β
)

+
(

x̄
√

β − γ
)

(β + 2βη − 2)
]

−4e(1+x̄)
√

β
√

β (x̄ − 1) (βη − 1)
}

(68)

Figure 8 illustrates the dimensionless deflection ratio w̄T

/(

w̄
Tcla

)

max along the

nanobeam in a high temperature field with T = 100K and α = 1.1 × 10−6
/

K. The

maximum shear deformable deflection
(

w̄
Tcla

)

max occurs at x̄ =
(

15 −
√

33
)/

16

and the nonlocal effect τ ranges from 0 to 0.2. As observed in the figure, increas-

ing τ tends to reduce w̄T

/(

w̄
Tcla

)

max in high temperature environment. Hence,

the classical theory overestimates the thermal-elastic deflection of shear deformable

nanobeam.
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for CS nanobeam.
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Fig. 10. Transverse deflection ratio using NT and NE model for CS nanobeam.

Figure 9 shows the effect of temperature change T on w̄T

/(

w̄
Tcla

)

max with

τ = 0.1 both in low and high temperature environments. It is also observed that at

low and room temperature w̄T

/(

w̄
Tcla

)

max decreases as the temperature change

increases, while at high temperature w̄T

/(

w̄
Tcla

)

max increases as the tempera-

ture change increases. The effect of shear deformation is presented in Fig. 10. It

is observed again that shear deformation effect tends to reduce the stiffness of

nanobeam where the deflection ratio using the NT model is larger than the corre-

sponding deflection ratio using the NE model.

5. Conclusion

An exact nonlocal stress model for thermal bending of shear deformable nanobeam

has been established through the variational principle. New higher-order equilib-

rium equations and the corresponding boundary conditions for shear deformable



October 2, 2011 19:50 RPS/INSTRUCTION FILE 0002

106 Q. Yang, C. W. Lim and Y. Xiang

nanobeams have been derived. Exact analytical solutions have been presented and

the solutions conclude that nonlocal stress effect tends to significantly increase

nanobeam stiffness, while shear deformation leads decreasing nanobeam stiffness.

It is also concluded that in at low and room temperatures, increasing tempera-

ture change causes reduced deflection while in high temperatures, it causes higher

deflection. This conclusion is attributed to the positive and negative thermal expan-

sion coefficient, respectively. The formulation, solution methodologies and analyti-

cal results presented in this paper will hopefully be helpful for the understanding

of mechanical behaviours of MEMS or NEMS systems and devices.
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